Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76957
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorMing-Hua Syueen
dc.contributor.author薛明華zh_TW
dc.date.accessioned2021-07-10T21:41:35Z-
dc.date.available2021-07-10T21:41:35Z-
dc.date.copyright2020-08-14
dc.date.issued2020
dc.date.submitted2020-08-04
dc.identifier.citation1. Narayan, R., Encyclopedia of Biomedical Engineering. 2018: Elsevier Science.
2. McKeen, L.W., The Effect of Creep and other Time Related Factors on Plastics and Elastomers. 2014: Elsevier Science.
3. Dodiuk, H. and S.H. Goodman, Handbook of Thermoset Plastics. 2013: Elsevier Science.
4. Shrivastava, A., Introduction to Plastics Engineering. 2018: Elsevier Science.
5. McKeen, L.W., The Effect of Sterilization on Plastics and Elastomers. 2018: Elsevier Science.
6. van Kooten, C. and J. Banchereau, CD40-CD40 ligand. Journal of Leukocyte Biology, 2000. 67(1): p. 2-17.
7. Elgueta, R., et al., Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev, 2009. 229(1): p. 152-72.
8. Garcia-Marquez, M.A., et al., A multimerized form of recombinant human CD40 ligand supports long-term activation and proliferation of B cells. Cytotherapy, 2014. 16(11): p. 1537-1544.
9. Banchereau, J., et al., Functional CD40 antigen on B cells, dendritic cells and fibroblasts. Adv Exp Med Biol, 1995. 378: p. 79-83.
10. Ma, D.Y. and E.A. Clark, The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol, 2009. 21(5): p. 265-72.
11. Michelson, A.D., Platelets. 2013: Elsevier Science.
12. Mazzei, G.J., et al., Recombinant soluble trimeric CD40 ligand is biologically active. J Biol Chem, 1995. 270(13): p. 7025-8.
13. Sorensen, H.P. and K.K. Mortensen, Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol, 2005. 115(2): p. 113-28.
14. Molecular cell biology / Harvey Lodish ... [et al.]. 4th ed. ed, ed. H.F. Lodish. 2000, New York: W.H. Freeman.
15. Rosano, G.L., E.S. Morales, and E.A. Ceccarelli, New tools for recombinant protein production in Escherichia coli : A 5‐year update. Protein science : a publication of the Protein Society., 2019. 28(8): p. 1412-1422.
16. Rosano, G.L. and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 2014. 5: p. 172.
17. Sun, C., et al., Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives. Protein Expr Purif, 2012. 82(1): p. 226-31.
18. Jevsevar, S., et al., Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog, 2005. 21(2): p. 632-9.
19. Ream, J.A., L.K. Lewis, and K.A. Lewis, Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions. Anal Biochem, 2016. 511: p. 36-41.
20. Gabe, C.M., S.J. Brookes, and J. Kirkham, Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin. Front Physiol, 2017. 8: p. 424.
21. Aberle, H., et al., Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci, 1994. 107 ( Pt 12): p. 3655-63.
22. Ueki, S., B. Lacroix, and V. Citovsky, Protein membrane overlay assay: a protocol to test interaction between soluble and insoluble proteins in vitro. J Vis Exp, 2011(54).
23. Berges, C., et al., A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun, 2005. 333(3): p. 896-907.
24. He, X.-h., L.-h. Xu, and Y. Liu, Enhancement of binding activity of soluble human CD40 to CD40 ligand through incorporation of an isoleucine zipper motif1. Acta pharmacologica Sinica., 2006. 27(3): p. 333-338.
25. Palumbo, R.N., L. Nagarajan, and C. Wang, Recombinant monomeric CD40 ligand for delivering polymer particles to dendritic cells. Biotechnol Prog, 2011. 27(3): p. 830-7.
26. Sorensen, H.P. and K.K. Mortensen, Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact, 2005. 4(1): p. 1.
27. Singh, S.M. and A.K. Panda, Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng, 2005. 99(4): p. 303-10.
28. Singh, A., et al., Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact, 2015. 14: p. 41.
29. Mackey, M.F., R.J. Barth, Jr., and R.J. Noelle, The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol, 1998. 63(4): p. 418-28.
