Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76932
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王大銘(Da-Ming Wang)
dc.contributor.authorWei-Ting Changen
dc.contributor.author張瑋廷zh_TW
dc.date.accessioned2021-07-10T21:40:51Z-
dc.date.available2021-07-10T21:40:51Z-
dc.date.copyright2020-09-24
dc.date.issued2020
dc.date.submitted2020-08-06
dc.identifier.citation[1] Critical raw materials, 2017, available from: https://ec.Europa.Eu/growth/sectors/raw-materials/specific-interest/critical_en.
[2] S. Jeon, J. Yeo, S. Yang, J. Choi, D.K. Kim, Ion storage and energy recovery of a flow-electrode capacitive deionization process, Journal of Materials Chemistry A, 2 (2014) 6378.
[3] M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochimica Acta, 55 (2010) 3845-3856.
[4] A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo, Energy minimization strategies and renewable energy utilization for desalination: A review, Water Research, 45 (2011) 1907-1920.
[5] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, 58 (2013) 1388-1442.
[6] A. Omosebi, X. Gao, J. Landon, K. Liu, Asymmetric electrode configuration for enhanced membrane capacitive deionization, ACS Applied Materials Interfaces, 6 (2014) 12640-12649.
[7] Y. Gendel, A.K.E. Rommerskirchen, O. David, M. Wessling, Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochemistry Communications, 46 (2014) 152-156.
[8] J. Ma, Y. Zhang, R.N. Collins, S. Tsarev, N. Aoyagi, A.S. Kinsela, A.M. Jones, T.D. Waite, Flow-electrode CDI removes the uncharged Ca-UO2-CO3 ternary complex from brackish potable groundwater: Complex dissociation, transport, and sorption, Environmental Science Technology, 53 (2019) 2739-2747.
[9] X. Zhang, F. Yang, J. Ma, P. Liang, Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization, Environmental Science: Water Research Technology, 6 (2020) 341-350.
[10] J. Song, J. Ma, C. Zhang, C. He, T.D. Waite, Implication of non-electrostatic contribution to deionization in flow-electrode CDI: Case study of nitrate removal from contaminated source waters, Frontiers in Chemistry, 7 (2019) 146.
[11] S. Yang, J. Choi, J.G. Yeo, S.I. Jeon, H.R. Park, D.K. Kim, Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environmental Science Technology, 50 (2016) 5892-5899.
[12] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management, 92 (2011) 407-418.
[13] 放流水標準, 《水污染防治法》, (2019 年 04 月 29 日).
[14] Y. Huang, Z. Zhang, Y. Cao, G. Han, W. Peng, X. Zhu, T. Zhang, Z. Dou, Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue- a review, Hydrometallurgy, 193 (2020) 105327.
[15] K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, M. Buchert, Recycling of rare earths: A critical review, Journal of Cleaner Production, 51 (2013) 1-22.
[16] T.A. Kurniawan, G.Y.S. Chan, W. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chemical Engineering Journal, 118 (2006) 83-98.
[17] A.S. Negi, S.C. Anand, A textbook of physical chemistry, New Age International, 1985.
[18] Z. Wu, D. Zhao, Ordered mesoporous materials as adsorbents, Chemical Communications, 47 (2011) 3332-3338.
[19] K. Pyrzyńska, M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362 (2010) 102-109.
[20] W. Mu, S. Du, Q. Yu, X. Li, H. Wei, Y. Yang, Improving barium ion adsorption on two-dimensional titanium carbide by surface modification, Dalton Transactions, 47 (2018) 8375-8381.
[21] K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review, Advances in Colloid and Interface Science, 140 (2008) 114-131.
[22] A. Sarkar, B. Paul, The global menace of arsenic and its conventional remediation - a critical review, Chemosphere, 158 (2016) 37-49.
[23] M.R. Adam, S.K. Hubadillah, M.I.M. Esham, M.H.D. Othman, M.A. Rahman, A.F. Ismail, J. Jaafar, Adsorptive membranes for heavy metals removal from water, Elsevier, 2019, 361-400.
[24] F. Gode, E. Pehlivan, Removal of chromium(III) from aqueous solutions using Lewatit s 100: The effect of pH, time, metal concentration and temperature, Journal of Hazardous Materials, 136 (2006) 330-337.
[25] S.Y. Kang, J.U. Lee, S.H. Moon, K.W. Kim, Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater, Chemosphere, 56 (2004) 141-147.
[26] S.A. AboFarha, A.Y. AbdelAal, I.A. Ashour, S.E. Garamon, Removal of some heavy metal cations by synthetic resin purolite C100, Journal of Hazardous Materials, 169 (2009) 190-194.
[27] M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian Journal of Chemistry, 4 (2011) 361-377.
[28] S. Jamaly, N.N. Darwish, I. Ahmed, S.W. Hasan, A short review on reverse osmosis pretreatment technologies, Desalination, 354 (2014) 30-38.
[29] M. Sadrzadeh, T. Mohammadi, J. Ivakpour, N. Kasiri, Neural network modeling of Pb2+ removal from wastewater using electrodialysis, Chemical Engineering and Processing: Process Intensification, 48 (2009) 1371-1381.
[30] T. Mohammadi, A. Kaviani, Water shortage and seawater desalination by electrodialysis, Desalination, 158 (2003) 267-270.
[31] G. Bylund, Dairy processing handbook, 2 ed., Tetra Pak, 2015.
[32] S. Gunatilake, Methods of removing heavy metals from industrial wastewater, Journal of Multidiciplinary Engineering Science Studies, 1 (2015).
[33] S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Research, 44 (2010) 2267-2275.
[34] H. Li, L. Zou, Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination, Desalination, 275 (2011) 62-66.
[35] Z. Huang, L. Lu, Z. Cai, Z.J. Ren, Individual and competitive removal of heavy metals using capacitive deionization, Journal of Hazardous Materials, 302 (2016) 323-331.
[36] J. Choi, P. Dorji, H.K. Shon, S. Hong, Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency, Desalination, 449 (2019) 118-130.
[37] T.J. Welgemoed, C.F. Schutte, Capacitive deionization technology™: An alternative desalination solution, Desalination, 183 (2005) 327-340.
[38] P. Dlugolecki, A. van der Wal, Energy recovery in membrane capacitive deionization, Environmental Science Technology, 47 (2013) 4904-4910.
[39] J.W. Blair, G.W. Murphy, Electrochemical demineralization of water with porous electrodes of large surface area, American Chemical Society, 1960, 206-223.
[40] B.B. Arnold, G.W. Murphy, Studies on the electrochemistry of carbon and chemically-modified carbon surfaces, The Journal of Physical Chemistry, 65 (1961) 135-138.
[41] A.M. Johnson, A.W. Venolia, R.G. Wilbourne, J. Newman, The electrosorb process for desalting water, U.S. Department of the Interior, 1970.
[42] Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review), Desalination, 228 (2008) 10-29.
[43] J. Farmer, D. Fix, G. Mack, R.W. Pekala, J. Poco, Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes, Journal of Applied Electrochemistry, 26 (1996) 1007-1018.
[44] 林修正, 電化學科技辭典, 五南圖書出版股份有限公司, 2005.
[45] H. Helmholtz, Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf die thierisch-elektrischen versuche, Annalen der Physik, 165 (1853) 211-233.
[46] G. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte, Journal of Physics: Theories and Applications, 9 (1910) 457-468.
[47] D. Chapman, A contribution to the theory of electrocapillarity, Philosophical Magazine, 25 (1913) 475-481.
[48] P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, Journal of Colloid and Interface Science, 360 (2011) 239-248.
[49] C. Lin, Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels, Journal of The Electrochemical Society, 146 (1999) 3639.
[50] P.M. Biesheuvel, S. Porada, M. Levi, M.Z. Bazant, Attractive forces in microporous carbon electrodes for capacitive deionization, Journal of Solid State Electrochemistry, 18 (2014) 1365-1376.
[51] K. Bohinc, V. KraljIglic, A. Iglic, Thickness of electrical double layer. Effect of ion size, Electrochimica Acta, 46 (2001) 3033–3040.
[52] M.A. Brown, A. Goel, Z. Abbas, Effect of electrolyte concentration on the stern layer thickness at a charged interface, Angewandte Chemie International Edition, 55 (2016) 3790-3794.
[53] J.D. Norton, H.S. White, S.W. Feldberg, Effect of the electrical double layer on voltammetry at microelectrodes, The Journal of Physical Chemistry, 94 (1990) 6772-6780.
[54] B. Jia, W. Zhang, Preparation and application of electrodes in capacitive deionization (CDI): A state-of-art review, Nanoscale Research Letters, 11 (2016) 64.
[55] F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chemical Society Reviews, 44 (2015) 5861-5896.
[56] R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, Carbon aerogels for electrochemical applications, Journal of Non-Crystalline Solids, 225 (1998) 74-80.
[57] H. Maddah, M. Shihon, Activated carbon cloth for desalination of brackish water using capacitive deionization, 2018.
[58] X. Su, T.A. Hatton, Redox-electrodes for selective electrochemical separations, Advances in Colloid and Interface Science, 244 (2017) 6-20.
[59] K. Singh, S. Porada, H.D. de Gier, P.M. Biesheuvel, L.C.P.M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455 (2019) 115-134.
[60] J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques, Energy Environmental Science, 7 (2014) 3683-3689.
[61] A.M. Johnson, J. Newman, Desalting by means of porous carbon electrodes, Journal of The Electrochemical Society, 118 (1971) 510.
[62] J. Lee, K. Park, H. Eum, C. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196 (2006) 125-134.
[63] S. Jeon, H. Park, J. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environmental Science, 6 (2013).
[64] W. Tang, J. Liang, D. He, J. Gong, L. Tang, Z. Liu, D. Wang, G. Zeng, Various cell architectures of capacitive deionization: Recent advances and future trends, Water Research, 150 (2019) 225-251.
[65] L. Liu, L. Liao, Q. Meng, B. Cao, High performance graphene composite microsphere electrodes for capacitive deionisation, Carbon, 90 (2015) 75-84.
[66] Q. Liu, Y. Wang, Y. Zhang, S. Xu, J. Wang, Effect of dopants on the adsorbing performance of polypyrrole/graphite electrodes for capacitive deionization process, Synthetic Metals, 162 (2012) 655-661.
[67] G.M. Geise, H.J. Cassady, D.R. Paul, B.E. Logan, M.A. Hickner, Specific ion effects on membrane potential and the permselectivity of ion exchange membranes, Physical Chemistry Chemical Physics, 16 (2014) 21673-21681.
[68] H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Research, 42 (2008) 4923-4928.
[69] P. Liang, L. Yuan, X. Yang, S. Zhou, X. Huang, Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination, Water Research, 47 (2013) 2523-2530.
[70] J.Y. Lee, S.J. Seo, S.H. Yun, S.H. Moon, Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI), Water Research, 45 (2011) 5375-5380.
[71] W. Shi, X. Liu, C. Ye, X. Cao, C. Gao, J. Shen, Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane, Separation and Purification Technology, 210 (2019) 885-890.
[72] J. Lee, W. Bae, J. Choi, Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process, Desalination, 258 (2010) 159-163.
[73] J. Kang, T. Kim, K. Jo, J. Yoon, Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization, Desalination, 352 (2014) 52-57.
[74] Y. Qu, P.G. Campbell, L. Gu, J.M. Knipe, E. Dzenitis, J.G. Santiago, M. Stadermann, Energy consumption analysis of constant voltage and constant current operations in capacitive deionization, Desalination, 400 (2016) 18-24.
[75] R. Zhao, P.M. Biesheuvel, A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environmental Science, 5 (2012).
[76] M.W. Saleem, Y.A.C. Jande, M. Asif, W. Kim, Hybrid CV-CC operation of capacitive deionization in comparison with constant current and constant voltage, Separation Science and Technology, 51 (2016) 1063-1069.
[77] Q. Yao, H.L. Tang, Effect of desorption methods on electrode regeneration performance of capacitive deionization, Journal of Environmental Engineering, 143 (2017).
[78] P. Dorji, J. Choi, D.I. Kim, S. Phuntsho, S. Hong, H.K. Shon, Membrane capacitive deionisation as an alternative to the 2nd pass for seawater reverse osmosis desalination plant for bromide removal, Desalination, 433 (2018) 113-119.
[79] M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: What is it and what can we expect from it?, Energy Environmental Science, 8 (2015) 2296-2319.
[80] M. Mossad, L. Zou, A study of the capacitive deionisation performance under various operational conditions, Journal of Hazardous Materials, 213-214 (2012) 491-497.
[81] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Applied Materials Interfaces, 4 (2012) 1194-1199.
[82] S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J.S. Atchison, K.J. Keesman, S. Kaskel, P.M. Biesheuvel, V. Presser, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy Environmental Science, 6 (2013).
[83] R. Zhao, O. Satpradit, H.H. Rijnaarts, P.M. Biesheuvel, A. van der Wal, Optimization of salt adsorption rate in membrane capacitive deionization, Water Research, 47 (2013) 1941-1952.
[84] R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, A. van der Wal, Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization, The Journal of Physical Chemistry Letters, 1 (2009) 205-210.
[85] H. Yoon, J. Lee, S. Kim, J. Yoon, Review of concepts and applications of electrochemical ion separation (EIONS) process, Separation and Purification Technology, 215 (2019) 190-207.
[86] A. AlKaraghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable and Sustainable Energy Reviews, 24 (2013) 343-356.
[87] S. Porada, L. Zhang, J.E. Dykstra, Energy consumption in membrane capacitive deionization and comparison with reverse osmosis, Desalination, 488 (2020).
[88] A. Rommerskirchen, C.J. Linnartz, D. Müller, L.K. Willenberg, M. Wessling, Energy recovery and process design in continuous flow–electrode capacitive deionization processes, ACS Sustainable Chemistry Engineering, 6 (2018) 13007-13015.
[89] H. Park, J. Choi, S. Yang, S.J. Kwak, S. Jeon, M.H. Han, D.K. Kim, Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization, RSC Advances, 6 (2016) 69720-69727.
[90] S. Yang, H. Kim, S. Jeon, J. Choi, J. Yeo, H. Park, J. Jin, D.K. Kim, Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation, Desalination, 424 (2017) 110-121.
[91] X. Gao, S. Porada, A. Omosebi, K.L. Liu, P.M. Biesheuvel, J. Landon, Complementary surface charge for enhanced capacitive deionization, Water Research, 92 (2016) 275-282.
[92] S. Porada, D. Weingarth, H.V.M. Hamelers, M. Bryjak, V. Presser, P.M. Biesheuvel, Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation, Journal of Materials Chemistry A, 2 (2014).
[93] J. Ma, C. He, D. He, C. Zhang, T.D. Waite, Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI, Water Research, 144 (2018) 296-303.
[94] K.B. Hatzell, M.C. Hatzell, K.M. Cook, M. Boota, G.M. Housel, A. McBride, E.C. Kumbur, Y. Gogotsi, Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization, Environmental Science Technology, 49 (2015) 3040-3047.
[95] G.J. Doornbusch, J.E. Dykstra, P.M. Biesheuvel, M.E. Suss, Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization, Journal of Materials Chemistry A, 4 (2016) 3642-3647.
[96] A. Rommerskirchen, A. Kalde, C.J. Linnartz, L. Bongers, G. Linz, M. Wessling, Unraveling charge transport in carbon flow-electrodes: Performance prediction for desalination applications, Carbon, 145 (2019) 507-520.
[97] K. Tang, S. Yiacoumi, Y. Li, C. Tsouris, Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization, ACS Sustainable Chemistry Engineering, 7 (2018) 1085-1094.
[98] P. Liang, X. Sun, Y. Bian, H. Zhang, X. Yang, Y. Jiang, P. Liu, X. Huang, Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode, Desalination, 420 (2017) 63-69.
[99] Y. Cho, C.Y. Yoo, S.W. Lee, H. Yoon, K.S. Lee, S. Yang, D.K. Kim, Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes, Water Research, 151 (2019) 252-259.
[100] S. Yang, H. Park, J. Yoo, H. Kim, J. Choi, M.H. Han, D.K. Kim, Plate-shaped graphite for improved performance of flow-electrode capacitive deionization, Journal of The Electrochemical Society, 164 (2017) 480-488.
[101] K. Fang, H. Gong, W. He, F. Peng, C. He, K. Wang, Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization, Chemical Engineering Journal, 348 (2018) 301-309.
[102] J. Ma, P. Liang, X. Sun, H. Zhang, Y. Bian, F. Yang, J. Bai, Q. Gong, X. Huang, Energy recovery from the flow-electrode capacitive deionization, Journal of Power Sources, 421 (2019) 50-55.
[103] K.Y. Choo, C.Y. Yoo, M.H. Han, D.K. Kim, Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization, Journal of Electroanalytical Chemistry, 806 (2017) 50-60.
[104] J. Chang, F. Duan, H. Cao, K. Tang, C. Su, Y. Li, Superiority of a novel flow-electrode capacitive deionization (FCDI) based on a battery material at high applied voltage, Desalination, 468 (2019).
[105] S. Dahiya, B.K. Mishra, Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress, Separation and Purification Technology, 240 (2020).
[106] D. Moreno, M.C. Hatzell, Influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization, Industrial Engineering Chemistry Research, 57 (2018) 8802-8809.
[107] S. Yang, S. Jeon, H. Kim, J. Choi, J. Yeo, H. Park, D.K. Kim, Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology, ACS Sustainable Chemistry Engineering, 4 (2016) 4174-4180.
[108] C. Zhang, J. Ma, D. He, T.D. Waite, Capacitive membrane stripping for ammonia recovery (CapAmm) from dilute wastewaters, Environmental Science Technology Letters, 5 (2017) 43-49.
[109] F. Yang, J. Ma, X. Zhang, X. Huang, P. Liang, Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance, Water Research, 164 (2019) 114904.
[110] A. Rommerskirchen, Y. Gendel, M. Wessling, Single module flow-electrode capacitive deionization for continuous water desalination, Electrochemistry Communications, 60 (2015) 34-37.
[111] Y. Cho, K.S. Lee, S. Yang, J. Choi, H. Park, D.K. Kim, A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization, Energy Environmental Science, 10 (2017) 1746-1750.
[112] R. Borsani, S. Rebagliati, Fundamentals and costing of MSF desalination plants and comparison with other technologies, Desalination, 182 (2005) 29-37.
[113] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-development to date and future potential, Journal of Membrane Science, 370 (2011) 1-22.
[114] M. Sadrzadeh, T. Mohammadi, Sea water desalination using electrodialysis, Desalination, 221 (2008) 440-447.
[115] C. Zhang, L. Wu, J. Ma, A.N. Pham, M. Wang, T.D. Waite, Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination, Environmental Science Technology, 53 (2019) 13364-13373.
[116] S. Hand, X. Shang, J.S. Guest, K.C. Smith, R.D. Cusick, Global sensitivity analysis to characterize operational limits and prioritize performance goals of capacitive deionization technologies, Environmental Science Technology, 53 (2019) 3748-3756.
[117] B. Sekhon, Chelate formation of riboflavine with yttrium (III), lanthanum (III), and cerium (III), Zeitschrift für Naturforschung C, (1974).
[118] J. Zhang, L. Tang, W. Tang, Y. Zhong, K. Luo, M. Duan, W. Xing, J. Liang, Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization, Separation and Purification Technology, 237 (2020).
[119] J.C.B. Geoffrey Allen, Comprehensive polymer science and supplements: Comprehensive polymer science and supplements-online, Elsevier Science, 1996.
[120] P. Kumar, S. Yashonath, Ionic conductivity in aqueous electrolyte solutions: Insights from computer simulations, Journal of Molecular Liquids, 277 (2019) 506-515.
[121] G.K. Schweitzer, L.L. Pesterfield, The aqueous chemistry of the elements, Oxford University Press, 2010.
[122] H. Huang, The Eh-pH diagram and its advances, Metals, 6 (2016).
[123] N. Takeno, Atlas of Eh-pH diagrams, Geological survey of Japan open file report, 419 (2005) 102.
[124] P.J. Gellings, Introduction to corrosion prevention and control for engineers, Delft University Press, 1976.
[125] C.H. Hou, P. TaboadaSerrano, S. Yiacoumi, C. Tsouris, Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores, The Journal of Chemical Physics, 129 (2008) 224703.
[126] C.H. Hou, C.Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124-129.
[127] Y. Li, C. Zhang, Y. Jiang, T. Wang, H. Wang, Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization, Desalination, 399 (2016) 171-177.
[128] J. Cejka, Molecular sieves: From basic research to industrial applications, Elsevier Science, 2005.
[129] T. Bohli, Comparative study of bivalent cationic metals adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on olive stones chemically activated carbon, Journal of Chemical Engineering Process Technology, 04 (2013).
[130] K. Barbalace, Periodic table of elements - sorted by ionic radius, available from: https://environmentalchemistry.Com/yogi/periodic/ionicradius.html.
[131] J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (Bio)interfaces. Part 1- critical evaluation and compilation of physico-chemical parameters for complexes with simple ligands and Fulvic/Humic substances, Environmental Science and Technology, 41 (2007) 7609–7620.
[132] Table of diffusion coefficients, available from: https://www.Aqion.De/site/194.
[133] C. Jungnickel, D. Smith, S. Fityus, Coupled multi-ion electrodiffusion analysis for clay soils, Canadian Geotechnical Journal, 41 (2004) 287-298.
[134] 黃翰卿 (2019)。《以流電極電容去離子技術回收無機酸》。國立臺灣大學化學工程學研究所碩士論文,未出版,台北市
[135] M.B. Vukmirovic, N. Vasiljevic, N. Dimitrov, K. Sieradzki, Diffusion-Limited Current Density of Oxygen Reduction on Copper, Journal of The Electrochemical Society, 150 (2003).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76932-
dc.description.abstract因應經濟發展,金屬在各領域需求量上升,但部分金屬因故導致供給不穩定,且水污染防治法規範排放廢水中金屬含量,因此金屬離子回收技術日趨重要。流電極電容去離子法是近十年發展的新興技術,其電極流動特性展現連續式操作及製程放大的潛力,因此本研究運用此技術分別對含一價鹼金屬鈉、二價重金屬鈷、銅及三價稀土金屬鑭的溶液進行移除及回收,測試其應用的可行性。
首先利用批次法處理含金屬溶液,在原模組施加反向電場進行電極再生。考量流電極中離子的參與而提出被移除離子的遷移機制,一是儲存在活性碳內的電吸附,二是留在電極溶液中與多孔電極所排斥出的同離子維持電中性。研究結果發現,有較小水合半徑及價數的陰離子易以電吸附形式存在活性碳中,也容易作為同離子被排斥;然而,有較大水合半徑及價數的金屬離子一旦進到活性碳孔洞則需要較長時間進行脫附。
連接第二個再生模組,模擬更接近實務操作的電極再生方式,各離子可維持近99%移除及回收率,但以鑭離子有最差的回收速率。接著以連續式進料測試長時間操作,結果顯示各金屬皆可在1440分鐘的操作內維持穩定的移除速率。然而,水解反應在長時間操作下分別對一價鈉的系統與二價鑭、三價鈷的系統有所影響:鈉離子因較快的脫附速率,氫氧根離子和硝酸根離子的競爭使再生溶液鹼化;而鈷和鑭的系統中因較大的脫附阻力,造成氫離子和金屬離子的競爭,氫離子長時間的累積造成再生溶液酸化,且嚴重影響金屬離子的回收。另外,長時間操作下負極鹼化的現象也可能造成氫氧化物沈澱。因此,本研究嘗試降低再生側的施加電壓、控制流電極中pH值,成功抑制水解離,減緩氫離子競爭力,提升鑭離子回收速率。綜合上述,本研究提出各離子可能遷移機制,透過介入其競爭關係,使流電極式電容去離子技術能夠在含金屬廢液的處理有工業應用的潛力。
zh_TW
dc.description.abstractThe demand for metals in industry has increased due to economic development; however, some metal supply is unstable. In addition, the government enact legislation such as effluent standard for metal-containing wastewater. Accordingly, the development of technology for metal ion recovery has become mainstream. Flow-electrode capacitive deionization (FCDI) is an emerging deionization technology in last decade. It shows commercial potential because of continuous operation and scale-up ability due to flowable electrode. The objective of this study is to evaluate the feasibility of using FCDI to recover metal ions of different valence number, such as Na+, Co2+, Cu2+ and La3+.
Fundamental studies are conducted under batch-mode deionization and successive regeneration in the same FCDI module. Considering the ion in flow electrode, the migration mechanism of removed ion was proposed. Some acting as counter-ion being electrosorped by the active carbon, while other were distributed in the electrolyte due to charge neutralization of co-ion repelled by carbon electrode. Results showed that anion with smaller hydrated radius and lower charge valence preferentially being adsorbed in the carbon particles but easily been desorbed as the co-ion. However, once metal ions with larger hydrated radius and higher charge valence entered the active carbon pores, they would take longer time to desorb.
Connect the second FCDI module with the original one, evaluate the feasibility of simultaneous deionization and regeneration. All ions still maintain almost 99% removal and recovery in batch mode; however, La3+ shows the worst recovery rate during desorption. The feed side is then changed from batch to single-pass mode to evaluate continuous operation in FCDI process. The results revealed that it can maintain steady removal rate for each metal at least 1440 minutes. However, some face regeneration problems due to water splitting under long term operation. The sodium ion has faster desorption rate, which causes the competition between hydroxide ion and nitrate ion alkalizing the regeneration solution. However, hydrogen and metal ions compete due to the desorption resistance for cobalt and lanthanum ion. The hydrogen accumulation leads to acidification of the regeneration solution, and seriously inhibiting the metal ions recovery. In addition, the alkalization in negative flow-electrode may also cause hydroxide precipitation. In this study, we try to reduce the applied voltage for regeneration and also control the pH in flow-electrode. It effectively inhibits water hydrolysis phenomenon, slow down the competitiveness of hydrogen and increase recovery rate of lanthanum. This study proposes a possible migration mechanism of each ion and its competitive relationship based on the results. The flow-electrode capacitive deionization technology shows great potential for metal recovery from wastewater in industrial.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:40:51Z (GMT). No. of bitstreams: 1
U0001-0608202019175400.pdf: 9291413 bytes, checksum: 1c74ed4f41702e576fe064ea4f1871d5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XIV
第1章 緒論 1
第2章 文獻回顧 4
2.1 金屬離子的回收與分離 4
2.1.1 吸附法 4
2.1.2 離子交換法 5
2.1.3 薄膜分離法 6
2.2 電容去離子技術 9
2.2.1 電容去離子技術主要構造及操作原理 9
2.2.2 電容去離子技術發展歷程 10
2.2.3 電容去離子技術中離子傳輸及儲存的理論模型 12
2.2.4 電容去離子技術中常用電極材料 14
2.2.5 電容去離子技術常見模組構造及其應用 15
2.2.6 電容去離子技術之操作方法及性能表現影響之變因 20
2.2.7 電容去離子技術性能表現之評估 22
2.3 流電極式電容去離子技術 24
2.3.1. 流電極組成與製備 25
2.3.2. 流電極式電容去離子技術之操作設計 28
2.3.3. 流電極式電容去離子技術模組設計 29
2.3.4. 流電極式電容去離子技術應用 33
2.4 金屬在水中的型態:鈉、鈷、銅、鑭離子溶液 35
2.4.1 電位-pH圖 35
2.4.2 離子移動性質 42
第3章 實驗方法與步驟 44
3.1 設備與儀器 44
3.2 實驗藥品 46
3.3 實驗步驟 48
3.3.1 流電極製備 48
3.3.2 流電極電容去離子測試 48
3.3.3 水中離子之定量 56
第4章 結果與討論 60
4.1. 批次式流電極電容去離子技術結合接續式再生電極處理不同金屬溶液 60
4.1.1. 離子在流電極中遷移及分佈之探討 63
4.1.2. 不同電極對離子分佈之影響 64
4.1.3. 不同金屬離子對離子分佈之影響 67
4.1.4. 不同陰離子對離子分佈之影響 70
4.2. 批次式流電極電容去離子技術結合同時再生電極處理不同金屬溶液 73
4.3. 連續式流電極電容去離子技術結合同時再生電極處理不同金屬溶液 77
4.3.1. 改變操作電壓之影響 84
4.3.2. 控制負極pH值之影響 88
第5章 結論與展望 92
5.1 結論 92
5.2 未來展望 93
參考文獻 94
dc.language.isozh-TW
dc.subject連續程序zh_TW
dc.subject金屬離子回收zh_TW
dc.subject流電極電容去離子技術zh_TW
dc.subject電吸附zh_TW
dc.subject同離子效應zh_TW
dc.subjectco-ion effecten
dc.subjectFlow-electrode capacitive deionizationen
dc.subjectelectrosorptionen
dc.subjectmetal ion recoveryen
dc.subjectcontinuous processen
dc.title以流電極式電容去離子技術回收金屬離子zh_TW
dc.titleRecovery of Metal Ions by Flow-electrode Capacitive Deionizationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor侯嘉洪(Chia-Hung Hou)
dc.contributor.oralexamcommittee顏溪成(Shi-Chern Yen),孫一明(Yi-Ming Sun)
dc.subject.keyword流電極電容去離子技術,電吸附,同離子效應,連續程序,金屬離子回收,zh_TW
dc.subject.keywordFlow-electrode capacitive deionization,electrosorption,co-ion effect,continuous process,metal ion recovery,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202002573
dc.rights.note未授權
dc.date.accepted2020-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
U0001-0608202019175400.pdf
  Restricted Access
9.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved