請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇剛毅(Kang-Yi Su) | |
| dc.contributor.author | Wei-Ming Chen | en |
| dc.contributor.author | 陳薇名 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:40:03Z | - |
| dc.date.available | 2021-07-10T21:40:03Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | 1. Gridelli, C., et al., Non-small-cell lung cancer. Nat Rev Dis Primers, 2015. 1: p. 15009. 2. Ferlay, J., et al., Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 2015. 136(5): p. E359-E386. 3. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 2010. 127(12): p. 2893-2917. 4. Welfare, M.o.H.a. 107年國人死因統計結果. 2019; Available from: https://www.mohw.gov.tw/cp-16-48057-1.html. 5. Goebel, C., et al., Diagnosis of Non-small Cell Lung Cancer for Early Stage Asymptomatic Patients. Cancer genomics proteomics, 2019. 16(4): p. 229-244. 6. Wong, M.C.S., et al., Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Scientific Reports, 2017. 7(1): p. 14300. 7. Bjerager, M., et al., Delay in diagnosis of lung cancer in general practice. The British journal of general practice : the journal of the Royal College of General Practitioners, 2006. 56(532): p. 863-868. 8. Horeweg, N. and H. de Koning, The importance of screening for lung cancer. Expert Rev Respir Med, 2014. 8(5): p. 597-614. 9. Hamilton, W., et al., What are the clinical features of lung cancer before the diagnosis is made? A population based case-control study. Thorax, 2005. 60(12): p. 1059-65. 10. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 2011. 365(5): p. 395-409. 11. Kramer, B.S., et al., Lung cancer screening with low-dose helical CT: results from the National Lung Screening Trial (NLST). Journal of medical screening, 2011. 18(3): p. 109-111. 12. Patz, E.F., Jr., et al., Overdiagnosis in Low-Dose Computed Tomography Screening for Lung Cancer. JAMA Internal Medicine, 2014. 174(2): p. 269-274. 13. Ruano-Ravina, A., B. Heleno, and A. Fernandez-Villar, Lung cancer screening with low-dose CT (LDCT), or when a public health intervention is beyond the patient's benefit. J Epidemiol Community Health, 2015. 69(2): p. 99-100. 14. Sozzi, G., et al., Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol, 2014. 32(8): p. 768-73. 15. Leng, Q., et al., A plasma miRNA signature for lung cancer early detection. Oncotarget, 2017. 8(67): p. 111902-111911. 16. Rivard, C., et al., miRNA for Early Detection of Lung Cancer: Comparison of Tissue, Sputum and Plasma Signatures. Journal of Thoracic Oncology, 2017. 12(8): p. S1540. 17. Han, Y. and H. Li, miRNAs as biomarkers and for the early detection of non-small cell lung cancer (NSCLC). Journal of Thoracic Disease, 2018. 10(5): p. 3119-3131. 18. Yang, X., et al., Serum microRNA Signature Is Capable of Early Diagnosis for Non-Small Cell Lung Cancer. International journal of biological sciences, 2019. 15(8): p. 1712-1722. 19. Abbosh, C., N.J. Birkbak, and C. Swanton, Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol, 2018. 15(9): p. 577-586. 20. Jiang, T., S. Ren, and C. Zhou, Role of circulating-tumor DNA analysis in non-small cell lung cancer. Lung Cancer, 2015. 90(2): p. 128-34. 21. Wu, T.H., E.H. Hsiue, and J.C. Yang, Opportunities of circulating tumor DNA in lung cancer. Cancer Treat Rev, 2019. 78: p. 31-41. 22. Krebs, M.G., et al., Molecular analysis of circulating tumour cells—biology and biomarkers. Nature Reviews Clinical Oncology, 2014. 11(3): p. 129-144. 23. Kolostova, K., et al., In Vitro Culture and Characterization of Human Lung Cancer Circulating Tumor Cells Isolated by Size Exclusion from an Orthotopic Nude-Mouse Model Expressing Fluorescent Protein. Journal of Fluorescence, 2014. 24(5): p. 1531-1536. 24. Potdar, P. and N. Lotey, Role of circulating tumor cells in future diagnosis and therapy of cancer. Journal of Cancer Metastasis and Treatment, 2015. 1(2). 25. Molina, J.R., et al., Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clinic proceedings, 2008. 83(5): p. 584-594. 26. Bareschino, M.A., et al., Treatment of advanced non small cell lung cancer. Journal of thoracic disease, 2011. 3(2): p. 122-133. 27. Travis, W.D., E. Brambilla, and G.J. Riely, New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol, 2013. 31(8): p. 992-1001. 28. Inamura, K., Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Frontiers in oncology, 2017. 7: p. 193-193. 29. Li, X., et al., Smoker and non-smoker lung adenocarcinoma is characterized by distinct tumor immune microenvironments. Oncoimmunology, 2018. 7(10): p. e1494677-e1494677. 30. Subramanian, J. and R. Govindan, Lung cancer in never smokers: a review. J Clin Oncol, 2007. 25(5): p. 561-70. 31. cancer today, WHO. 2018. 32. Papadopoulos, A., et al., Heavy smoking and lung cancer: are women at higher risk? Result of the ICARE study. British journal of cancer, 2014. 110(5): p. 1385-1391. 33. Rivera, M.P. and D.E. Stover, Gender and lung cancer. Clin Chest Med, 2004. 25(2): p. 391-400. 34. Smolle, E. and M. Pichler, Non-Smoking-Associated Lung Cancer: A distinct Entity in Terms of Tumor Biology, Patient Characteristics and Impact of Hereditary Cancer Predisposition. Cancers, 2019. 11(2): p. 204. 35. Gabrielson, E., Worldwide trends in lung cancer pathology. Respirology, 2006. 11(5): p. 533-8. 36. Wahbah, M., et al., Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases. Ann Diagn Pathol, 2007. 11(2): p. 89-96. 37. Recondo, G., et al., Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nat Rev Clin Oncol, 2018. 15(11): p. 694-708. 38. Kate, S., et al., Outcome of uncommon EGFR mutation positive newly diagnosed advanced non-small cell lung cancer patients: a single center retrospective analysis. Lung Cancer (Auckland, N.Z.), 2019. 10: p. 1-10. 39. Shaw, A.T. and J.A. Engelman, ALK in lung cancer: past, present, and future. J Clin Oncol, 2013. 31(8): p. 1105-11. 40. Román, M., et al., KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Molecular cancer, 2018. 17(1): p. 33-33. 41. Jia, Y., et al., Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer. Oncol Lett, 2017. 14(6): p. 6525-6532. 42. Ihle, N.T., et al., Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst, 2012. 104(3): p. 228-39. 43. Kohno, T., et al., Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res, 2015. 4(2): p. 156-64. 44. Lungcancer.org. 2020 CancerCare, 2019. 45. Thomas, A., et al., Refining the treatment of NSCLC according to histological and molecular subtypes. Nat Rev Clin Oncol, 2015. 12(9): p. 511-26. 46. Camidge, D.R., W. Pao, and L.V. Sequist, Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nature Reviews Clinical Oncology, 2014. 11(8): p. 473-481. 47. Rothschild, S.I., Targeted Therapies in Non-Small Cell Lung Cancer-Beyond EGFR and ALK. Cancers, 2015. 7(2): p. 930-949. 48. Shaw, A.T., et al., ALK Resistance Mutations and Efficacy of Lorlatinib in Advanced Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer. J Clin Oncol, 2019. 37(16): p. 1370-1379. 49. Baena Ruiz, R. and P. Salinas Hernández, Diet and cancer: Risk factors and epidemiological evidence. Maturitas, 2014. 77(3): p. 202-208. 50. Flores-Pérez, J.A., et al., Nutrition, Cancer and Personalized Medicine, in Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics, E. Ruiz-Garcia and H. Astudillo-de la Vega, Editors. 2019, Springer International Publishing: Cham. p. 157-168. 51. Stojanovic, J., et al., Adherence to Mediterranean diet and risk of gastric cancer: results of a case-control study in Italy. Eur J Cancer Prev, 2017. 26(6): p. 491-496. 52. Turati, F., et al., Adherence to the Mediterranean diet and nasopharyngeal cancer risk in Italy. Cancer Causes Control, 2017. 28(2): p. 89-95. 53. Giraldi, L., et al., Association between Mediterranean diet and head and neck cancer: results of a large case-control study in Italy. Eur J Cancer Prev, 2017. 26(5): p. 418-423. 54. Rosato, V., et al., Mediterranean diet and colorectal cancer risk: a pooled analysis of three Italian case-control studies. Br J Cancer, 2016. 115(7): p. 862-5. 55. Hodge, A.M., et al., Dietary inflammatory index, Mediterranean diet score, and lung cancer: a prospective study. Cancer Causes Control, 2016. 27(7): p. 907-17. 56. Toledo, E., et al., Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern Med, 2015. 175(11): p. 1752-1760. 57. Filomeno, M., et al., Mediterranean diet and risk of endometrial cancer: a pooled analysis of three Italian case-control studies. Br J Cancer, 2015. 112(11): p. 1816-21. 58. Castello, A., et al., Spanish Mediterranean diet and other dietary patterns and breast cancer risk: case-control EpiGEICAM study. Br J Cancer, 2014. 111(7): p. 1454-62. 59. Kenfield, S.A., et al., Mediterranean diet and prostate cancer risk and mortality in the Health Professionals Follow-up Study. Eur Urol, 2014. 65(5): p. 887-94. 60. Idilbi, N.M., et al., [Mediterranean diet in cancer patients and cancer free adult Arabs in Israel--a case-control study]. Harefuah, 2013. 152(7): p. 385-8, 435. 61. Bamia, C., et al., Mediterranean diet and colorectal cancer risk: results from a European cohort. Eur J Epidemiol, 2013. 28(4): p. 317-28. 62. Bosetti, C., et al., The role of Mediterranean diet on the risk of pancreatic cancer. Br J Cancer, 2013. 109(5): p. 1360-6. 63. Perera, P.S., R.L. Thompson, and M.J. Wiseman, Recent Evidence for Colorectal Cancer Prevention Through Healthy Food, Nutrition, and Physical Activity: Implications for Recommendations. Current Nutrition Reports, 2012. 1(1): p. 44-54. 64. Wang, C., et al., Cholesterol Enhances Colorectal Cancer Progression <b><i>via</i></b> ROS Elevation and MAPK Signaling Pathway Activation. Cellular Physiology and Biochemistry, 2017. 42(2): p. 729-742. 65. Hardy, S., Y. Langelier, and M. Prentki, Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res, 2000. 60(22): p. 6353-8. 66. Liu, Z., et al., Effects of oleic acid on cell proliferation through an integrin-linked kinase signaling pathway in 786-O renal cell carcinoma cells. Oncol Lett, 2013. 5(4): p. 1395-1399. 67. Taylor, B.S., et al., Integrative genomic profiling of human prostate cancer. Cancer Cell, 2010. 18(1): p. 11-22. 68. Khan, S., et al., Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev, 2013. 24(6): p. 503-13. 69. Prieto-Hontoria, P.L., et al., Role of obesity-associated dysfunctional adipose tissue in cancer: A molecular nutrition approach. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2011. 1807(6): p. 664-678. 70. Khatib, S.A., et al., Reducing the burden of obesity-associated cancers with anti-inflammatory long-chain omega-3 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat, 2016. 125: p. 100-7. 71. Iyengar, N.M., et al., Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. Journal of Clinical Oncology, 2016. 34(35): p. 4270-4276. 72. Thun, M.J., L.M. Hannan, and J.O. DeLancey, Alcohol consumption not associated with lung cancer mortality in lifelong nonsmokers. Cancer Epidemiol Biomarkers Prev, 2009. 18(8): p. 2269-72. 73. Bradbury, K.E., P.N. Appleby, and T.J. Key, Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr, 2014. 100 Suppl 1: p. 394s-8s. 74. Smith-Warner, S.A., et al., Fruits, vegetables and lung cancer: a pooled analysis of cohort studies. Int J Cancer, 2003. 107(6): p. 1001-11. 75. Takata, Y., et al., Intakes of fruits, vegetables, and related vitamins and lung cancer risk: results from the Shanghai Men's Health Study (2002-2009). Nutr Cancer, 2013. 65(1): p. 51-61. 76. Yang, W.S., et al., Meat consumption and risk of lung cancer: evidence from observational studies. Ann Oncol, 2012. 23(12): p. 3163-70. 77. Gnagnarella, P., et al., Red meat, Mediterranean diet and lung cancer risk among heavy smokers in the COSMOS screening study. Ann Oncol, 2013. 24(10): p. 2606-11. 78. Ribeiro, R., et al., Immunoinflammatory Mechanisms in Lung Cancer Development: Is Leptin a Mediator? Journal of Thoracic Oncology, 2007. 2(2): p. 105-108. 79. Terzidis, A., et al., Elevated Serum Leptin Levels: A Risk Factor for Non-Small-Cell Lung Cancer? Oncology, 2009. 76(1): p. 19-25. 80. Carpagnano, G.E., et al., IL-2, TNF-alpha, and leptin: local versus systemic concentrations in NSCLC patients. Oncol Res, 2007. 16(8): p. 375-81. 81. Kelesidis, I., T. Kelesidis, and C.S. Mantzoros, Adiponectin and cancer: a systematic review. British Journal of Cancer, 2006. 94(9): p. 1221-1225. 82. Wang, Y., et al., Adiponectin Inhibits Cell Proliferation by Interacting with Several Growth Factors in an Oligomerization-dependent Manner. Journal of Biological Chemistry, 2005. 280(18): p. 18341-18347. 83. Brakenhielm, E., et al., Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A, 2004. 101(8): p. 2476-81. 84. Petridou, E.T., et al., Circulating Adiponectin Levels and Expression of Adiponectin Receptors in Relation to Lung Cancer: Two Case-Control Studies. Oncology, 2007. 73(3-4): p. 261-269. 85. Qu, X., et al., [Detection of Chemerin and It's Clinical Significance in Peripheral Blood of Patients with Lung Cancer.]. Zhongguo Fei Ai Za Zhi, 2009. 12(11): p. 1174-7. 86. Okumura, S., et al., Nicotinamide Phosphoribosyltransferase: A Potent Therapeutic Target in Non-small Cell Lung Cancer with Epidermal Growth Factor Receptor-Gene Mutation. Journal of Thoracic Oncology, 2012. 7(1): p. 49-56. 87. Karapanagiotou, E.M., et al., The significance of leptin, adiponectin, and resistin serum levels in non-small cell lung cancer (NSCLC). Lung Cancer, 2008. 61(3): p. 391-397. 88. Yang, J.J., et al., Dietary Fat Intake and Lung Cancer Risk: A Pooled Analysis. Journal of Clinical Oncology, 2017. 35(26): p. 3055-3064. 89. Kolb, R., et al., Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene, 2019. 38(13): p. 2351-2363. 90. Juríková, M., et al., Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochemica, 2016. 118(5): p. 544-552. 91. Zhang, J., et al., FoxM1: a novel tumor biomarker of lung cancer. International journal of clinical and experimental medicine, 2015. 8(3): p. 3136-3140. 92. Charest, A., The ROS1 Receptor Family, in Receptor Tyrosine Kinases: Family and Subfamilies, D.L. Wheeler and Y. Yarden, Editors. 2015, Springer International Publishing: Cham. p. 641-684. 93. Wunderlich, C.M., N. Hövelmeyer, and F.T. Wunderlich, Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAK-STAT, 2013. 2(2): p. e23878-e23878. 94. Kwan, H.Y., et al., Signal transducer and activator of transcription-3 drives the high-fat diet-associated prostate cancer growth. Cell death disease, 2019. 10(9): p. 637-637. 95. Avgerinos, K.I., et al., Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism, 2019. 92: p. 121-135. 96. The Continuous Update Project findings reports. 2007; Available from: https://www.wcrf.org/dietandcancer/contents. 97. Mayne, S.T., M.C. Playdon, and C.L. Rock, Diet, nutrition, and cancer: past, present and future. Nature Reviews Clinical Oncology, 2016. 13(8): p. 504-515. 98. Ackerman, S.E., et al., Insights into the Link Between Obesity and Cancer. Curr Obes Rep, 2017. 6(2): p. 195-203. 99. Yang, P., et al., Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett, 2018. 438: p. 76-85. 100. Liotti, A., et al., Oleic acid promotes prostate cancer malignant phenotype via the G protein-coupled receptor FFA1/GPR40. Journal of Cellular Physiology, 2018. 233(9): p. 7367-7378. 101. Shen, C.-J., et al., Oleic acid-induced ANGPTL4 enhances head and neck squamous cell carcinoma anoikis resistance and metastasis via up-regulation of fibronectin. Cancer Letters, 2017. 386: p. 110-122. 102. Xiang, F., et al., Omental adipocytes enhance the invasiveness of gastric cancer cells by oleic acid-induced activation of the PI3K-Akt signaling pathway. The International Journal of Biochemistry Cell Biology, 2017. 84: p. 14-21. 103. The human protein atlas. 2003; Available from: https://www.proteinatlas.org/about. 104. Baumann, J., et al., Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells. BMC Cancer, 2016. 16: p. 551. 105. Pan, J., et al., CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J Exp Clin Cancer Res, 2019. 38(1): p. 52. 106. Hormones. 2015; Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/hormones. 107. Guo, D., et al., An LXR Agonist Promotes Glioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR–Dependent Pathway. Cancer Discovery, 2011. 1(5): p. 442. 108. Thysell, E., et al., Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS One, 2010. 5(12): p. e14175. 109. Yue, S., et al., Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab, 2014. 19(3): p. 393-406. 110. Lin, X., et al., Dietary Cholesterol Intake and Risk of Lung Cancer: A Meta-Analysis. Nutrients, 2018. 10(2). 111. Radišauskas, R., et al., Hypertension, serum lipids and cancer risk: A review of epidemiological evidence. Medicina (Kaunas), 2016. 52(2): p. 89-98. 112. Borena, W., et al., Serum triglycerides and cancer risk in the metabolic syndrome and cancer (Me-Can) collaborative study. Cancer Causes Control, 2011. 22(2): p. 291-9. 113. Das, S.K., et al., Adipose Triglyceride Lipase Contributes to Cancer-Associated Cachexia. Science, 2011. 333(6039): p. 233. 114. Kumari, N., et al., Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biology, 2016. 37(9): p. 11553-11572. 115. Ahmmed, B., et al., Tunicamycin enhances the suppressive effects of cisplatin on lung cancer growth through PTX3 glycosylation via AKT/NF-κB signaling pathway. Int J Oncol, 2019. 54(2): p. 431-442. 116. Hu, F.Q., et al., Knockdown of the inflammatory factor pentraxin-3 suppresses growth and invasion of lung adenocarcinoma through the AKT and NF-kappa B pathways. J Biol Regul Homeost Agents, 2014. 28(4): p. 649-57. 117. Zhang, D., et al., Clinical significance and prognostic value of pentraxin-3 as serologic biomarker for lung cancer. Asian Pac J Cancer Prev, 2013. 14(7): p. 4215-21. 118. Ouyang, Q.C., C.P. Hu, and Q.H. Liang, [Gene expression of MMP1 and TIMP1 in lung cancer detected with a cDNA microarray technique]. Hunan Yi Ke Da Xue Xue Bao, 2003. 28(3): p. 227-8. 119. Peng, Z.M., Z.L. Yang, and Y.W. Liu, [Expression of MMP1 and TIMP1 proteins in lung cancer and its biological significance]. Hunan Yi Ke Da Xue Xue Bao, 2002. 27(2): p. 159-61. 120. Ando, T., et al., Tissue inhibitor of metalloproteinase-1 promotes cell proliferation through YAP/TAZ activation in cancer. Oncogene, 2018. 37(2): p. 263-270. 121. Fan, Q., Q. Cai, and Y. Xu, FOXM1 is a downstream target of LPA and YAP oncogenic signaling pathways in high grade serous ovarian cancer. Oncotarget, 2015. 6(29): p. 27688-99. 122. Sun, H.L., et al., FOXM1 facilitates breast cancer cell stemness and migration in YAP1-dependent manner. Arch Biochem Biophys, 2020. 685: p. 108349. 123. Lin, J.J. and A.T. Shaw, Recent Advances in Targeting ROS1 in Lung Cancer. Journal of Thoracic Oncology, 2017. 12(11): p. 1611-1625. 124. Mao, Y. and S. Wu, ALK and ROS1 concurrent with EGFR mutation in patients with lung adenocarcinoma. Onco Targets Ther, 2017. 10: p. 3399-3404. 125. Lee, H.J., et al., ROS1 Receptor Tyrosine Kinase, a Druggable Target, is Frequently Overexpressed in Non-Small Cell Lung Carcinomas Via Genetic and Epigenetic Mechanisms. Annals of Surgical Oncology, 2013. 20(1): p. 200-208. 126. Li, Y., et al., The multifaceted roles of FOXM1 in pulmonary disease. Cell communication and signaling : CCS, 2019. 17(1): p. 35-35. 127. Kongsema, M., et al., Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells. Oncol Rep, 2019. 42(3): p. 953-962. 128. Shukla, S., et al., The FOXM1 inhibitor RCM-1 decreases carcinogenesis and nuclear β-catenin. Molecular Cancer Therapeutics, 2019: p. molcanther.0709.2018. 129. Liao, G.-B., et al., Regulation of the master regulator FOXM1 in cancer. Cell Communication and Signaling, 2018. 16(1): p. 57. 130. Physiological Data Summary – C57BL/6J (000664). 2007; Available from: http://jackson.jax.org/rs/444-BUH-304/images/physiological_data_000664.pdf. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76904 | - |
| dc.description.abstract | 飲食習慣與癌症的發生明顯相關,據估計約30%的癌症病例與飲食有關。某些具抗癌效果的營養素被發現可抑制癌細胞生長的路徑,相反的部分脂質、低密度膽固醇及脂肪分泌的激素會促進癌細胞生長,於大腸癌、乳癌、前列腺癌等曾被報導,但在肺癌的探討相當有限且機制尚不明瞭。我們利用基因轉殖小鼠以藥物促使突變型表皮生長因子受體L858R表現作為肺腺癌動物模式,小鼠另外餵食高脂飲食及正常飲食以比較肺部腫瘤的生長情形,以及後續蛋白及基因的表現分析。結果顯示餵食高脂飲食的肺癌小鼠其腫瘤體積較大,Ki67的基因表現也顯著上升。利用RNA定序分析全基因表現發現高脂及正常飲食的肺腫瘤小鼠之基因表現主要差異在細胞分裂的功能,經qPCR確認ROS1基因表現在高脂飲食的肺腫瘤小鼠中顯著上升,且與腫瘤大小有高度正相關 (R=0.7058, p=0.0033),然而ROS1蛋白磷酸化及其下游訊號無明顯差異。此外,FOXM1基因表現量亦在高脂飲食的肺腫瘤顯著上升,其功能已有促進腫瘤生長的報導。另一方面,在餵食野生種小鼠高脂飲食可使鼠蹊部白脂肪的TIMP1、pentraxin3和IL-6分泌量顯著上升,亦與RNA定序結果不謀而合。Kaplan-Meier 生存分析顯示高表現TIMP1或IL-6的肺腺癌患者其總存活期顯著下降。未來可用重組蛋白或抑制劑測試癌細胞的生長變化,以期能找出高脂飲食促使肺腫瘤生長的關鍵並進而應用於臨床。 | zh_TW |
| dc.description.abstract | Diet is attributed to about 30% of risk factors of cancers. Some nutrients with anti-tumor effect is also known for inhibition of signaling pathway related to tumor formation. In contrast, specific lipid uptake, low-density lipoprotein cholesterol and cytokine produced by adipose tissue can induce cancer cells proliferation and reported to correlate with several cancers. However, investigation of lung cancer and diet are limited and the mechanism is not clarified yet. We have bred inducible transgenic mice with spontaneous lung cancer formation driven by mutant EGFRL858R for animal model of lung adenocarcinoma. Lung tissues were harvested for hematoxylin and eosin (HE) stain, immunohistochemical (IHC) stain, western blotting and RNA for whole-genome transcriptomic analysis. Mice fed with high-fat diet and tumor induction (LC-HFD group) had larger tumor burden than regular-diet group (LC-RD) in observation of HE, IHC staining for Ki67 and lung weight. Gene set enrichment analysis of RNA sequencing revealed that the gene expression related to the function of cell division was more enhanced in LC-HFD than LC-RD. In addition, expression of ROS1 gene in LC-HFD was also increased significantly and highly correlated to tumor burden. However, there was no obvious phosphorylated ROS1 protein in western blotting and activation of downstream signals. The sequencing result also indicated that FOXM1 expression increased in LC-HFD, a transcription factor that has been known for promoting tumor growth. Tumor progression induced by high-fat diet may be triggered by FOXM1 rather than ROS1. On the other hand, TIMP1, pentraxin3, and IL-6 expression from inguinal white adipose tissue (iWAT) of high-fat diet treated wild-type mice were significantly upregulated, complying with the result of iWAT RNA sequencing. Kaplan-Meier plot showed high expression of TIMP1 or IL-6 was associated with lower overall survival in patients with lung adenocarcinoma. In order to find out the key leads high-fat diet promoting tumor progression, it is suggested to utilize recombinant protein or inhibitor for in vitro and in vivo assay to clarify the underlying mechanism in future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:40:03Z (GMT). No. of bitstreams: 1 U0001-1008202016541200.pdf: 21344997 bytes, checksum: a408b6786b2fbd35dff924263611d655 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 國立台灣大學碩士學位論文口試委員會審定書.............................................i 致謝.................................................................................ii 中文摘要...............................................................................iii Abstract ................................................................................................... v 1. Introduction .......................................................................................... 1 1.1 Lung cancer ........................................................................................ 2 1.2 Early diagnostics and screening ..........................................................2 1.3 Histological classification of lung cancer ............................................4 1.4 Epidemiology .......................................................................................4 1.5 Driver mutation of lung cancer ........................................................... 5 1.6 Treatment ........................................................................................... 6 1.7 Immunotherapy ....................................................................................8 Rationale....................................................................................................11 2. Specific aim ..........................................................................................12 3. Material and method .............................................................................14 3.1 Transgenic mouse models ...................................................................15 3.2 Genotyping ..........................................................................................15 3.3 High-fat diet treatment and tumor induction.......................................16 3.4 Sample collection ................................................................................16 3.5 Pathology interpretation ......................................................................16 3.6 Protein extraction and Western blotting...............................................17 3.7 Immunohistochemical (IHC) staining....................................................17 3.8 RNA extraction .....................................................................................18 3.9 Quantitative Real-Time PCR .................................................................18 3.10 RNA sequencing and pathway analysis ..............................................19 3.11 Gene enrichment analysis ...................................................................19 3.12 iWAT stromal vascular fraction (SVF) isolation ...................................20 3.13 SVF supernatant collection ................................................................20 3.14 Cell culture .........................................................................................20 3.15 Adipokine array....................................................................................21 3.16 Oil red staining ...................................................................................21 3.17 MTT assay............................................................................................22 3.18 Statistical analysis ...............................................................................22 4. Result .................................................................................................... 23 4.1 HFD enhances lung tumor burden .........................................................24 4.2 Ki67 gene expression is up-regulated in lung of LC-HFD mice.............25 4.3 RNA sequencing reveals cell proliferation is enriched in lung of LC-HFD than LC-RD.....25 4.4 ROS1 is predicted to potentially regulate FOXM1 via STAT3 or CDK1 ........................ 26 4.5 Expression of ROS1 is highly correlated to lung tumor burden........................................ 26 4.6 ROS1 is not phosphorylated in lung tumor of our model ................................................. 27 4.7 Oleic acid and palmitic acid inhibit PC9 cancer cells proliferation .................................. 27 4.8 Potential pathways involved in HFD-induced tumor growth are constructed with the result of adipokine array and RNA-seq of iWAT ........................................................... 28 4.9 Pentraxin-3 increases obviously in serum of LC-HFD than LC-RD ................................ 29 4.10 Kaplan-Meier plot (KM-plot) of overall survival in lung adenocarcinoma patients reveals TIMP1 and IL-6 are poor prognosis markers ..................................................... 29 5. Conclusion ................................................................................................................. 30 6. Discussion .................................................................................................................. 32 6.1 The relationship of high-fat diet and cancer is challenging to verify ............................... 33 6.2 Tet-on system is suitable for cancer evaluation in animal model ..................................... 33 6.3 Oleic acid attenuates PC9 cell growth .............................................................................. 34 6.4 Palmitic acid inhibits PC9 cell growth.............................................................................. 34 6.5 LDL and triglyceride are implicated in tumor progression............................................... 35 6.6 Adipokine array is better for screening with other tool for confirmation ......................... 36 6.7 IL-6, TIMP1 and pentraxin-3 are candidates potentially lead to tumor progression ........ 36 6.8 ROS1 expression might be modulated by high-fat diet and oncogenic pathway .............. 37 6.9 FOXM1 inhibitor is required for restoration experiment in the future ............................. 38 7. Figure......................................................................................................................... 40 Figure 1. Transgenic inducible NSCLC mice model .............................................................. 41 Figure 2. Phenotype of transgene mice ................................................................................... 42 Figure 3. Biochemical markers in serum of mice ................................................................... 43 Figure 4. HE staining of lung tissue ........................................................................................ 44 Figure 5. Transgene expression evaluated by qPCR............................................................... 45 Figure 6. Western blotting of lung lysate for EGFR expression............................................. 46 Figure 7. IHC staining of EGFRL858R in cancer induction groups....................................... 47 Figure 8. Protein and mRNA of Ki67 expression in lung tumor ............................................ 49 Figure 9. RNA-sequencing with gene enrichment analysis .................................................... 51 Figure 10. Network built by MetacoreTM highlighted FOXM1 and ROS1........................... 52 Figure 11. ROS1 gene expression is highly correlated to tumor burden................................. 54 Figure 12. Western blotting of lung lysate of tumor induction groups ................................... 55 Figure 13. Western blotting of lung lysate of control groups ................................................. 56 Figure 14. Oil red staining of PC9 cell line ............................................................................ 57 Figure 15. Adipokine array and RNA-sequencing of iWAT of wild-type mice..................... 58 Figure 16. RNA-sequencing with gene enrichment analysis of wildtype iWAT ................... 60 Figure 17. Adipokine array of serum of LC-RD and LC-HFD............................................... 61 Figure 18. Kaplan-Meier plot of overall survival in lung adenocarcinoma patients. . 62 8. Table .......................................................................................................................... 63 Table 1. Primers used for real-time PCR ................................................................................ 64 9. Reference ................................................................................................................... 65 10. Appendix.................................................................................................................. 73 Appendix i. The reference value of C57BL/6J strain mice according to The Jackson Laboratory....74 | |
| dc.language.iso | en | |
| dc.subject | ROS1 | zh_TW |
| dc.subject | 高脂飲食 | zh_TW |
| dc.subject | L858R突變型表皮生長因子受體 | zh_TW |
| dc.subject | IL-6 | zh_TW |
| dc.subject | TIMP1 | zh_TW |
| dc.subject | 肺腺癌 | zh_TW |
| dc.subject | FOXM1 | zh_TW |
| dc.subject | IL-6 | en |
| dc.subject | lung adenocarcinoma | en |
| dc.subject | EGFRL858R | en |
| dc.subject | high-fat diet | en |
| dc.subject | ROS1 | en |
| dc.subject | FOXM1 | en |
| dc.subject | TIMP1 | en |
| dc.title | 高脂飲食促進肺腺癌腫瘤生長機制探討 | zh_TW |
| dc.title | Investigation of Enhanced Lung Adenocarcinoma Progression Induced by High-Fat Diet | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林亮音(Liang-In Lin),郭靜穎(Ching-Ying Kuo),楊雅倩(Ya-Chien Yang) | |
| dc.subject.keyword | 肺腺癌,高脂飲食,L858R突變型表皮生長因子受體,ROS1,FOXM1,TIMP1,IL-6, | zh_TW |
| dc.subject.keyword | lung adenocarcinoma,EGFRL858R,high-fat diet,ROS1,FOXM1,TIMP1,IL-6, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202002839 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202016541200.pdf 未授權公開取用 | 20.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
