Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76934
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林美峰(Mei-Fong Lin)
dc.contributor.authorJu-Ching Leeen
dc.contributor.author李茹靜zh_TW
dc.date.accessioned2021-07-10T21:40:54Z-
dc.date.available2021-07-10T21:40:54Z-
dc.date.copyright2020-08-11
dc.date.issued2020
dc.date.submitted2020-08-07
dc.identifier.citation孔維寶、李龍囡、張繼、夏春谷。2010。小球藻的營養保健功能及其在食品工業中的應用。食品科學 31(9):323-328。
申玉莉、劉宏、喻晶。2013。結構與非結構因素對黃酮類化合物抗氧化活性作用的影響。中國藥房 24(7):660-663。
施瑛。2005。蛋白核小球藻多糖制備及其增強免疫功能的研究。南京農業大學 5:60。
郝桂娟、張賓、章樣楊、湯賀、劉曉影。2019。殼寡糖鋅配合物對氧化衰老模型小鼠的抗氧化作用。核農學報 33(6):1156-1164。
劉海琴、韓士群。2005。小球藻提取物的生物活性研究。海洋科學 29(9):23-26。
Abuja, P. M., and R. Albertini. 2001. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta. 306(1-2):1-17.
An, H. J., H. K. Rim, H. J. Jeong, S. H. Hong, J. Y. Um, and H. M. Kim. 2010. Hot water extracts of Chlorella vulgaris improve immune function in protein-deficient weanling mice and immune cells. Immunopharmacol. Immunotoxicol. 32(4):585-592.
Aydin, S., K. Yanar, P. Atukeren, E. Dalo, M. E. Sitar, E. Uslu, N. Caf, and U. Cakatay. 2012. Comparison of oxidative stress biomarkers in renal tissues of D-galactose induced, naturally aged and young rats. Biogerontology 13(3):251-260.
Babusikova, E., J. Jurecekova, A. Evinova, M. Jesenak, and D. Dobrota. 2012. Oxidative damage and bronchial asthma. Page 151-176. In respiratory-diseases. M. Ghanei, ed., IntechOpen, Rijeka.
Bae, M. J., H. S. Shin, O. H. Chai, J. G. Han, and D. H. Shon. 2013. Inhibitory effect of unicellular green algae (Chlorella vulgaris) water extract on allergic immune response. J. Sci. Food Agric. 93(12):3133-3136.
Bjelakovic, G., I. Stojanovic, T. Jevtovic-Stoimenov, J. Saranac, B. Bjelakovic, D. Pavlovic, G. Kocic, and B. G. Bjelakovic. 2011. Hypoglycemia as a pathological result in medical praxis. Page 109-142. In: type 1 diabetes complications. D. Wagner, ed., IntechOpen, Rijeka.
Brigelius-Flohe, R., and M. G. Traber. 1999. Vitamin E: function and metabolism. FASEB J. 13(10):1145-1155.
Chen, Y. X., X. Y. Liu, Z. Xiao, Y. F. Huang, and B. Liu. 2016. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int. J. Biol. Macromol. 91:505-509.
Chetsawang, J., P. Govitrapong, and B. Chetsawang. 2010. Hydrogen peroxide toxicity induces ras signaling in human neuroblastoma SH-SY5Y cultured cells. J. Biomed. Biotechnol. 2010:803815. doi: 10.1155/2010/803815.
Cimen, M. Y. 2008. Free radical metabolism in human erythrocytes. Clin. Chim. Acta. 390(1-2):1-11.
Coelho, A. I., G. T. Berry, and M. E. Rubio-Gozalbo. 2015. Galactose metabolism and health. Curr. Opin. Clin. Nutr. Metab. Care 18(4):422-427.
Connor, W. E. 2000. Importance of n-3 fatty acids in health and disease. Am. J. Clin. Nutr. 71(1 Suppl):171S-175S.
Cura, A. J., and A. Carruthers. 2012. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr. Physiol. 2(2):863-914.
Dantas, D. C., R. Kaneno, and M. L. Queiroz. 1999. The effects of Chlorella vulgaris in the protection of mice infected with Listeria monocytogenes. Role of natural killer cells. Immunopharmacol. Immunotoxicol. 21(3):609-619.
Doba, T., G. W. Burton, and K. U. Ingold. 1985. Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 835(2):298-303.
Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82(1):47-95.
Ennaceur, A., and J. Delacour. 1988. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31(1):47-59.
Fang, Y. Z., S. Yang, and G. Wu. 2002. Free radicals, antioxidants, and nutrition. Nutrition 18(10):872-879.
Fatemi, I., A. Khaluoi, A. Kaeidi, A. Shamsizadeh, S. Heydari, and M. A. Allahtavakoli. 2018. Protective effect of metformin on D-galactose-induced aging model in mice. Iran. J. Basic. Med. Sci. 21(1):19-25.
Folin, O., and V. Ciocalteu. 1927. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73(2):627-650.
Fusco, D., G. Colloca, M. R. Lo Monaco, and M. Cesari. 2007. Effects of antioxidant supplementation on the aging process. Clin. Interv. Aging 2(3):377-387.
Halliwell, B. 1996. Antioxidants in human health and disease. Annu. Rev. Nutr. 16:33-50.
Han, C. H., Y. S. Lin, T. L. Lee, H. J. Liang, and W. C. Hou. 2014. Asn-Trp dipeptides improve the oxidative stress and learning dysfunctions in D-galactose-induced BALB/c mice. Food Funct. 5(9):2228-2236.
Han, J. G., G. G. Kang, J. K. Kim, and S. H. Kim. 2002. The present status and future of Chlorella. Food Sci. Ind. 6:64-69.
Hasegawa, T., K. Ito, S. Ueno, S. Kumamoto, Y. Ando, A. Yamada, K. Nomoto, and Y. Yasunobu. 1999. Oral administration of hot water extracts of Chlorella vulgaris reduces IgE production against milk casein in mice. Int. J. Immunopharmacol. 21(5):311-323.
Hasegawa, T., Y. Kimura, K. Hiromatsu, N. Kobayashi, A. Yamada, M. Makino, M. Okuda, T. Sano, K. Nomoto, and Y. Yoshikai. 1997. Effect of hot water extract of Chlorella vulgaris on cytokine expression patterns in mice with murine acquired immunodeficiency syndrome after infection with Listeria monocytogenes. Immunopharmacology 35(3):273-282.
Hasegawa, T., M. Okuda, M. Makino, K. Hiromatsu, K. Nomoto, and Y. Yoshikai. 1995. Hot water extracts of Chlorella vulgaris reduce opportunistic infection with Listeria monocytogenes in C57BL/6 mice infected with LP-BM5 murine leukemia viruses. Int. J. Immunopharmacol. 17(6):505-512.
Hasegawa, T., Y. Yoshikai, M. Okuda, and K. Nomoto. 1990. Accelerated restoration of the leukocyte number and augmented resistance against Escherichia coli in cyclophosphamide-treated rats orally administered with a hot water extract of Chlorella vulgaris. Int. J. Immunopharmacol. 12(8):883-891.
Hayyan, M., M. A. Hashim, and I. M. AlNashef. 2016. Superoxide Ion: generation and chemical implications. Chem. Rev. 116(5):3029-3085.
Heck, D. E., M. Shakarjian, H. D. Kim, J. D. Laskin, and A. M. Vetrano. 2010. Mechanisms of oxidant generation by catalase. Ann. N. Y. Acad. Sci. 1203:120-125.
Hidaka, S., Y. Okamoto, and M. Arita. 2004. A hot water extract of Chlorella pyrenoidosa reduces body weight and serum lipids in ovariectomized rats. Phytother. Res. 18(2):164-168.
Hsieh, H. M., W. M. Wu, and M. L. Hu. 2009. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose. Food Chem. Toxicol. 47(3):625-632.
Huang, Y. X., S. N. Qin, D. F. Zhang, L. Li, and Y. Mu. 2016. Evaluation of cell disruption of Chlorella vulgaris by pressure-assisted ozonation and ultrasonication. Energies 9(3):173-183.
Islam, M. S., A. Aryasomayajula, and P. R. Selvaganapathy. 2017. A review on macroscale and microscale cell lysis methods. Micromachines- (Basel) 8(3):83. doi: 10.3390/mi8030083
Jin, K. 2010. Modern biological theories of aging. Aging Dis. 1(2):72-74.
Kose, A., M. O. Ozen, M. Elibol, and S. S. Oncel. 2017. Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement. 3 Biotech 7(3):170. doi: 10.1007/s13205-017-0832-4
Kregel, K. C., and H. J. Zhang. 2007. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292(1):R18-36.
Kuda, T., M. Tsunekawa, H. Goto, and Y. Araki. 2005. Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J. Food Compos. Anal. 18(7):625-633.
Lee, H. S., H. J. Park, and M. K. Kim. 2008. Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet. Nutr. Res. Pract. 2(4):204-210.
Lee, S. H., H. J. Kang, H. J. Lee, M. H. Kang, and Y. K. Park. 2010. Six-week supplementation with Chlorella has favorable impact on antioxidant status in Korean male smokers. Nutrition 26(2):175-183.
Lee, Y. K. and H. G. Lee. 2002. Industrial uses of algae. Korean Journal of Applied Microbiology and Bioengineering, 15, 19-24.
Leopoldini, M., N. Russo, and M. Toscano. 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125(2):288-306.
Li, X., X. Bao, and R. Wang. 2016. Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). Int. J. Mol. Med. 37(2):271-283.
Lin, Y. C. 1969. The supplementary effect of algae on the nutritive value of soybean milk. Taiwan Yi Xue Hui Za Zhi 68(1):15-21.
Lodovici, M., F. Guglielmi, C. Casalini, M. Meoni, V. Cheynier, and P. Dolara. 2001. Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine. Eur. J. Nutr. 40(2):74-77.
Lueptow, L. M. 2017. Novel Object Recognition Test for the investigation of learning and memory in mice. J. Vis. Exp. (126):e55718. doi: 10.3791/55718
Luparini, M. R., A. Del Vecchio, G. Barillari, M. Magnani, and M. Prosdocimi. 2000. Cognitive impairment in old rats: a comparison of object displacement, object recognition and water maze. Aging (Milano) 12(4):264-273.
Makpol, S., N. Yaacob, A. Zainuddin, Y. A. M. Yusof, and W. Z. W. Ngah. 2009. Chlorella vulgaris modulates hydrogen peroxide-induced DNA damage and telomere shortening of human fibroblasts derived from different aged individuals. Afr. J. Tradit. Complement. Altern. Med. 6(4):560-572.
Melo, D., S. Rocha, S. Coimbra, and A. S. Silva. 2019. Interplay between erythrocyte peroxidases and membrane. In erythrocyte. A Tombak, ed. IntechOpen. Rijeka. doi: 10.5772/intechopen.83590
Merchant, R. E., and C. A. Andre. 2001. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern. Ther. Health. Med. 7(3):79-91.
Miller, A. F. 2004. Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol. 8(2):162-168.
Minatel, I. O., C. V. Borges, M. I. Ferreira, H. A. G. Gomez, C.-Y. O. Chen, and G. P. P. Lima. 2017. Phenolic compounds: Functional properties, impact of processing and bioavailability. Page 1-24. In phenolic compounds—biological activity M. Soto- Hernández, ed., IntechOpen, Rijeka. doi:10.5772/66368
Mišurcová, L., S. Škrovankova, D. Samek, J. Ambrožová, and L. Machů. 2012. Health benefits of algal polysaccharides in human nutrition. Adv. Food Nutr. Res. 66:75-145.
Morita, K., T. Matsueda, T. Iida, and T. Hasegawa. 1999. Chlorella accelerates dioxin excretion in rats. J. Nutr. 129(9):1731-1736.
Morris, R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11(1):47-60.
Mueller, S., H. D. Riedel, and W. Stremmel. 1997. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood 90(12):4973-4978.
Northcote, D. H., K. J. Goulding, and R. W. Horne. 1958. The chemical composition and structure of the cell wall of Chlorella pyrenoidosa. Biochem. J. 70(3):391-397.
Nunez, J. 2008. Morris Water Maze Experiment. J. Vis. Exp. (19):897. doi: 10.3791/897
Paniagua‐Michel, J., J. O. Soto, and E. M. Guerrero. 2015. Microalgal carotenoids: bioactive roles, health foods, and pharmaceuticals. Page 639-658. In marine algae extracts: processes, products, and applications. S. K. Kim and K. Chojnacka, ed., Wiley-VCH, Hoboken.
Park, Y., and W. S. Harris. 2003. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J. Lipid Res. 44(3):455-463.
Pereira, D. M., P. Valentao, J. A. Pereira, and P. B. Andrade. 2009. Phenolics: From chemistry to biology. Mol. 14(6):2202-2211.
Phaniendra, A., D. B. Jestadi, and L. Periyasamy. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian. J. Clin. Biochem. 30(1):11-26.
Piluzza, G., and S. Bullitta. 2011. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 49(3):240-247.
Pourmemar, E., A. Majdi, M. Haramshahi, M. Talebi, P. Karimi, and S. Sadigh-Eteghad. 2017. Intranasal cerebrolysin attenuates learning and memory impairments in D-galactose-induced senescence in mice. Exp. Gerontol. 87(Pt A):16-22.
Ramos, A. L., C. O. Torello, and M. L. S. Queiroz. 2010. Chlorella vulgaris modulates immunomyelopoietic activity and enhances the resistance of tumor-bearing mice. Nutr. Cancer 62(8):1170-1180.
Rosenberg, J. N., G. A. Oyler, L. Wilkinson, and M. J. Betenbaugh. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19(5):430-436.
Ryan, M. J., H. J. Dudash, M. Docherty, K. B. Geronilla, B. A. Baker, G. G. Haff, R. G. Cutlip, and S. E. Alway. 2008. Aging-dependent regulation of antioxidant enzymes and redox status in chronically loaded rat dorsiflexor muscles. J. Gerontol. A-Biol. Sci. Med. Sci. 63(10):1015-1026.
Sadasivam, K., and R. Kumaresan. 2011. Antioxidant behavior of mearnsetin and myricetin flavonoid compounds--a DFT study. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 79(1):282-293.
Sadigh-Eteghad, S., J. Mahmoudi, S. Babri, and M. Talebi. 2015. Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta. Cir. Bras. 30(11):736-742.
Sano, T., and Y. Tanaka. 1987. Effect of dried, powdered Chlorella vulgaris on experimental atherosclerosis and alimentary hypercholesterolemia in cholesterol-fed rabbits. Artery 14(2):76-84.
Seol, M.-A., U. Jung, H. S. Eom, S.-H. Kim, H.-R. Park, and S.-K. Jo. 2012. Prolonged expression of senescence markers in mice exposed to gamma-irradiation. J. Vet. Sci. 13(4):331-338.
Sha, J. Y., Y. D. Zhou, J. Y. Yang, J. Leng, J. H. Li, J. N. Hu, W. Liu, S. Jiang, Y. P. Wang, C. Chen, and W. Li. 2019. Maltol (3-Hydroxy-2-methyl-4-pyrone) slows d-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice. J. Agric. Food Chem. 67(37):10342-10351.
Shetty, V., and G. Sibi. 2015. Relationship between total phenolics content and antioxidant activities of microalgae under autotrophic, heterotrophic and mixotrophic growth. J. Food Resour. Sci. 4(1):1-9.
Shibata, S., Y. Natori, T. Nishihara, K. Tomisaka, K. Matsumoto, H. Sansawa, and V. C. Nguyen. 2003. Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. J. Nutr. Sci. Vitaminol. (Tokyo) 49(5):334-339.
Shih, M. F., and J. Y. Cherng. 2008. Potential protective effect of fresh grown unicellular green algae component (resilient factor) against PMA- and UVB-induced MMP1 expression in skin fibroblasts. Eur. J. Dermatol. 18(3):303-307.
Shim, J. A., Y. A. Son, J. M. Park, and M. K. Kim. 2009. Effect of Chlorella intake on Cadmium metabolism in rats. Nutr. Res. Pract. 3(1):15-22.
Shimada, A., and S. Hasegawa-Ishii. 2011. Senescence-accelerated mice (SAMs) as a model for brain aging and immunosenescence. Aging Dis. 2(5):414-435.
Shwe, T., W. Pratchayasakul, N. Chattipakorn, and S. C. Chattipakorn. 2018. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp. Gerontol. 101:13-36.
Singh, R. P., S. Sharad, and S. Kapur. 2004. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J. Indian Acad. Clin. Med. 5(3):218-225.
Sik, A., P. van Nieuwehuyzen, J. Prickaerts, and A. Blokland. 2003. Performance of different mouse strains in an object recognition task. Behav. Brain Res. 147(1-2):49-54.
Spiden, E. M., P. J. Scales, S. E. Kentish, and G. J. O. Martin. 2013. Critical analysis of quantitative indicators of cell disruption applied to Saccharomyces cerevisiae processed with an industrial high pressure homogenizer. Biochem. Eng. J. 70:120-126.
Sugihara, N., T. Arakawa, M. Ohnishi, and K. Furuno. 1999. Anti-and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radic. Biolo. Med. 27(11-12):1313-1323.
Tanaka, K., F. Konishi, K. Himeno, K. Taniguchi, and K. Nomoto. 1984. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris. Cancer Immunol. Immunother. 17(2):90-94.
Turner, J. S. and D. B. Helms. 1986. Contemporary Adulthood. (3rd ed.). Holt, Rinehart, and Winston, New York.
Vijayavel, K., C. Anbuselvam, and M. P. Balasubramanian. 2007. Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol. Cell Biochem. 303(1-2):39-44.
Vishal-Tandon, M., B. Gupta, and R. Tandon. 2005. Free radicals/reactive oxygen species. JK Pract. 12(3):143-148.
Wei, H., L. Li, Q. Song, H. Ai, J. Chu, and W. Li. 2005. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav. Brain Res. 157(2):245-251.
Wickens, A. P. 2001. Ageing and the free radical theory. Respir. Physiol. 128(3):379-391.
Wu, L. C., J. A. A. Ho, M. C. Shieh, and I. W. Lu. 2005. Antioxidant and antiproliferative activities of spirulina and chlorella water extracts. J. Agr. Food Chem. 53(10):4207-4212.
Xiang, J., C. Wan, R. Guo, and D. Guo. 2016. Is hydrogen peroxide a suitable apoptosis inducer for all cell types? BioMed Res. Int. 2016: 7343965. https://doi.org/10.1155/2016/7343965
Xu, L. Q., Y. L. Xie, S. H. Gui, X. Zhang, Z. Z. Mo, C. Y. Sun, C. L. Li, D. D. Luo, Z. B. Zhang, Z. R. Su, and J. H. Xie. 2016. Polydatin attenuates D-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice. Food Funct. 7(11):4545-4555.
Xu, Y., T. Wu, Y. Jin, and Z. Fu. 2009. Effects of age and jet lag on D-galactose induced aging process. Biogerontology 10(2):153-161.
Yan, L., S. U. Lim, and I. H. Kim. 2012. Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australas J. Anim. Sci. 25(12):1742-1747.
Yang, L., S. Xing, K. Wang, H. Yi, and B. Du. 2018. Paeonol attenuates aging MRC-5 cells and inhibits epithelial-mesenchymal transition of premalignant HaCaT cells induced by aging MRC-5 cell-conditioned medium. Mol. Cell Biochem. 439(1-2):117-129.
Yokozawa, T., E. J. Cho, Y. Hara, and K. Kitani. 2000. Antioxidative activity of green tea treated with radical initiator 2, 2'-azobis(2-amidinopropane) dihydrochloride. J. Agric. Food Chem. 48(10):5068-5073.
Yusof, Y. A. M., S. M. Saad, S. Makpol, N. A. Shamaan, and W. Z. W. Ngah. 2010. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis. Clinics (Sao Paulo) 65(12):1371-1377.
Zakaria, S. M., S. M. M. Kamal, M. R. Harun, R. Omar, and S. I. Siajam. 2017. Subcritical water technology for extraction of phenolic compounds from Chlorella sp. microalgae and assessment on its antioxidant activity. Molecules 22(7):1105. doi: 10.3390/molecules22071105
Zhou, H., Z. Qu, J. Z. Zhang, B. J. Jiang, C. X. Liu, and W. Y. Gao. 2018. Shunaoxin dropping pill, a Chinese herb compound preparation, attenuates memory impairment in D-galactose-induced aging mice. RSC. Adv. 8(19):10163-10171.
Zhu, K., X. Zeng, F. Tan, W. Li, C. Li, Y. Song, and X. Zhao. 2019. Effect of insect tea on D-galactose-induced oxidation in mice and its mechanisms. Food Sci. Nutr. 7(12):4105-4115.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76934-
dc.description.abstract本研究旨在探討小球藻水萃物(Chlorella vulgaris extract, CE)對 D-半乳糖誘導氧化壓力小鼠之抗氧化影響。細胞試驗利用過氧化氫誘導 MRC-5 細胞氧化壓力作為細胞模式,觀察小球藻水萃物對細胞存活率及過氧化氫誘導細胞損傷之影響。動物試驗分為六組,分別為未誘導之對照組(Control)、D-半乳糖誘導之誘導組(D-gal)、維生素 C 之正對照組(Vitamin C)及小球藻水萃物之低劑量(CE- L)、中劑量(CE- M)、高劑量(CE- H)處理組,除對照組外,以皮下注射 D-半乳糖誘導氧化壓力老化小鼠為試驗動物。實驗為期八周,進行新物體辨識試驗與水迷宮游泳行為試驗,並於試驗結束時採血分析血液抗氧化酵素活性及脂質過氧化物含量。研究結果顯示經破壁處理取得之小球藻水萃物具有顯著較高的萃出產率與水萃物之含量(P<0.05)。此外,在處理濃度 2mg/ml 以下時,對細胞不具有細胞毒性,但對於 200 μM 及 250 μM 過氧化氫誘導之細胞損傷沒有顯著的保護作用。在動物試驗中,小球藻水萃物能顯著改善由 D-半乳糖誘導引起小鼠體重下降、脾臟腫大、抗氧化酵素穀胱甘肽氧化酶活性降低與脂質過氧化物丙二醛含量增加(P<0.05)之情形,並在中劑量組中有顯著較佳的識別記憶、高劑量組中有顯著較佳的空間記憶表現(P<0.05)。綜而言之,小球藻水萃物在細胞試驗中無法顯著有效預防由 200 μM 以上過氧化氫所造成之細胞損傷,但具有良好的體外清除自由基能力及增強 D-半乳糖誘導老化小鼠體內抗氧化之潛力。zh_TW
dc.description.abstractThe objective of this study was to investigate the antioxidant effect of Chlorella extract on D-galactose induced oxidative stress in mice. The study was divided into three parts which includes extraction of Chlorella, in vitro cell test and in vivo animal test. First, the Chlorella cells were broken by high-pressure, then extracted with hot water followed by centrifugation. The supernatant was lyophilized using a freeze dryer to obtain the Chlorella water extract powder (CE). The extraction results showed that CE obtained from the broken cell wall had significantly higher yield and water extractive contents (P<0.05). In vitro study aimed to evaluate the possible protective effects of CE against H2O2-induced cell damage in MRC-5 cells. Treatment of CE on MRC-5 cell for 24 hours resulted in no changes (P>0.05) in cell viability compared to control, indicating that the concentrations (<2 mg/ml) used in this study did not induce damage to cell. However, the cell viability of the cells pretreated with CE and further exposure to 200 μM or 250 μM H2O2 for 4 hours, showed no significant differences between treatment groups and induced group. The result indicated that pretreatment of cells with CE had no significantly protected the cells against the damage induced by H2O2. In vivo study was performed to investigate the effect of CE on learning, memory and oxidative stress in D-galactose (D-gal) induced aging mice. Mice were injected subcutaneously with D-gal daily for 8 weeks and administered simultaneously with CE or vitamin C. The results showed that CE significantly improved body weight loss and memory and learning ability in Novel object recognition (NOR) and Morris water maze test (MWM) compared to the D-gal induced mice. Furthermore, CE increased the glutathione peroxidases activity and decreased the malondialdehyde level (P<0.05). To sum up, although CE could not significantly prevent cell damage induced by H2O2 in the in vitro study, it had good ability to scavenge free radicals and enhance the antioxidant potential of D-gal induced aging mice.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:40:54Z (GMT). No. of bitstreams: 1
U0001-0608202017415500.pdf: 3398908 bytes, checksum: bcf592cddfab2a61fd71757f80ab16df (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌.....................................................I
摘要.....................................................II
ABSTRACT ...............................................III
目錄.....................................................IV
圖次....................................................VII
表次....................................................VIII
序言....................................................1
壹、文獻回顧.............................................2
一、動物老化.............................................2
二、活性氧物質與自由基....................................3
(一)來源 ...............................................4
(二)種類 ...............................................5
(三)對生物體之氧化性傷害 .................................7
三、抗氧化物.............................................9
(一)生物體內抗氧化防禦系統 ...............................9
(二)抗氧化物機制 .......................................13
四、老化誘導模式........................................14
(一)自然老化模型 .......................................14
(二)誘導老化模型 ...................................... 14
五、小球藻簡介......................................... 17
(一)小球藻對生物體之功效 ............................... 18
(二)小球藻安全性評估 ................................... 20
(三)小球藻之應用 ....................................... 20
六、小球藻水萃物........................................ 21
(一)小球藻水萃物對動物之作用 ............................ 21
(二)小球藻水萃物活性成分探討 ............................ 23
貳、材料與方法.......................................... 26
一、小球藻水萃物之製備................................... 26
(一)試驗設計 ........................................... 26
(二)小球藻水萃物製備 .................................... 26
(三)清除 DPPH 自由基能力檢測 ........................... 27
(四)蛋白質含量測定 ................................... 27
(五)總多酚含量測定 ...................................... 27
(六)多醣與還原醣含量測定 ................................. 28
二、細胞試驗............................................. 29
(一)試驗設計 ............................................ 29
(二)細胞培養............................................. 29
(三)細胞存活率試驗 ....................................... 29
三、動物試驗............................................ 30
(一)試驗設計 ........................................... 30
(二)試驗動物處理 ....................................... 31
(三)動物生長性狀測定 .................................... 32
(四)動物行為測驗 ....................................... 32
(五)血液抗氧化酵素與過氧化物分析 .......................... 34
(六)組織切片 ............................................ 36
四、統計分析............................................. 37
參、結果................................................. 38
一、小球藻水萃物製備...................................... 38
(一)小球藻細胞預處理及萃取 ................................ 38
(二)萃取率與蛋白質含量 ................................... 39
(三)清除 DPPH 自由基之能力檢測 .......................... 40
(四)總多酚含量 ........................................... 41
(五)多醣與還原醣含量 ..................................... 42
二、細胞試驗............................................ 43
(一)細胞存活率試驗 ...................................... 43
三、動物試驗............................................. 45
(一)動物生長性狀測定 .................................... 45
1、體重................................................. 45
2、內臟相對重量.......................................... 46
(二)動物行為試驗 ........................................ 47
1、新物體辨識試驗(NOR).................................. 47
2、水迷宮游泳試驗(MWM)................................ 49
(三)血液抗氧化酵素與過氧化物分析 .......................... 50
(四)組織切片 ............................................ 52
肆、討論................................................. 53
一、小球藻水萃物製備...................................... 53
二、細胞存活率........................................... 54
三、小球藻水萃物對 D-半乳糖誘導小鼠生長性狀之影響........... 55
(一)體重 ............................................ 55
(二)內臟相對重量 ........................................ 56
四、小球藻水萃物對 D-半乳糖誘導小鼠行為試驗之影響........... 57
(一)新物體辨識試驗....................................... 57
(二)水迷宮游泳試驗 ....................................... 58
五、小球藻水萃物對 D-半乳糖誘導小鼠血液抗氧化酵素與過氧化物之影響59
伍、結論................................................... 60
參考文獻................................................... 61
作者簡歷.................................................. 73
dc.language.isozh-TW
dc.subject老化zh_TW
dc.subject小球藻水萃物zh_TW
dc.subject氧化壓力zh_TW
dc.subject清除自由基zh_TW
dc.subjectD-半乳糖zh_TW
dc.subjectChlorella water extracten
dc.subjectscavenge free radicalen
dc.subjectD-galen
dc.subjectoxidative stressen
dc.subjectagingen
dc.title小球藻水萃物對細胞與老化小鼠氧化損傷之影響zh_TW
dc.titleEffect of water extract of Chlorella vulgaris on oxidative stress in cells and aging miceen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉嚞睿(Je-Ruei Liu),黃志宏(Chih-Hung Huang),徐瑋萱(Wei-Hsuan Hsu)
dc.subject.keyword小球藻水萃物,老化,氧化壓力,D-半乳糖,清除自由基,zh_TW
dc.subject.keywordChlorella water extract,aging,oxidative stress,D-gal,scavenge free radical,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202002567
dc.rights.note未授權
dc.date.accepted2020-08-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-0608202017415500.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved