請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76922完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛文証(Wen-Jeng Hsueh) | |
| dc.contributor.author | Bo-Yu Chen | en |
| dc.contributor.author | 陳柏宇 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:40:33Z | - |
| dc.date.available | 2021-07-10T21:40:33Z | - |
| dc.date.copyright | 2020-08-12 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-10 | |
| dc.identifier.citation | [1] E.-m. Xu, F. Wang, and P.-l. Li. “A high-q microwave photonic filter by using an soa-based active mode-locked fiber ring laser,” Optoelectron Lett. 9, 97-100 (2013). [2] A. Li, Q. Huang, and W. Bogaerts. “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photonics Res. 4, 84-92 (2016). [3] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets. “Silicon microring resonators,”Laser Photonics Rev. 6, 47-73 (2012). [4] J. M. Choi, R. K. Lee, and A. Yariv. “Control of critical coupling in a ring resonator–fiber configuration: Application to wavelength-selective switching, modulation, amplification, and oscillation,” Opt. Lett. 26, 1236-1238 (2001). [5] S. Ezekiel and S. Balsamo. “Passive ring resonator laser gyroscope,”Appl. Phys. Lett. 30, 478-480 (1977). [6] Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda. “A micrometre-scale raman silicon laser with a microwatt threshold,” Nature. 498, 470-474 (2013). [7] F. Zarinetchi, S. Smith, and S. Ezekiel. “Stimulated brillouin fiber-optic laser gyroscope,” Opt. Lett. 16, 229-231 (1991). [8] J. Scheuer and A. Yariv. “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006). [9] T. Ling, S.-L. Chen, and L. J. Guo. “Fabrication and characterization of high q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express. 19, 861-869 (2011). [10] P. Dong, S. F. Preble, and M. Lipson. “All-optical compact silicon comb switch,” Opt. Express. 15, 9600-9605 (2007). [11] J. E. Heebner and R. W. Boyd. “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847-849 (1999). [12] D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov. “Self-tuning mechanisms of nonlinear split-ring resonators,”Appl. Phys. Lett. 91, 144107 (2007). [13] T. Baba. “Slow light in photonic crystals,” Nat. Photon. 2, 465 (2008). [14] D. Stamper-Kurn, M. Andrews, A. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle. “Optical confinement of a bose-einstein condensate,” Phys. Rev. Lett. 80, 2027 (1998). [15] T. Rudolph. “Why i am optimistic about the silicon-photonic route to quantum computing,” APL Photonics. 2, 030901 (2017). [16] L. Lu, J. D. Joannopoulos, and M. Soljačić. “Topological photonics,” Nat. Photon. 8, 821 (2014). [17] M. Xiao, Z. Zhang, and C. T. Chan. “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X.4, 021017 (2014). [18] H. Zhao, P. Miao, M. H. Teimourpour, S. Malzard, R. El-Ganainy, H. Schomerus, and L. Feng. “Topological hybrid silicon microlasers,” Nat. Commun. 9, 1-6 (2018). [19] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo. “Lasing in topological edge states of a one-dimensional lattice,” Nat. Photon. 11, 651-656 (2017). [20] K. H. Choi, C. Ling, K. Lee, Y. Tsang, and K. H. Fung. “Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals,” Opt. Lett. 41, 1644-1647 (2016). [21] A. A. Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow. “Novel microwave microfluidic sensor using a microstrip split-ring resonator,” IEEE Trans Microw Theory Tech. 62, 679-688 (2014). [22] B. Lahiri, A. Z. Khokhar, M. Richard, S. G. McMeekin, and N. P. Johnson. “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express. 17, 1107-1115 (2009). [23] P. Troughton. “Measurement techniques in microstrip,” Electron. Lett. 5, 25-26 (1969). [24] E. Marcatili. “Bends in optical dielectric guides,”Bell Labs Tech. J. 48, 2103-2132 (1969). [25] A. Yariv. “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483-485 (2002). [26] D. Armani, B. Min, A. Martin, and K. J. Vahala. “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,”Appl. Phys. Lett. 85, 5439-5441 (2004). [27] Q. Xu, D. Fattal, and R. G. Beausoleil. “Silicon microring resonators with 1.5-µm radius,” Opt. Express. 16, 4309-4315 (2008). [28] C. Ciminelli, F. Dell'Olio, M. N. Armenise, F. M. Soares, and W. Passenberg. “High performance inp ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express. 21, 556-564 (2013). [29] D.-P. Cai, J.-H. Lu, C.-C. Chen, C.-C. Lee, C.-E. Lin, and T.-J. Yen. “High q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5, 1-8 (2015). [30] M. Á. Guillén-Torres, K. Murray, H. Yun, M. Caverley, E. Cretu, L. Chrostowski, and N. A. Jaeger. “Effects of backscattering in high-q, large-area silicon-on-insulator ring resonators,” Opt. Lett. 41, 1538-1541 (2016). [31] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar. “Monolithic ultra-high-q lithium niobate microring resonator,” Optica. 4, 1536-1537 (2017). [32] H. C. Frankis, K. M. Kiani, D. Su, R. Mateman, A. Leinse, and J. D. Bradley. “High-q tellurium-oxide-coated silicon nitride microring resonators,” Opt. Lett. 44, 118-121 (2019). [33] J. K. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv. “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express. 12, 90-103 (2004). [34] M. V. Berry. “Quantal phase factors accompanying adiabatic changes,” Proc. Roy. Soc. Lond. A 392, 45-57 (1984). [35] J. Zak. “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62, 2747 (1989). [36] M. Matsuo, H. Yabuki, and M. Makimoto. “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans Microw Theory Tech. 49, 1235-1240 (2001). [37] G. Gao, Y. Zhang, H. Zhang, Y. Wang, Q. Huang, and J. Xia. “Air-mode photonic crystal ring resonator on silicon-on-insulator,” Sci. Rep. 6, 1-6 (2016). [38] G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee. “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard cmos process,” Opt. Express. 18, 22215-22221 (2010). [39] A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson. “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express. 20, 21341-21345 (2012). [40] A. Gondarenko, J. S. Levy, and M. Lipson. “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express. 17, 11366-11370 (2009). [41] R. Sun, P. Dong, N.-n. Feng, C.-y. Hong, J. Michel, M. Lipson, and L. Kimerling. “Horizontal single and multiple slot waveguides: Optical transmission at λ= 1550 nm,” Opt. Express. 15, 17967-17972 (2007). [42] F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov. “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express. 15, 11934-11941 (2007). [43] I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications, Springer, New York (2010). [44] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts. “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236-4238 (2012). [45] Y.-C. Lin, S.-H. Chou, and W.-J. Hsueh. “Robust high-q filter with complete transmission by conjugated topological photonic crystals,” Sci. Rep. 10, 1-7 (2020). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76922 | - |
| dc.description.abstract | 本論文主要研究非對稱週期結構耦合微環共振器之特性,首先運用馬克士威電磁波理論與轉移矩陣法,分析電磁波於非對稱週期結構之耦合微環共振器中之傳輸性質。接著使用能帶圖與反射相位及札克相位之對應來設計結構參數,並藉由調控微環結構半徑、不同耦合係數、相異能帶匹配等方式,來分析光於拓樸邊緣態與邊緣態的傳輸特性。特別的是當兩種結構長度一致也就是相同能帶匹配下,共軛條件附近會產生最高的穿透率與品質因數,且共振峰值位置可以維持無因次化頻率固定不會改變。而相異能帶匹配的情況會使品質因數更進一步的提升,但拓樸邊緣態範圍會縮小。相同能帶匹配下擁有最廣的拓樸邊緣態範圍,其優點為具有強健性與拓樸保護的特性。研究結果指出,反射相位為正時,札克相位相異的區域,穿透率最大值發生處與品質因數最大值發生處會很接近;札克相位相同的區域,穿透率最大值發生處與品質因數最大值發生處會一致,所有能帶匹配情況皆有此現象。 | zh_TW |
| dc.description.abstract | This thesis mainly studies the characteristics of the coupled microring resonators with asymmetric periodic strutures. Firstly, Maxwell's electromagnetic wave theory and transfer matrix method are used to analyze the transmission properties of electromagnetic waves in the coupled microring resonators with asymmetric periodic strutures. The structural pa-rameters are designed by using the correspondence between the energy band gap and the reflection phase and the Zak phase, and by adjusting the micro-ring structure radius, dif-ferent coupling coefficients, and differences band matching and other methods can be used to analyze the transmission characteristics of the optical topological edge state and the edge state. In particular, when the two structures have the same length, that is, the same energy band gap is matched, the highest transmittance and quality factor will be generated near the conjugate condition, and the position of the resonance peak can be maintained and the dimensionless frequency is fixed and will not change. The matching of different energy band gaps will further improve the quality factor, but the range of top-ological edge states will be reduced. In the condition of the same energy band gaps matching, it has the widest range of topological edge states, and its advantages include the characteristics of robustness and topological protection. The research results indicate that when the reflection phase is positive, the area where the Zak phase is different, the place where the maximum transmission occurs and the place where the maximum quality factor occurs will be very close; the area where the Zak phase is the same, the place where the maximum transmission occurs will be consistent with the place where the maximum qual-ity factor occurs. This phenomenon occurs in all band gaps matching situations. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:40:33Z (GMT). No. of bitstreams: 1 U0001-0908202014030900.pdf: 15961279 bytes, checksum: 25b04f706af8d19e4318d0ab166cfa56 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 符號表 x 第一章 導論 1 1.1 背景與研究動機 1 1.2 歷史文獻 3 1.3 論文架構 5 第二章 週期結構中之電磁波原理 6 2.1 馬克士威方程組 6 2.2 坡印廷定理 9 2.3 布洛赫定理 10 2.4 札克相位與特徵電場 12 2.5 表面阻抗與反射相位 14 第三章 耦合微環共振器之原理 16 3.1 耦合微環形共振器結構 16 3.2 串聯形式耦合微環共振器之光傳輸特性 19 3.3 穿透率與反射率 24 3.4 色散方程式 26 第四章 非對稱週期耦合微環共振器之光傳輸特性 28 4.1 半環非對稱週期耦合微環共振器結構 28 4.2 相同能帶匹配對光傳輸特性之影響 30 4.3 共軛條件下耦合係數對光傳輸特性之影響 39 第五章 相異能帶匹配對光傳輸特性之影響 41 5.1 ,能帶匹配對光傳輸特性之影響 41 5.2 ,能帶匹配對光傳輸特性之影響 51 第六章 結論與未來展望 61 6.1 結論 61 6.2 未來展望 63 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 耦合微環共振器光波導 | zh_TW |
| dc.subject | 轉移矩陣法 | zh_TW |
| dc.subject | 濾波器 | zh_TW |
| dc.subject | 拓樸光子晶體 | zh_TW |
| dc.subject | 品質因數 | zh_TW |
| dc.subject | quality factor | en |
| dc.subject | Coupled micro-ring resonator optical waveguide (CROW) | en |
| dc.subject | transfer matrix method | en |
| dc.subject | filter | en |
| dc.subject | topological photonics | en |
| dc.title | 具非對稱週期耦合微環共振器光傳輸特性 | zh_TW |
| dc.title | Optical Transmission in Coupled Microring Resonators with Asymmetrically Periodic Strutures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭勝文(SHENG-WEN CHENG),黃啟炎(CHI-YEN HUANG),曹家維(CHIA-WEI TSAO) | |
| dc.subject.keyword | 耦合微環共振器光波導,品質因數,拓樸光子晶體,濾波器,轉移矩陣法, | zh_TW |
| dc.subject.keyword | Coupled micro-ring resonator optical waveguide (CROW),quality factor,topological photonics,filter,transfer matrix method, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202002709 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202014030900.pdf 未授權公開取用 | 15.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