30. Berg, J.M., Biochemistry / Jeremy M. Berg, John L. Tymoczko, Lubert Stryer ; web content by Neil D. Clarke. 5th edition ed, ed. J.L. Tymoczko and L. Stryer. 2002, New York: W.H. Freeman.
31. Alberts, B., Molecular biology of the cell / Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter ; with problems by John Wilson, Tim Hunt. Sixth edition. ed, ed. A. Johnson, et al. 2015, New York, NY: Garland Science, Taylor and Francis Group.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76957-
dc.description.abstract依照高分子鏈的結構可將高分子分類為以下四類:直鏈狀高分子、支鏈狀高分子、交聯狀高分子、網狀高分子。其中交聯狀高分子與網狀高分子常透過化學鍵交聯的方式在高分子鏈的交聯位點的部分以共價鍵鍵結的方式連接高分子鏈。在本研究中,預計利用基因工程的方式設計出一對具有特殊交互作用力的重組蛋白對,並期待在未來可將此對蛋白對用以取代交聯狀高分子結構中的交聯位點部分,賦予高分子材料在生物醫材領域上的應用更多的彈性與發展性。
利用基因工程的方式,將所需目標胺基酸鏈之基因序列插入至目標載體pET32b (+)後,轉殖入大腸桿菌表達系統中進行大量的重組蛋白表達。目標胺基酸鏈之基因模板,參考自兩個位於免疫細胞上的穿膜蛋白—CD40與CD154的膜外胺基酸序列,後續將分別表達出ReCD40與ReCD154兩個重組蛋白供實驗研究之用。
根據本實驗研究的實驗結果顯示,所設計的ReCD40與ReCD154重組蛋白對,在體外的環境下,彼此間確實具有特殊的交互作用力可使彼此連結。在未來,將會建立在ReCD40與ReCD154之間的連接關係的基礎上,將兩個重組蛋白修飾至高分子鏈上,作進一步的新型生醫材料的開發。
zh_TW
dc.description.abstractAccording to the structure of polymer chains, polymers can be classified into the following four categories: linear polymers, branched polymers, cross-linked polymers, and network polymers. The cross-linked polymer and the network polymer link the polymer chains from one backbone to another via covalent bonds between the polymer molecules to form a connected of three-dimensional structure. In this study, we expect to express a pair of recombinant proteins with specific interaction by genetic engineering, and look forward to using this pair of proteins to develop a new polymer crosslink mechanical in the future. This idea would give polymer materials a more flexibility development in the application of biomedical materials field.
We insert the gene sequence into our target vector pET32b (+) by gene cloning, and then transfer it into the E. coli expression system for recombinant protein expression. The gene template of our target amino acid chain is referenced to the extramembrane amino acid sequences of two transmembrane proteins, CD40 and CD154, located on immune cells.
According to the results of our study, ReCD40 and ReCD154 recombinant protein pairs do have a specific interaction to connect each other in vitro. In the future, we will base on the connection between ReCD40 and ReCD154. And both of them would be modified onto the polymer chains for further development of new biomedical materials.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:41:35Z (GMT). No. of bitstreams: 1
U0001-0308202018245500.pdf: 3008060 bytes, checksum: 9df0e9fd977a11b12a0edde36f7c1e4c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
List of contents v
List of Figures x
List of Tables xi
Chapter 1. Introduction 1
Chapter 2. Materials and Methods 10
2.1 Materials 10
2.1.1 Recombinant protein expression 10
2.1.2 Recombinant protein characterization 10
2.1.3 Binding assay of Recombinant proteins and cells 12
2.2 Experiment apparatus 12
2.3 Production of ReCD40 and ReCD154 14
2.3.1 DNA Transformation 14
2.3.1.1 Scale-up of plasmid DNA 14
2.3.1.2 Extraction of DNA plasmid 14
2.3.1.3 Transformation for protein production 16
2.3.1.4 Preservation of bacteria 16
2.3.2 IPTG induction 17
2.3.3 Disruption of bacteria 17
2.3.3.1 Disruption of the bacteria containing plasmid CD40_pET-32b (+) 17
2.3.3.2 Disruption of the bacteria containing plasmid CD40L_pET-32b (+) 18
2.3.4 Purification of the target proteins 18
2.3.5 Storage of Proteins 19
2.4 Characterization of ReCD40 and ReCD154 20
2.4.1 Agarose gel electrophoresis 20
2.4.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 21
2.4.3 Western blot 21
2.4.4 Protein cleavage test 22
2.5 Protein Membrane Overlay Assay 22
2.6 Cell Culture 24
2.6.1 Jurkat CD4+ T cell Culture 24
2.6.2 Activated THP-1 cells Culture 24
2.7 Binding assay of Recombinant protein and cells 25
Chapter 3. Results 27
3.1 Characterization of ReCD40 27
3.1.1 Characterization of CD40_pET32b (+) plasmid 27
3.1.2 Time sequence induction of ReCD40 27
3.1.3 The solubility of ReCD40 27
3.1.4 Purification of ReCD40 with the His-tag column 28
3.1.5 ReCD40 cleavage test 28
3.2 Characterization of ReCD154 29
3.2.1 Characterization of ReCD154_pET32b (+) plasmid 29
3.2.2 Time sequence induction of ReCD154 29
3.2.3 The solubility of ReCD154 29
3.2.4 ReCD154 recovery from inclusion bodies 29
3.2.5 Purification of ReCD154 with the His-tag column 30
3.2.6 ReCD154 cleavage test 30
3.3 Proteins Overlay Assay of ReCD40 and ReCD154 31
3.4 Binding Assay of Recombinant Protein with Human Cells 31
3.4.1 Binding Assay of ReCD40 to CD4+ Jurkat T cells 31
3.4.2 Binding Assay of ReCD154 to Activated THP-1 cells 31
Chapter 4. Discussions 32
4.1 Characterization of ReCD40 32
4.1.1 Characterization of CD40_pET32b (+) 32
4.1.2 Time sequence induction of ReCD40 33
4.1.3 The solubility of ReCD40 33
4.1.4 Purification of ReCD40 with the His-tag column 34
4.1.5 ReCD40 cleavage test 34
4.2 Characterization of ReCD154 35
4.2.1 ReCD154_pET32b (+) plasmid 35
4.2.2 Time sequence induction of ReCD154 36
4.2.3 The solubility of ReCD154 36
4.2.4 ReCD154 recovery from inclusion bodies 37
4.2.5 Purification of ReCD154 with the His-tag column 38
4.2.6 ReCD154 cleavage test 39
4.3 Proteins Overlay Assay of ReCD40 and ReCD154 39
4.4 Binding Assay of Recombinant Protein with Human Cells 40
4.4.1 Binding Assay of ReCD40 to CD4+ Jurkat T cells 40
4.4.2 Binding Assay of ReCD154 to Activated THP-1 cells 41
Chapter 5. Conclusions 42
References 44
Figure 48
Table 58
dc.language.isoen
dc.subjectCD154zh_TW
dc.subject重組蛋白zh_TW
dc.subject大腸桿菌zh_TW
dc.subject基因工程zh_TW
dc.subjectCD40zh_TW
dc.subjectCD40en
dc.subjectrecombinant proteinen
dc.subjectCD154en
dc.subjectE. colien
dc.subjectgenetic engineeringen
dc.title具特定交互作用之重組蛋白對之研究:設計、製備及鑑定zh_TW
dc.titleRecombinant Proteins with Specific Interaction: Design, Preparation, and Characterization
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林宏殷(Hung-Yin Lin),李玫樺(Mei-Hwa Lee),黃琮瑋(Tsung-Wei Huang)
dc.subject.keyword重組蛋白,大腸桿菌,基因工程,CD40,CD154,zh_TW
dc.subject.keywordrecombinant protein,E. coli,genetic engineering,CD40,CD154,en
dc.relation.page58
dc.identifier.doi10.6342/NTU202002306
dc.rights.note未授權
dc.date.accepted2020-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202018245500.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved