請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76909完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴文崧(Wen-Sung Lai) | |
| dc.contributor.author | Liang-Yin Lu | en |
| dc.contributor.author | 盧亮听 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:40:12Z | - |
| dc.date.available | 2021-07-10T21:40:12Z | - |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | Aizenman, C. D., Linden, D. J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of Neurophysiology, 82, 1697–1709. Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61. doi:10.1016/0025-5564(71)90051-4 Allen, G. I., Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Reviews, 54, 957–1006. Alviña, K., Ellis-Davies, G., Khodakhah, K. (2009). T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience, 158, 635–641. doi:10.1016/j.neuroscience.2008.09.052 Anikeeva, P., Andalman, A. S., Witten, I., Warden, M., Goshen, I., Grosenick, L., Gunaydin, L. A., Frank, L. M., Deisseroth, K. (2012). Optetrode: A multichannel readout for optogenetic control in freely moving mice. Nature Neuroscience, 15, 163–170. doi:10.1038/nn.2992 Asanuma, C., Thach, W. T., Jones, E. G. (1983a). Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Research Reviews, 5, 299–322. Asanuma, C., Thach, W. T., Jones, E. G. (1983b). Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Research Reviews, 5, 237–265. Aumann, T. D., Rawson, J. A., Finkelstein, D. I., Horne, M. K. (1994). Projections from the lateral and interposed cerebellar nuclei to the thalamus of the rat: A light and electron microscopic study using single and double anterograde labelling. Journal of Comparative Neurology, 349, 165–181. Balaban, C. D., Ito, M., Watanabe, E. (1981). Demonstration of zonal projections from the cerebellar flocculus to vestibular nuclei in monkeys (Macaca fuscata). Neuroscience Letters, 27, 101–105. doi:10.1016/0304-3940(81)90251-2 Ball, G. G., Micco, D. J., Berntson, G. G. (1974). Cerebellar stimulation in the rat: Complex stimulation-bound oral behaviors and self-stimulation. Physiology Behavior, 13, 123–127. doi:10.1016/0031-9384(74)90313-8 Balleine, B. W., Delgado, M. R., Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 8161–8165. Bartra, O., McGuire, J. T., Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412–427. Bass, C. E., Grinevich, V. P., Gioia, D., Day-Brown, J., Bonin, K. D., Stuber, G. D., Weiner, J. L., Budygin, E. (2013). Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Frontiers in Behavioral Neuroscience, 7, 173. Bastian, A. J. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 16, 645–649. Bastian, A. J. (2011). Moving, sensing and learning with cerebellar damage. Current Opinion in Neurobiology, 21, 596–601. doi:10.1016/j.conb.2011.06.007 Bayer, H. M., Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129–141. Beaubaton, D., Trouche, E. (1982). Participation of the cerebellar dentate nucleus in the control of a goal-directed movement in monkeys. Effects of reversible or permanent dentate lesion on the duration and accuracy of a pointing response. Experimental Brain Research, 46, 127–138. doi:10.1007/BF00238106 Beier, K. T., Steinberg, E. E., DeLoach, K. E., Xie, S., Miyamichi, K., Schwarz, L., Gao, X. J., Kremer, E. J., Malenka, R. C., Luo, L. (2015). Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell, 162, 622–634. doi:10.1016/j.cell.2015.07.015 Bonnefoi‐Kyriacou, B., Trouche, E., Legallet, E., Viallet, F. (1995). Planning and execution of pointing movements in cerebellar patients. Movement Disorders, 10, 171–178. Bostan, A. C., Dum, R. P., Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17, 241–254. doi:10.1016/j.tics.2013.03.003 Bromberg-Martin, E. S., Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 63, 119–126. doi:10.1016/j.neuron.2009.06.009 Brooks, J. X., Cullen, K. E. (2009). Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. Journal of Neuroscience, 29, 10499–10511. Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80, 807–815. doi:10.1016/j.neuron.2013.10.044 Cai, X., Kim, S., Lee, D. (2011). Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron, 69, 170–182. Carta, I., Chen, C. H., Schott, A. L., Dorizan, S., Khodakhah, K. (2019). Cerebellar modulation of the reward circuitry and social behavior. Science, 363(6424), 248. doi:10.1126/science.aav0581 Chabrol, F. P., Blot, A., Mrsic-Flogel, T. D. (2019). Cerebellar contribution to preparatory activity in motor neocortex. Neuron, 103, 506-519.e4. doi:10.1016/j.neuron.2019.05.022 Chan-Palay, V. (1977). The cerebellar dentate nucleus. In V. Chan-Palay (Ed.), Cerebellar dentate nucleus (pp. 1–24). Berlin, Germany: Springer. Chang, C. Y., Esber, G. R., Marrero-Garcia, Y., Yau, H.-J., Bonci, A., Schoenbaum, G. (2016). Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nature Neuroscience, 19, 111. Chaudhury, D., Walsh, J. J., Friedman, A. K., Juarez, B., Ku, S. M., Koo, J. W., … Han, M.-H. (2013). Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 493(7433), 532–536. doi:10.1038/nature11713 Chen, S., Hillman, D. E. (1993). Colocalization of neurotransmitters in the deep cerebellar nuclei. Journal of Neurocytology, 22, 81–91. Chen, Y., Chen, Y., Hsu, Y., Chang, W., Hsiao, C. K., Min, M., Lai, W. (2012). Akt1 deficiency modulates reward learning and reward prediction error in mice. Genes, Brain and Behavior, 11, 157–169. Chung, H. J., Steinberg, J. P., Huganir, R. L., Linden, D. J. (2003). Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science, 300(5626), 1751–1755. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482(7383), 85–88. doi:10.1038/nature10754 Czubayko, U., Sultan, F., Thier, P., Schwarz, C. (2001). Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. Journal of Neurophysiology, 85, 2017–2029. Darvas, M., Palmiter, R. D. (2010). Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition. Journal of Neuroscience, 30, 1158–1165. de Jong, J. W., Afjei, S. A., Dorocic, I. P., Peck, J. R., Liu, C., Kim, C. K., Tian, L., Deisseroth, K., Lammel, S. (2019). A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron, 101, 133–151. Deverett, B., Koay, S. A., Oostland, M., Wang, S. S. H. (2018). Cerebellar involvement in an evidence-accumulation decision-making task. ELife, 7, e36781. doi:10.7554/eLife.36781 Dobi, A., Margolis, E. B., Wang, H.-L., Harvey, B. K., Morales, M. (2010). Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. Journal of Neuroscience, 30, 218–229. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974. doi:10.1016/S0893-6080(99)00046-5 Ebner, T. J. (2013). Cerebellum and internal models. In M. Manto, D. L. Gruol, J. Schmahmann, N. Koibuchi, F. Rossi (Eds.), Handbook of the cerebellum and cerebellar disorders (pp. 1281–1296). Netherlands: Springer. Ebner, T. J., Pasalar, S. (2008). Cerebellum predicts the future motor state. The Cerebellum, 7, 583–588. Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., … Akil, H. (2011). A selective role for dopamine in stimulus–reward learning. Nature, 469(7328), 53–57. doi:10.1038/nature09588 Gallagher, M., McMahan, R. W., Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. The Journal of Neuroscience, 19, 6610 LP – 6614. doi:10.1523/JNEUROSCI.19-15-06610.1999 Gao, Z., Davis, C., Thomas, A. M., Economo, M. N., Abrego, A. M., Svoboda, K., De Zeeuw, C. I., Li, N. (2018). A cortico-cerebellar loop for motor planning. Nature, 563(7729), 113–116. Giaquinta, G., Valle, M. S., Caserta, C., Casabona, A., Bosco, G., Perciavalle, V. (2000). Sensory representation of passive movement kinematics by rat’s spinocerebellar Purkinje cells. Neuroscience Letters, 285, 41–44. Glimcher, P. W. (2014). Value-based decision making. In P. W. Glimcher E. Fehr (Eds), Neuroeconomics (pp. 373–391). Massachusetts, US: Academic Press. Green, D. M., Swets, J. A. (1966). Signal detection theory and psychophysics (Vol. 1). New York, US: Wiley. Guo, Z. V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J. T., Feng, G., Svoboda, K. (2014). Flow of cortical activity underlying a tactile decision in mice. Neuron, 81, 179–194. doi:10.1016/j.neuron.2013.10.020 Guru, A., Post, R. J., Ho, Y.-Y., Warden, M. R. (2015). Making sense of optogenetics. The International Journal of Neuropsychopharmacology, 18, 1–8. doi:10.1093/ijnp/pyv079 Hanks, T. D., Summerfield, C. (2017). Perceptual decision making in rodents, monkeys, and humans. Neuron, 93, 15–31. Hare, T. A., Camerer, C. F., Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646–648. Hare, T. A., O Doherty, J., Camerer, C. F., Schultz, W., Rangel, A. (2008). Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. The Journal of Neuroscience, 28, 5623–5630. doi:10.1523/JNEUROSCI.1309-08.2008 Heffley, W., Hull, C. (2019). Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. ELife, 8, e46764. doi:10.7554/eLife.46764 Herculano-Houzel, S. (2010). Coordinated scaling of cortical and cerebellar numbers of neurons. Frontiers in Neuroanatomy, 4, 12. Hoche, F., Guell, X., Sherman, J. C., Vangel, M. G., Schmahmann, J. D. (2016). Cerebellar contribution to social cognition. The Cerebellum, 15, 732–743. Horvath, F. E., Atkin, A., Kozlovskaya, I., Fuller, D. R., Brooks, V. B. (1970). Effects of cooling the dentate nucleus on alternating bar-pressing performance in monkey. International Journal of Neurology, 7, 252–270. Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8, 1491–1493. doi:10.1038/nn1544 Houk, JAMES C. (1989). Cooperative control of limb movements by the motor cortex, brainstem and cerebellum. Models of Brain Function, 309–325. Houk, James C, Buckingham, J. T., Barto, A. G. (1996). Models of the cerebellum and motor learning. Behavioral and Brain Sciences, 19, 368-383, 503-527. doi:10.1017/S0140525X00081474 Ikai, Y., Takada, M., Mizuno, N. (1994). Single neurons in the ventral tegmental area that project to both the cerebral and cerebellar cortical areas by way of axon collaterals. Neuroscience, 61, 925–934. Ikai, Y., Takada, M., Shinonaga, Y., Mizuno, N. (1992). Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience, 51, 719–728. Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Research Reviews, 56, 27–78. Ito, M. (1972). Neural design of the cerebellar motor control system. Brain Research, 40, 81–84. Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annual Review of Neuroscience, 5, 275–297. Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78, 272–303. doi:10.1016/j.pneurobio.2006.02.006 Ito, M., Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258. Ito, M., Sakurai, M., Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. The Journal of Physiology, 324, 113–134. Ivry, R. B., Keele, S. W., Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research, 73, 167–180. doi:10.1007/BF00279670 Jahnsen, H. (1986). Electrophysiological characteristics of neurones in the guinea‐pig deep cerebellar nuclei in vitro. The Journal of Physiology, 372, 129–147. Jenison, R. L., Rangel, A., Oya, H., Kawasaki, H., Howard, M. A. (2011). Value encoding in single neurons in the human amygdala during decision making. The Journal of Neuroscience, 31, 331–338. doi:10.1523/JNEUROSCI.4461-10.2011 Jones, B. E., Yang, T. (1985). The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. Journal of Comparative Neurology, 242, 56–92. Jörntell, H., Hansel, C. (2006). Synaptic memories upside down: Bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron, 52, 227–238. doi:10.1016/j.neuron.2006.09.032 Kable, J. W., Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10, 1625–1633. Kamigaki, T., Dan, Y. (2017). Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nature Neuroscience, 20, 854–863. doi:10.1038/nn.4554 Karreman, M., Westerink, B. H. C., Moghaddam, B. (1996). Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. Journal of Neurochemistry, 67, 601–607. Kawato, M., Gomi, H. (1992). A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics, 68, 95–103. doi:10.1007/BF00201431 Kostadinov, D., Beau, M., Pozo, M. B., Häusser, M. (2019). Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nature Neuroscience, 22, 950–962. doi:10.1038/s41593-019-0381-8 Kumar, P., Goer, F., Murray, L., Dillon, D. G., Beltzer, M. L., Cohen, A. L., Brooks, N. H., Pizzagalli, D. A. (2018). Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology, 43, 1581–1588. Küper, M., Kaschani, P., Thürling, M., Stefanescu, M. R., Burciu, R. G., Göricke, S., … Timmann, D. (2016). Cerebellar fMRI activation increases with increasing working memory demands. The Cerebellum, 15, 322–335. Lammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K. M., … Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491(7423), 212–217. doi:10.1038/nature11527 Larry, N., Yarkoni, M., Lixenberg, A., Joshua, M. (2019). Cerebellar climbing fibers encode expected reward size. ELife, 8, e46870. doi:10.7554/eLife.46870 Laurens, J., Meng, H., Angelaki, D. E. (2013). Computation of linear acceleration through an internal model in the macaque cerebellum. Nature Neuroscience, 16, 1701–1708. doi:10.1038/nn.3530 Leiner, H. C., Leiner, A. L., Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454. American Psychological Association. doi:10.1037/0735-7044.100.4.443 Li, N., Daie, K., Svoboda, K., Druckmann, S. (2016). Robust neuronal dynamics in premotor cortex during motor planning. Nature, 532(7600), 459–464. doi:10.1038/nature17643 Lin, Q., Manley, J., Helmreich, M., Schlumm, F., Li, J. M., Robson, D. N., …Vaziri, A. (2020). Cerebellar neurodynamics predict decision timing and outcome on the single-trial level. Cell, 180, 536-551.e17. doi:10.1016/j.cell.2019.12.018 Lixenberg, A., Yarkoni, M., Botschko, Y., Joshua, M. (2020). Encoding of eye movements explains reward-related activity in cerebellar simple spikes. Journal of Neurophysiology, 123, 786–799. doi:10.1152/jn.00363.2019 Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202, 437–470. doi:10.1113/jphysiol.1969.sp008820 Matsumoto, M., Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837–841. doi:10.1038/nature08028 Middleton, F. A., Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. The Journal of Neuroscience, 21, 700 –712. doi:10.1523/JNEUROSCI.21-02-00700.2001 Mikhailova, M. A., Bass, C. E., Grinevich, V. P., Chappell, A. M., Deal, A. L., Bonin, K. D., …Budygin, E. A. (2016). Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors. Neuroscience, 333, 54–64. Mori, S., Nakajima, K., Mori, F., Matsuyama, K. (2004). Integration of multiple motor segments for the elaboration of locomotion: Role of the fastigial nucleus of the cerebellum. In S. Mori, D. G. Stuart, M. Wiesendanger (Eds.), Progress in brain research (Vol. 143, pp. 341–351). Netherlands: Elsevier. Morton, S. M., Bastian, A. J. (2004). Cerebellar control of balance and locomotion. The Neuroscientist, 10, 247–259. Murdoch, B. E. (2010). The cerebellum and language: Historical perspective and review. Cortex, 46, 858–868. Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P., Ungless, M. A. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience, 152, 1024–1031. Newsome, W. T., Britten, K. H., Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341(6237), 52–54. Noda, H., Sugita, S., Ikeda, Y. (1990). Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. Journal of Comparative Neurology, 302, 330–348. Ohmae, S., Medina, J. F. (2015). Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nature Neuroscience, 18, 1798–1803. doi:10.1038/nn.4167 Ohyama, T., Nores, W. L., Murphy, M., Mauk, M. D. (2003). What the cerebellum computes. Trends in Neurosciences, 26, 222–227. Oscarsson, O. (1965). Functional organization of the spino-and cuneocerebellar tracts. Physiological Reviews, 45, 495–522. Padoa-Schioppa, C., Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441(7090), 223–226. doi:10.1038/nature04676 Palliyath, S., Hallett, M., Thomas, S. L., Lebiedowska, M. K. (1998). Gait in patients with cerebellar ataxia. Movement Disorders: Official Journal of the Movement Disorder Society, 13, 958–964. Pedroarena, C. M. (2010). Mechanisms supporting transfer of inhibitory signals into the spike output of spontaneously firing cerebellar nuclear neurons in vitro. The Cerebellum, 9, 67–76. doi:10.1007/s12311-009-0153-1 Pennartz, C. M. A., Berke, J. D., Graybiel, A. M., Ito, R., Lansink, C. S., Van Der Meer, M., Redish, A. D., Smith, K. S., Voorn, P. (2009). Corticostriatal interactions during learning, memory processing, and decision making. Journal of Neuroscience, 29, 12831–12838. Person, A. L., Raman, I. M. (2012). Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature, 481(7382), 502–505. Petersen, S E, Fox, P. T., Posner, M. I., Mintun, M., Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589. doi:10.1038/331585a0 Petersen, Steven E, Fox, P. T., Posner, M. I., Mintun, M., Raichle, M. E. (1989). Positron emission tomographic studies of the processing of singe words. Journal of Cognitive Neuroscience, 1, 153–170. doi:10.1162/jocn.1989.1.2.153 Pinto, L., Dan, Y. (2015). Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron, 87, 437–450. doi:10.1016/j.neuron.2015.06.021 Platt, M. L., Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233–238. Qi, J., Zhang, S., Wang, H.-L., Barker, D. J., Miranda-Barrientos, J., Morales, M. (2016). VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nature Neuroscience, 19, 725–733. Rilling, J. K., Insel, T. R. (1998). Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain, Behavior and Evolution, 52, 308–314. Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in Parkinson’s patients in a dynamic foraging task. Journal of Neuroscience, 29, 15104–15114. Samejima, K., Ueda, Y., Doya, K., Kimura, M. (2005). Representation of action-specific reward values in the striatum. Science, 310(5752), 1337–1340. Schmahmann, J. D. (1991). An emerging concept: The cerebellar contribution to higher function. Archives of Neurology, 48, 1178–1187. doi:10.1001/archneur.1991.00530230086029 Schmahmann, J. D. (1996). From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198. Schultz, W., Dayan, P., Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. Sendhilnathan, N., Ipata, A. E., Goldberg, M. E. (2020). Neural correlates of reinforcement learning in mid-lateral cerebellum. Neuron, 106, 188-198. doi:10.1016/j.neuron.2019.12.032 Shadlen, M. N., Newsome, W. T. (1996). Motion perception: Seeing and deciding. Proceedings of the National Academy of Sciences, 93, 628–633. Shadlen, M. N., Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86, 1916–1936. Simon, H., Le Moal, M., Calas, A. (1979). Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H]leucine and horseradish peroxidase. Brain Research, 178, 17–40. doi:10.1016/0006-8993(79)90085-4 Simpson, J. I., Alley, K. E. (1974). Visual climbing fiber input to rabbit vestibulo-cerebellum: A source of direction-specific information. Brain Research, 82, 302–308. Sokolov, A. A., Miall, R. C., Ivry, R. B. (2017). The cerebellum : Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21, 313–332. doi:10.1016/j.tics.2017.02.005 Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., Janak, P. H. (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16, 966–973. doi:10.1038/nn.3413 Stephenson-Jones, M., Yu, K., Ahrens, S., Tucciarone, J. M., van Huijstee, A. N., Mejia, L. A., …Li, B. (2016). A basal ganglia circuit for evaluating action outcomes. Nature, 539(7628), 289–293. Stoodley, C. J. (2012). The cerebellum and cognition: Evidence from functional imaging studies. The Cerebellum, 11, 352–365. Stoodley, C. J., Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44, 489–501. doi:10.1016/j.neuroimage.2008.08.039 Stopper, C. M., Tse, M. T. L., Montes, D. R., Wiedman, C. R., Floresco, S. B. (2014). Overriding phasic dopamine signals redirects action selection during risk / reward decision making. Neuron, 84, 177–189. doi:10.1016/j.neuron.2014.08.033 Strick, P. L., Dum, R. P., Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434. Sugrue, L. P., Corrado, G. S., Newsome, W. T. (2005). Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Reviews Neuroscience, 6, 363–375. doi:10.1038/nrn1666 Sultan, F., Czubayko, U., Thier, P. (2003). Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. Journal of Comparative Neurology, 455, 139–155. Tadayonnejad, R., Anderson, D., Molineux, M. L., Mehaffey, W. H., Jayasuriya, K., Turner, R. W. (2010). Rebound discharge in deep cerebellar nuclear neurons in vitro. The Cerebellum, 9, 352–374. Takemori, S., Cohen, B. (1974). Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Research, 72, 213–224. Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouèbe, G., …Lüscher, C. (2012). GABA neurons of the VTA drive conditioned place aversion. Neuron, 73, 1173–1183. Tang, T., Suh, C. Y., Blenkinsop, T. A., Lang, E. J. (2016). Synchrony is key: Complex spike inhibition of the deep cerebellar nuclei. The Cerebellum, 15, 10–13. doi:10.1007/s12311-015-0743-z Thomas Thach, W., Bastian, A. J. B. T.-P. in B. R. (2004). Role of the cerebellum in the control and adaptation of gait in health and disease. In S. Mori, D. G. Stuart, M. Wiesendanger (Eds.), Progress in brain research (Vol. 143, pp. 353–366). Netherlands: Elsevier. doi:10.1016/S0079-6123(03)43034-3 Trouche, E., Beaubaton, D., Amato, G., Grangetto, A. (1979). Impairments and recovery of the spatial and temporal components of a visuomotor pointing movement after unilateral destruction of the dentate nucleus in the baboon. Applied Neurophysiology, 42, 248–254. doi:10.1159/000102368 Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., De Lecea, L., Deisseroth, K. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324(5930), 1080–1084. Tzschentke, T M. (2000). The medial prefrontal cortex as a part of the brain reward system. Amino Acids, 19, 211–219. doi:10.1007/s007260070051 Tzschentke, Thomas M, Schmidt, W. J. (2000). Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Critical ReviewsTM in Neurobiology, 14, 131-142. Uusisaari, M., Knöpfel, T. (2011). Functional classification of neurons in the mouse lateral cerebellar nuclei. The Cerebellum, 10, 637–646. Uusisaari, M., Obata, K., Knopfel, T. (2007). Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Journal of Neurophysiology, 97, 901–911. Van Gaalen, J., Giunti, P., Van de Warrenburg, B. P. (2011). Movement disorders in spinocerebellar ataxias. Movement Disorders, 26, 792–800. Van Zessen, R., Phillips, J. L., Budygin, E. A., Stuber, G. D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron, 73, 1184–1194. Von Neumann, J., Morgenstern, O. (1944). Theory of games and economic behavior. In J. V. Neumann O. Morgenstern (Eds.), Theory of games and economic behavior. New Jersey, US: Princeton University Press. Waelti, P., Dickinson, A., Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412(6842), 43–48. doi:10.1038/35083500 Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., Luo, L. (2017). Cerebellar granule cells encode the expectation of reward. Nature, 544(7648), 96–100. doi:10.1038/nature21726 Walberg, F., Dietrichs, E. (1986). Is there a reciprocal connection between the red nucleus and the interposed cerebellar nuclei? Conclusions based on observations of anterograde and retrograde transport of peroxidase-labelled lectin in the same animal. Brain Research, 397, 73–85. Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. Neuron, 60, 215–234. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A., Uchida, N. (2012). Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858–873. Wessel, K., Tegenthoff, M., Vorgerd, M., Otto, V., Nitschke, M. F., Malin, J.-P. (1996). Enhancement of inhibitory mechanisms in the motor cortex of patients with cerebellar degeneration: A study with transcranial magnetic brain stimulation. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 101, 273–280. doi:10.1016/0924-980X(96)95531-9 Wijnen, B., Hunt, E. J., Anzalone, G. C., Pearce, J. M. (2014). Open-source syringe pump library. PLoS ONE, 9, e107216. doi:10.1371/journal.pone.0107216 Wimmer, G. E., Shohamy, D. (2012). Preference by association: How memory mechanisms in the hippocampus bias decisions. Science, 338(6104), 270 LP – 273. doi:10.1126/science.1223252 Wirth, S., Yanike, M., Frank, L. M., Smith, A. C., Brown, E. N., Suzuki, W. A. (2003). Single neurons in the monkey hippocampus and learning of new associations. Science, 300(5625), 1578–1581. doi:10.1126/science.1084324 Xiao, L., Bornmann, C., Hatstatt-Burklé, L., Scheiffele, P. (2018). Regulation of striatal cells and goal-directed behavior by cerebellar outputs. Nature Communications, 9, 3133. doi:10.1038/s41467-018-05565-y Yager, L. M., Garcia, A. F., Wunsch, A. M., Ferguson, S. M. (2015). The ins and outs of the striatum: Role in drug addiction. Neuroscience, 301, 529–541. Yamaguchi, T., Sheen, W., Morales, M. (2007). Glutamatergic neurons are present in the rat ventral tegmental area. European Journal of Neuroscience, 25, 106–118. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76909 | - |
| dc.description.abstract | 在日常生活中,「決策行為」不可或缺,它讓我們面對環境變化時得以採取相應的行動。在過往的研究當中,酬賞最大化與懲罰最小化被視為決策最具體的兩大目標。因此,了解腦如何應對酬賞經驗、如何處理酬賞經驗進而影響個體的決策,是非常重要且極需解答的課題。有別於大腦,「小腦」一般被認為主要處理動作平衡,但如今也開始被「決策行為」相關研究重視。許多文獻提出小腦參與了酬賞處理、選擇決定、以及調控了中腦多巴胺神經元。然而這些研究對於小腦如何直接的處理酬賞、如何與酬賞迴路溝通、以及如何引導做出決策的因果關係仍然欠缺說明。為了回答這些重要的問題,我們建立小鼠酬賞型決策行為模型,並結合了活體電生理紀錄以及光遺傳學來了解小腦如何處理酬賞決策歷程。本研究發現,在小腦深部核(deep cerebellar nuclei, DCN)的神經元當中,31.9 %的神經細胞在處理酬賞時增加放電頻率,18.4 %的神經細胞則在小鼠選擇左側以及右側時,分別展現完全相反的放電模式。由於小腦深部核為小腦主要對外聯絡的腦區,小腦酬賞訊息極可能與中腦腹側被蓋區(ventral tegmental area, VTA)有所聯繫。準此,進一步利用逆向追蹤劑(retrograde tracer)來標定腹側被蓋區的上游後發現,小腦深部核與中腦腹側被蓋區有著直接的神經投射。此外,實驗進一步發現腹側被蓋區中有兩群神經元分別採取了增加放電頻率以及減低放電頻率的方式來處理酬賞訊息。最後,應用光遺傳學方法操弄小腦深部核至中腦腹側被蓋區迴路的神經元後發現,改變小腦深部核神經元末梢的突觸放電能夠直接的影響腹側被蓋區神經元的放電頻率;有趣的是,在小鼠進行決策行為當下,立即改變迴路中的神經元放電能改變決策行為並且影響尋求酬賞的動機。綜合以上研究結果,藉由解剖層次到行為功能層次等方法,說明了小腦深部核能夠直接的處理酬賞訊息;更重要的,小腦經由與腹側被蓋區的迴路來影響後續行為。本研究驗證小腦參與酬賞決策歷程的神經機制,亦指引出後續探討小腦與認知功能的研究方向。 | zh_TW |
| dc.description.abstract | Decision making has been regarded as a consecutive process of selecting an action among numerous plans in response to diversified stimuli in the environment. Evidence has shown that the choice process is guided by maximizing rewards or avoiding punishment. Accordingly, how the brain encodes rewarding experiences and uses this information to regulate following actions is the million dollar question that has been left unanswered. Increasing evidence has proposed that the cerebellum, which stands for “little brain”, contributes to non-motor cognitive processes, especially in reward encoding, choice-related decision making on single-trial level, and the modulation of midbrain dopamine neurons. However, to date, the causal relationship and underlying mechanisms of the cerebellum and reward-encoding hubs remain much unclear. To address these questions, we took advantages of mice as a model organism and trained mice to perform a two-choice reward-based decision-making task in which mice acquired switching between two choice ports to receive maximum rewards. By means of in vivo electrophysiological recording and optogenetic intervention established on the behavioral model, we investigated how the neurons in the deep cerebellar nuclei (DCN), the sole outputs of the cerebellum, derive and convey information about rewards and actions on an unbiased population level. Overall, we identified that 31.9% of recorded neurons in the DCN constantly exhibited higher activities on rewarding outcomes over unrewarded trials. Moreover, our Fluoro-Gold retrograde neural tracing data confirmed that DCN neurons directly projected axons to the midbrain ventral tegmental area (VTA), a major region that contains the reward prediction error signal of midbrain dopamine neurons. Finally, the causal relationships of the DCN-VTA circuit was determined using optogenetics. Our data indicated that the optogenetic stimuli on the DCN-to-VTA pathway is sufficient to drive neural activity in the VTA and that activation of this pathway during reward seeking alters choice behaviors and prolongs reward-seeking time. Collectively, our results suggest that the cerebellar signals in the DCN modulate reward coding and distort choice behaviors via its direct inputs to the VTA. Our findings provided novel evidence that the cerebellum represents information regarding reward which might be integrated with midbrain reward signals to determine choice actions. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:40:12Z (GMT). No. of bitstreams: 1 U0001-1008202014292300.pdf: 8482255 bytes, checksum: 119793ee93506c019d9323f42a8be657 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 1. Introduction 1 1.1 An Overview of Reward-based Decision Making 1 1.2 General Introduction of the Cerebellum: Anatomy and Basic Function 8 1.3 Beyond the Motion: The Cerebellum and cognitive function 18 1.4 Main Objective of the Research 23 2. Materials and Methods 25 2.1 Animals 25 2.2 Viral vectors and Tracer 26 2.3 Stereotaxic Surgery 26 2.4 Reward-Based Decision-Making Task 28 2.5 Extinction task 31 2.6 Electroencephalography (EEG) 32 2.7 In vivo Extracellular Electrophysiology 33 2.8 Optogenetics 35 2.9 Histology 36 2.10 Quantification and Statistical Analysis 37 3. Results 39 3.1 DCN Neurons Show Four Different Response Types During Reward-Based Decision-Making Task 39 3.2 DCN Neurons Project Axonal Terminals to the VTA Directly 43 3.3 Stimulation of DCN Terminals Sufficiently Drive VTA Neural Activity 44 3.4 Optogenetic Activation of the DCN-to-VTA Projections Paired with No Reward Trials Reduces Correct Selection on the Decision-Making Task 45 4. Discussion 51 5. References 59 Figures 87 Appendix 109 | |
| dc.language.iso | en | |
| dc.subject | 光遺傳學 | zh_TW |
| dc.subject | 決策行為 | zh_TW |
| dc.subject | 酬賞 | zh_TW |
| dc.subject | 小腦 | zh_TW |
| dc.subject | 腹側被蓋區 | zh_TW |
| dc.subject | 小鼠 | zh_TW |
| dc.subject | 活體電生理 | zh_TW |
| dc.subject | mice | en |
| dc.subject | optogenetics | en |
| dc.subject | in vivo electrophysiology | en |
| dc.subject | decision making | en |
| dc.subject | reward | en |
| dc.subject | cerebellum | en |
| dc.subject | ventral tegmental area | en |
| dc.title | 探討小腦與腹側被蓋區迴路於酬賞型決策歷程中之角色 | zh_TW |
| dc.title | Investigating the Role of Cerebellum-VTA Circuit in Reward-Based Decision Making | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-5360-1350 | |
| dc.contributor.coadvisor | 潘明楷(Ming-Kai Pan) | |
| dc.contributor.oralexamcommittee | 林士傑(Shih-Chieh Lin),吳玉威(Yu-Wei Wu) | |
| dc.subject.keyword | 決策行為,酬賞,小腦,腹側被蓋區,小鼠,活體電生理,光遺傳學, | zh_TW |
| dc.subject.keyword | decision making,reward,cerebellum,ventral tegmental area,mice,in vivo electrophysiology,optogenetics, | en |
| dc.relation.page | 133 | |
| dc.identifier.doi | 10.6342/NTU202002803 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 心理學研究所 | zh_TW |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202014292300.pdf 未授權公開取用 | 8.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
