請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76903完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏瑞泓(Jui-Hung Yen) | |
| dc.contributor.author | Chia-Chun Yu | en |
| dc.contributor.author | 余佳純 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:40:01Z | - |
| dc.date.available | 2021-07-10T21:40:01Z | - |
| dc.date.copyright | 2020-09-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | 方麗萍。(2019)。2017年台灣除草劑市場概況。中華民國雜草會刊, 40:41-46。 行政院動植物防疫檢疫局。(2018)。劇毒性農藥巴拉刈108.2.1禁止販賣使用,籲請農民選用替代藥劑避免誤觸法規。網址 : https://www.coa.gov.tw/theme_data.php?theme=news sub_theme=agri id=7577。上網日期:2020-07-01。 行政院農業委員會動植物防疫檢疫局。(2018)。化學農藥十年減半行動方案。網址 : https://www.coa.gov.tw/theme_data.php?theme=news sub_theme=agri id=7159。上網日期:2020-06-14。 行政院農業委員會農業藥物毒物試驗所。(2019) 。植物保護資訊系統。網址 : https://otserv2.tactri.gov.tw/ppm/。上網日期:2020-06-16。 李春光、張建萍、余柳青。(2006)。佐劑在微生物除草劑中的應用。中國生物防治, 22(4):265-267。 林珮君。(2019)。台糖無人機噴2,4-D除草劑,鄰田鳳梨受損賀爾蒙大亂,專家:空中噴藥濃度高需嚴格控管。網址: https://www.newsmarket.com.tw/blog/128075/。上網日期:2020-06-15。 袁秋英、謝玉貞、蔣慕琰。(2005)。牛筋草 (Eleusine indica) 對嘉磷塞抗藥性反應之測定。植保會刊, 47:129-140。 陳和緯、林盈宏、黃振文、張碧芳。(2010)。Bacillus mycoides CHT2402 對萵苣幼苗生長之影響。植物病理學會刊, 19 (2):157 - 165。 蔣永正。(1983)。水稻及水田雜草對2,4-D 殺草劑之反應。weed science bulletin, 4:117-127。 蔣永正、蔣慕琰。(2003)。嘉磷塞 (glyphosate)。引起植物藥害與 shikimate 累積之相關性。中華民國雜草學會會刊 24 (1):25-35。 謝奉家。(2012) 。具商品化潛力之多功能液化澱粉芽孢桿菌. 農業生技產業季刊, 32:42-47。 顏仁德。(2006) 。台灣十大外來入侵物種。台北市:農業委員會林務局。 Ahemad, M. and M. Kibret. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26 (1):1-20. Al-Khatib, K. and P. Dallas. (1999). Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate. and glufosinate. Weed technology, 13(2) :264-270. Retrieved from www.jstor.org/stable/3988466. Alexander, D. B. and D. A. Zuberer. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and fertility of soils, 12(1):39-45. Alström, S and R. G. Burns. (1989).Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. biology and fertility of soils, 7(3):232-238. Anjum, T. and R. Bajwa. (2007). Field appraisal of herbicide potential of sunflower leaf extract against Rumex dentatus. Field crops research, 100(2-3):139-142. Apine, O. A. and J. P. Jadhav. (2011). Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans Strain PVM. Journal of applied microbiology, 110(5):1235-1244. Ba, S., A. W. Bakker. and P. Bakker. (2003). Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual review of phytopathology, 25:339-358. Bakker, A.W. and B. Schippers. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil biology and biochemistry, 19(4):451-457 Barazani, Oz and J. Friedman. (1999). Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? Journal of chemical ecology, 25(10):2397-2406. Baum H. A., P. C. Goldman. (2020). Where is glyphosate banned? Retrieved from https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/where-is-glyphosate-banned/ Bharucha, U., K. Patel,and U. B. Trivedi. (2013). Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agricultural research, 2(3):215-221. Bleecker, A.y B. and H. Kende. (2000). Ethylene: a gaseous signal molecule in plants. Annual review of cell and developmental biology, 16(1):1-18. Bo, A. B., J. D. Kim, Y. S Kim,. H. T. Sin, H. J. Kim, B. Khaitov ,Y. K. Ko, K. W. Park. and J. S. Choi. (2019). Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide. Plos one, 14(9). Boyette, C. D. and R. E. Hoagland. (2014). Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol science and technology, 25(2):229-237. Broz, A., K. Broeckling, C. D.De-la-Peña, C. Lewis, R.G., Matthew Erick R. M Callaway,. L. W. Sumner,and J. M. Vivanco. (2010). Plant Neighbor Identity Influences Plant biochemistry and physiology related to defense. Plant Biology, 10(1):115. Carreño-Lopez, R.C., N.Campos-Reales, C.Elmerich, B.E.Baca. (2000). Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Molecular and general genetics 264(4):521 Carson, Rachel. (1962). Silent spring. Boston: Houghton Mifflin Company. Chagas, A., A. Oliveira, L. Oliveira, G. Santos, L.L.Chagas, A. L. Silva. and J. Costa. (2015). Production of indole-3-acetic acid by bacillus isolated from different soils. Bulgarian journal of agricultural science, 21:282-287. Chaiharn, M. and S. Lumyong. (2011). Screening and optimization of indole-3-acetic acid Production and Phosphate Solubilization from Rhizobacteria Aimed at Improving plant growth. Curr Microbiol, 62(1):173-181. Chandra, S., K. Askari. and M. Kumari. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal genetic engineering biotechnology, 16(2) 581-586. Chowdappa, P. M., S. P. J. Kumar, M.Lakshmi. and K. K Upreti. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological control, 65(1):109-117. Dubeikovsky, A. N., E. A. MordukhovaV. V. ,Kochetkov, F. Y. Polikarpova. and A. M. Boronin. (1993). Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biology and Biochemistry, 25(9):1277-1281. Dwernychuk, L.W., H. D. Cau, C. T. Hatfield, T. G. Boivina, T. M. Hung, P. T. Dung, N. D. Thai. (2002). Dioxin reservoirs in southern Viet Nam—A legacy of agent orange. chemosphere, 47(2):117-137. Eckert, B., O. B Weber, G.H. Kirchhof, A .Halbritter, M. Stoffels. and A. Hartmann. (2001). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. International journal of systematic and evolutionary microbiology, 51:17-26. Ehmann, A. (1977). The van urk-Salkowski reagent--a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of chromatography, 132(2):267-276. El-Gaied, L. F., G. A. Abu El-Heba,and N. A. El-Sherif. (2013). Effect of growth hormones on some antioxidant parameters and gene expression in tomato. GM crops food, 4(1) :67-73. Els, P., N. Chauvaux, J. Schmidt, M. John, U. Wieneke, J. D. Greef, J. Schell. and H, V, Onckelen. (1991). Stimulation of indole‐3‐acetic acid production in rhizobium by flavonoids. FEBS letters, 282(1):53-55. Farmer, Da. (2010). Chapter 92 - Inhibitors of aromatic acid biosynthesis. Hayes' handbook of pesticide toxicology (Third Edition) pp. 1967-1972. New York: Academic press. Fredrickson, J. K. and L. F. Elliott. (1985). Effects on winter wheat seedling growth by toxin-producing rhizobacteria. Plant and soil, 83(3):399-409. Gealy, D. R., S. Gurusiddaiah. and A. G. Ogg. (1996). Isolation and characterization of metabolites from Pseudomonas syringae-strain 3366 and their phytotoxicity against certain weed and crop species. Weed science, 44(2):83-392. Gianfagna, T.J. (1987). Natural and synthetic growth regulators and their use in horticultural and agronomic crops. Plant Hormones :751-773 Giannopolitis, C. N. and S. K. Ries. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2):309 Gill, S. S. and T. Narendra. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12):909-930. Gindri, D., M. Coelho, C. M. M. Coelho, V. G.Uarrota. and, A. M. Rebelo. (2020). Herbicidal bioactivity of natural compounds from Lantana camara on the germination and seedling growth of Bidens pilosa. Pesquisa agropecuária tropical, 50. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext pid=S1983-40632020000100203 nrm=iso Gond, S., K.Bergen, M.S.Torres, M. S and W. Jr. J. F. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological research, 172:79-87. Grossmann, K. (2003). Mediation of Herbicide Effects by hormone interactions. Journal of plant growth regulation, 22(1):109-122. Grossmann, K. (2010). Auxin herbicides: current status of mechanism and mode of action. Pest Management Science, 66(2):113-120. Hansen, H and K. Grossmann. (2000). Auxin-Induced rthylene triggers abscisic acid biosynthesis and growth inhibition. Plant physiology, 124(3):1437-1448. Harris, P. A. and P. W. Stahlman. (1996). Soil bacteria as selective biological control agents of winter annual grass weeds in winter wheat. Applied soil ecology, 3(3): 275-281. Heath, R. L. and L. Packer. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1):189-198. Hoagland, R. E., C. D. Boyette, K. C. Stetina. and R. H. Jordan. (2016). Bioherbicidal efficacy of a myrothecium verrucaria-sector on several plant species. American journal of plant sciences, 07(16):2376-2389. Harris, P. A. and P. W. Stahlman. (1996). Soil bacteria as selective biological control agents of winter annual grass weeds in winter wheat. Applied soil ecology, 3(3) : 275-281. Heath, R. L. and L. Packer. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1) :189-198. Hoagland, R. E., C. D. Boyette, K. C. Stetina. and R. H. Jordan. (2016). Bioherbicidal efficacy of a myrothecium verrucaria-sector on several plant species. American journal of plant sciences, 07(16):2376-2389. Huber, D. M. and T. S. McCay-Buis, (1993). A multiple component analysis of the take-all disease of cereals. Plant disease, 77(5):437-447. Ibrahim, M. A., N. Griko, M. Junker. and L. A. Bulla, (2010). Bacillus thuringiensis: a genomics and proteomics perspective. Bioengineered bugs, 1(1):31-50. Imaizumi, S., T. Nishino, K. Miyabe, T Fujimori. and M. Yamada. (1997). Biological control of annual bluegrass (Poa annual) with a japanese isolate of Xanthomonas campestris pv. poae. Biological control, 8(1):7-14. Jiménez, A., J. A. Hernández, G. Pastori, L. A. Rıo,and F. Sevilla. (1998). Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant physiology, 118(4):1327-1335. Jo, J,. S. H. Won, D. Son. and B. H. Lee. (2004). Paraquat resistance of transgenic tobacco plants over-expressing the Ochrobactrum anthropip qra gene. Biotechnology letters, 26(18):1391-1396. Kaur, G. (2020). Move to ban 27 pesticides hailed. Retrieved from https://www.grainmart.in/news/government-to-ban-27-pesticides-and-insecticides-in-india/ Kelley, K. B. and D. E. Riechers, (2007). Recent developments in auxin biology and new opportunities for auxinic herbicide research. Pesticide biochemistry and physiology, 89(1):1-11. Kennedy, A. C., B. N. Johnson. and T. L. Stubbs. (2001). Host range of a deleterious rhizobacterium for biological control of downy brome. Weed science, 49(6):792-797. Kepinski, S. and O. Leyser. (2005). The arabidopsis f-box protein TIR1 is an auxin receptor. Nature, 435(7041):446-451. Khattak, S. U., G. Lutfullah, Z. Iqbal, I. U. Rehman, J. Ahmad,and A. A. Khan. (2018). Herbicidal activity of pure compound isolated from rhizosphere inhabiting aspergillus flavus. Natural product research, 32(10):1212-1215. Kollmann, J., M. J. Bañuelos and S. L. Nielsen (2007). Effects of virus infection on growth of the invasive alien Impatiens glandulifera. Preslia, 79(1):33-44. Kraft, M., R. Kuglitsch, J. Kwiatkowski, M. Frank,and K. Grossmann. (2007). Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. Journal of experimental botany, 58(6):1497-1503. Kremer, R. J. and T. Souissi. (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current microbiol, 43(3):182-186. Kucey, R. M. N., H. H. Janzen. and M. E. Leggett. (1989). Microbially mediated increases in plant-available phosphorus. Advances in agronomy,42:199-228 Kumari, S., C. Prabha, A. Singh, S. Kumari. and S. Kiran. (2018). Optimization of indole-3-acetic acid production by diazotrophic B. subtilis DR2 (KP455653), isolated from rhizosphere of Eragrostis cynosuroides. International journal of pharma medicine and biological sciences, 7(2):20-27. l'Alimentation, Ministère de l'Agriculture et de. (2008). Ecophyto plan. Ministère de l'Agriculture et de l'Alimentation. Access date:2020.06.13 Lakshmi, V., S. Kumari, A. Singh and C. Prabha. (2014). Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. Journal of King Saud University - Science, 27. Lavy, M. and M. Estelle. (2016). Mechanisms of auxin signaling. Development, 143(18):3226-3229. Lawrance, S., S.Varghese, E. M. Varghese, A. K. Asok. and J. M. S, (2019). Quinoline derivatives producing Pseudomonas aeruginosa H6 as an efficient bioherbicide for weed management. Biocatalysis and agricultural biotechnology, 18. Lee, Jae-Chan and Whang, Kyung-Sook. (2016). Optimization of indole-3-acetic acid (IAA) production by bacillus megaterium BM5. Korean journal of soil science and fertilizer, 49:461-468. Loper, J. E. and M. N. Schroth. (1986). Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology, 76(4):386-389. Lukatkin, A. S., A. N. Gar’kova, A. S. Bochkarjova, O. V. Nushtaeva. and J. A.Teixeira da Silva, (2013). Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves. Pesticide biochemistry and physiology, 105(1):44-49. Luna, L., T. Stubbs, A. Kennedy and R. Kremer. (2005). Deleterious bacteria in the rhizosphere. Roots and soil management: Interactions between roots and the soil (Edition: 1), Chapter: 13. Müller, M., C. Deigele. and H. Ziegler. (1989). Hormonal interactions in the rhizosphere of maize (Zea mays L.) and their effects on plant development. Zeitschrift für pflanzenernährung und bodenkunde, 152(2) :247-254. Maharana, P. (2019). Isolation and characterization of IAA producing plant growth promoting rhizobacteria (PGPR) from rhizospheric soil of ornamental (Marigold) plant. International journal of life science, 7 (2):333-336 Malboobi, M. A., P. Owlia, M. Behbahani, E. Sarokhani, S. Moradi, B.Yakhchali, A. Deljou. and K. M. Heravi. (2009). Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World journal of microbiology and biotechnology, 25(8):1471-1477. Mazzola, M., P. W. Stahlman, J. E. Leach. (1995). Application method affects the distribution and efficacy of rhizobacteria suppressive of downy brome (Bromus tectorum). Soil biol biochem, 27:1271-1278. Mazumder, P., S. Ghosh, S. Sadhu. and T. Maiti. (2010). Production of indole acetic acid by Rhizobium sp from root nodules of a leguminous herb Crotalaria saltiana. Andr. in culture. Journal of pure and applied microbiology, 4:109-116. McSteen, P. (2010). Auxin and monocot development. Cold spring harbor perspectives in biology, 2(3):a001479. Mejri, D., E. Gamalero. and T. Souissi. (2013). Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. Journal of applied microbiolog, 114(1):219-228. Mishra, V. K. and K. Ashok. (2012). Plant growth promoting and phytostimulatory potential of Bacillus subtilis and Bacillus amyloliquefaciens. Journal of agricultural and biological science, 7(7):509-519. Moore, T. C. (1979). Auxins. Biochemistry and physiology of plant hormones. pp. 32-89. New York: Springer US. Mutlu, S., Ö. Atici, N. Esim and E. Mete (2011). Essential oils of catmint (Nepeta meyeri Benth.) induce oxidative stress in early seedlings of various weed species. Acta physiologiae plantarum, 33(3):943-951. Nakano, Y. and K. Asada. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5):867-880. Napitupulu, T. P., A. Kanti and I. M. Sudiana. (2019). Evaluation of the environmental factors modulating indole-3-acetic acid (IAA) production by Trichoderma harzianum InaCC F88. IOP conference series: Earth and environmental science, 308. Nehl, D. B., S. J. Allen, J .F. Brown. (1997). Deleterious rhizosphere bacteria: an integrating perspective. Applied soil ecology, 5(1):1-20. Retrieved from http://www.sciencedirect.com/science/journal/09291393 Niyogi, K. K., R. L Last,. G. R. Fink and B. Keith (1993). Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. The plant cell, 5(9):1011-1027. Nusrat, A. A., N. Kumar and J. Kumar. (2018). Bio-herbicides for sustainable and eco-friendly weed control: A Review. International journal of advanced research, 6(12):550-561. Nutaratat, P., A. Monprasit and. N. Srisuk (2017). High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech, 7(5):305. Oerke, E. C. (2006). Crop losses to pests. The journal of agricultural science, 144:31-43. Pacanoski, Z. (2015). Herbicides and adjuvants. In herbicides, Physiology of Action. and Safety. Retrieved from https://www.intechopen.com/books/herbicides-physiology-of-action-and-safety/herbicides-and-adjuvants Park, J. M., R. Radhakrishnan, S. M Kang. and I. J. Lee (2015). IAA producing Enterobacter sp. I-3 as a potent Bio-herbicide candidate for weed control: A special reference with lettuce growth inhibition. Indian Journal of Microbiology, 55(2) :207-212. Patil, N., M. Gajbhiye, S. Ahiwale, A. Gunjal. and B. Kapadnis, (2011). Optimization of indole 3acetic acid (IAA) production by Acetobacter Diazotrophicus L1 isolated from sugarcane. International journal of environmental sciences, 2:295-302. Patkowska, E. (2010). Use of chemical dressing and post-culture liquids of antagonistic bacteria in the protection of runner bean (Phaseolus coccineus L.). Ecological chemistry and engineering, (17) 9:1153-1160. Peixoto, F., J. Gomes-Laranjo, J. Vicente. and V. Madeira. (2008a). Comparative effects of the herbicides dicamba, 2,4-D and paraquat on non-green potato tuber calli. Journal of plant physiology, 165, 1125-1133. Peixoto, F. P., M. L. Lopes, V. M. C. Madeira. and J. A. F. Vicente. (2008b). Toxicity of MCPA on non-green potato tuber calli. Acta physiologiae plantarum, 31(1):103. Porco, S. P., A. Rashed, U. Voß, R. Casanova-Sáez, A. Bishopp, A. Golebiowska, R. Bhosale, R. Swarup, K. Swarup, P. Peňáková, O. Novák, P. Staswick, P. Hedden, A. L.Phillips, K. Vissenberg, M. J. Bennett. and K. Ljung. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the national academy of sciences, 113(39):11016. Prinsen, E. A. Costacurta, K. Michiels, J.Vanderleyden. and H.V. Onckelen. (1993). Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Molecular plant microbe interactions, 6:609-609. Probanza, A., J. A. Lucas, N. Acero. and F.J. Gutierrez Mañero. (1996). The influence of native rhizobacteria on european alder (Alnus glutinosa (L.) Gaertn.) growth. Plant and soil, 182(1):59-66. Radhakrishnan, R., J. M.Park and I. J. Lee (2016). Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth. Microbiol Research, 193:132-139. Radhakrishnan, R., J. M. Park, I. A.Lee, E. F. Allah. and Hashem, A.(2017). Bio-herbicide effect of salt marsh tolerant Enterobacter sp I-3 on weed seed germination and seedling growth. Pakistan journal of botany, 49:1959-1963. Reed, R. C., S. R. Brady. and G. K. Muday. (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in arabidopsis. Plant physiology, 118(4):1369-1378. Remans, R., S. Spaepen.and J.Vanderleyden,.(2006). Auxin signaling in plant defense. Science:313, 171. Sankaran, T. (1990). Biological control of weeds with insects: A dynamic phenomenon of insect-plant interaction. Proceedings:Animal Sciences, 99(3):225-232. Sarwar, M. and W. T. Frankenberger. (1994). Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant and soil, 160(1):97-104. Saygideger, S. and O. Okkay. (2008). Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells. Journal of environmental biology, 29(2):175-178. Schirawski, J. and M.H Perlin. (2018). Plant microbe interaction 2017—The Good, the Bad and the Diverse 19(5):1374. Schwyn, B.and J. B. Neilands. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1):47-56. Sciumbato, A. S., J. M. Chandler,. S. A. Senseman, R. W. Bovey. and K. L. Smith. (2004). Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed technology, 18(4):1125-1134. Shen, F. T., J. H. Yen, C. S. Liao, W. C. Chen and Y. T. Chao. (2019). Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability:11(4). Shokri, D. and G. Emtiazi, (2010). Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Current microbiology, 61(3):217-225. Soltys, D., U. Krasuska, R. Bogatek. and A. Gniazdowska, (2013). Allelochemicals as bioherbicides—present and perspectives. Current research and case studies in use. Rrieved from https://www.intechopen.com/books/herbicides-current-research-and-case-studies-in-use/allelochemicals-as-bioherbicides-present-and-perspectives Song, Y. (2014). Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. Journal of integrative plant biology, 56(2):106-113. Spaepen, S., Jo. Vanderleyden. and R. Remans.(2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews, 31(4):425-448. Spitz, D. R. and L. W. Oberley. (1989). An assay for superoxide dismutase activity in mammalian tissue homogenates. Analytical biochemistry 179(1):8-18. Stephen O. D., E. S. Brian, C D. Boyette, J. Lydon. and A. Oliva. (2000). Herbicides, Biotechnology. Kirk‐Othmer encyclopedia of chemical technology. pp. 281-347. Stephen O. D., K. C. Vaughn, E. M. Croom. and H N. Elsohly, (1987). Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed science, 35(4):499-505. Sterling, T. (1997). Mechanism of action of natural auxins and the auxinic herbicides. Reviews in toxicology, 1:111-141. Susilowati, D. N., E I Riyanti, M. Setyowati. and K. Mulya. (2018). Indole-3-acetic acid producing bacteria and its application on the growth of rice. AIP conference proceedings (1):020016 Szkop, M. and W. Bielawski, (2013). A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid. Antonie Van Leeuwenhoek, 103(3):683-691. Taiz, L., E. Zeiger, I. M. Møller. and A. Murphy.(2015). Plant physiology and development. Tamura, K., M. Imamura, K. Yoneyama, Y. Kohno, Y. Takikawa, I. Yamaguchi. and H. Takahashi. (2002). Role of phaseolotoxin production by Pseudomonas syringae pv. actinidiae in the formation of halo lesions of kiwifruit canker disease. Physiological and molecular plant pathology, 60:207-214. Tan, X., L. I.Calderon-Villalobos, M. Sharon, C. Zheng, C. V. Robinson, M.Estelle. and N. Zheng (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446(7136):640-645. Tekiela, D. R. (2019). Effect of the bioherbicide Pseudomonas fluorescens D7 on downy brome (Bromus tectorum). Rangeland ecology management, (15) Teng, P. S. (1987). Crop loss assessment and pest management: American phytopathological society. The Editors of Encyclopaedia Britannica. (2020). Weed. Rrieved from https://www.britannica.com/plant/weed Tranel, P. J., D. R. Gealy. and A. C.Kennedy. (1993). Inhibition of downy brome (Bromus tectorum) root growth by a phytotoxin from Pseudomonas fluorescens strain d7. Weed technology, 7(1):134-139. Travlos, I., N. Cheimona, R. Prado, A. Jhala and E. Tani (2018). First case of glufosinate-resistant rigid ryegrass (Lolium rigidum Gaud.) in Greece. 8:35 United Nations. (2019). United Nations (2019) World population prospects: the 2019 revision. Retrieved from https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf Veselov, D., M. Langhans, W. Hartung, R. Aloni, I. Feussner, C. Götz, S. Veselova, S. Schlomski, C. Dickler. and K. Bächmann (2003). Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta, 216(3):512-522. Walley, F. L. (1995). Interactions between vesicular-arbuscular mycorrhizal fungi and fluorescent pseudomonas species. Applied and environmental microbiology 64(6): 2304–2307 Wang, S. and J. Fu, (2011). Insights into auxin signaling in plant–pathogen interactions. Frontiers in plant science, 2:74. Weber, H., A. Chételat, P. Reymond. and E. E. Farmer, (2004). Selective and powerful stress gene expression in arabidopsis in response to malondialdehyde. The plant journal, 37(6):877-888. Weir, T. L., S. F. Park, J. M. Vivanco. and J. M. Vivanco, (2004). Biochemical and physiological mechanisms mediated by allelochemicals. Current opinion in plant biology 7(4):472-9 · Went, F. W. and K. V. Thimann (1937). Phytohormones.Macmillan company:New York. Wintermans, J. F. G. M. and A. De Mots, (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et biophysica acta (BBA) - Biophysics including photosynthesis, 109(2):448-453. Woltz, S. S. (1978). Nonparasitic plant pathogens. Annual review of phytopathology, 16(1):403-430. Wright, A. D., M. B.Sampson, M. G. Neuffer, L. Michalczuk, J. P. Slovin. and J. D. Cohen, (1991). Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science, 254(5034):998. Wu, G. L., J. Cui, L. Tao. and H. Yang. (2009). Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology, 19(1):124. Wu, Z. G. and Z. T. Lin. (2013). Influence of exogenous IAA and GA on seed germination, vigor and their endogenous levels in Cunninghamia lanceolata. Scandinavian journal of forest research, 28(6):511-517. Xie, H., J. J. Pasternak. and B. R. Glick. (1996). Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Current microbiology, 32(2):67-71. Xu, Z., M.Shi, Y. Tian, P. Zhao, Y. Niu. and M. Liao. (2019). Dirhamnolipid produced by the pathogenic fungus Colletotrichum gloeosporioides BWH-1 and its herbicidal activity. Molecules, 24(16). Yang, J., P. M. Ruegger, M. V. McKenry, J. O. Becker. and J. Borneman. (2012). Correlations between root-associated microorganisms and peach replant disease symptoms in a california soil. PloS one, 7(10):e46420-e46420. Zhao, Z. R., Z. L. Wu, G. Q. Huang. and G. R. Li. (1992). An improved disk bioassay for determining activities of plant growth regulators. Journal of plant growth regulation, 11(4):209. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76903 | - |
| dc.description.abstract | 生物型除草劑的優點為兼顧環境友善、使用者安全以及消費者健康,更具有減少使用人工合成化學藥劑的優勢。本研究利用自水稻植物中篩選出之內生細菌 Bacillus aryabhattai MN1 具有可以產生高量吲哚-3-乙酸 (Indole-3-acetic Acid, IAA) 的特性,探討其於生物型除草的應用潛力。研究結果顯示 B. aryabhattai MN1 菌液上清液具有抑制雜草生長的能力,以高效液相層析儀分析以及生物鑑定法說明 B. aryabhattai MN1 所生產的上清液含有 IAA 且為影響植物之有效成分。另透過優化 B. aryabhattai MN1 的培養條件,使其能產生高量的IAA,產量最高可達 97.1 mg L-1。由萌前除草的藥效試驗中,以 IAA 基準濃度 10 mg L-1 施用量施用 MN1 上清液,即可抑制綠豆根長度的增長,並在施用 5 mL 60 mg L -1 (IAA) MN1 上清液後,阿拉伯芥和綠豆的發芽率相較於對照組分別下降了 33.3 和 60.0%;於萌後水耕除草藥效試驗中,發現施用上清液會對於阿拉伯芥並無顯著影響。而在添加展著劑之後,MN1 對於三週大小之大花咸豐草 (Bidens pilosa) 的殺草效果明顯上升,噴施 5 mL 40 mg L-1 (IAA) MN1 上清液會使葉片發生損傷、壞死、捲曲或掉落;此外,MN1上清液能選擇性地抑制大花咸豐草鮮重和乾重,對於水稻 (Oryza sativa L.) 則影響有限;而施用高濃度的 IAA MN1 上清液後,會使雜草發生細胞滲漏、葉綠素下降、丙二醛和抗壞血酸過氧化物酶濃度上升的生理現象。本研究結果顯示 B. aryabhattai MN1 具有可作為萌前和萌後雙子葉雜草生物型除草劑的潛力,達到控制田間雜草及環境友善的目的並減少化學合成藥劑的使用。 | zh_TW |
| dc.description.abstract | All environmental friendly, user safe, do health to consumers and synthetic chemical pesticide usage reduced are advantages of biological herbicides. In this study, we attempt to exploit endophytic bacteria Bacillus aryabhattai MN1, selected from rice plants, as a potential bio-herbicide due to its feature of high production of indole-3-acetic acid (IAA). Results indicate that supernatant produced by B. aryabhattai MN1 owns the ability to inhibit weeds growth. With high-performance liquid chromatography analysis and bioassay practice, supernatant produced by B. aryabhattai MN1 appears to contain IAA and act as active ingredients that affect plants growth. In addition, a maximum yield of 97.1 mg L-1 IAA production will be observed after optimizing the culture conditions of B. aryabhattai MN1. In the pre-emergence weeding efficacy test, MN1 supernatant is diluted based on IAA concentration as 10 mg L-1 of (IAA) MN1 treatment is capable of inhibiting green bean root length. Also, 5 mL of 60 mg L -1 (IAA) MN1 supernatant application may cause germination rates drop in Arabidopsis and green bean by 33.3 and 60.0%, in comparison to the control group, respectively. During the post-emergence hydroponic weeding efficacy test, it was found that the application of supernatant ends up no significant effect on Arabidopsis decline. However, with the spreading agent added, the effect of MN1 controlling three-weeks-old Bidens pilosa significantly increased. Spraying 5 mL of 40 mg L-1 (IAA) MN1 supernatant leads to different extent of leaf damage, necrosis, leaf curl or fall. Thus, MN1 supernatant can selectively inhibit fresh weight and dry weight of B. pilosa instead of rice (Oryza sativa L.). Besides, by applying high concentration of IAA MN1 supernatant, B. pilosa experience cell leakage, chlorophyll decline, increasing malondialdehyde and ascorbate peroxidase concentration. This study shows that B. aryabhattai MN1 possesses the potential to become a bio-herbicide on pre- and post- emergence dicotyledonous weeds control. With the development of bio-herbicide, we can achieve the goal of controlling weeds in the field and reduce the use of chemical synthetic herbicides. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:40:01Z (GMT). No. of bitstreams: 1 U0001-1008202018175000.pdf: 2894707 bytes, checksum: 18f4e88773572bf35cd70cc2d50754c3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 壹、 前言 1 一、 全球農藥使用現況 1 二、 生物防治 3 三、 植物根圈細菌 7 四、 植物荷爾蒙與荷爾蒙類型除草劑的作用機制 10 五、 微生物生成吲哚-3-乙酸的機制 13 貳、 研究目的 15 參、 試驗架構 16 肆、 材料與方法 17 一、 菌株的保存與基本性質試驗 17 二、 初步評估 Bacillus aryabhattai MN1抑制植物生長的效果 24 三、 Bacillus aryabhattai MN1上清液有效成分鑑定 27 四、 最佳化 Bacillus aryabhattai MN1生產 IAA 條件 28 五、 Bacillus aryabhattai MN1萌前與萌後之除草藥效試驗 31 六、 Bacillus aryabhattai MN1 單子葉與雙子葉選擇性試驗 36 七、 Bacillus aryabhattai MN1 對植物之生理影響試驗 39 八、 統計分析 43 伍、 結果與討論 44 一、 Bacillus aryabhattai MN1 菌株基本性質 44 二、 初步評估Bacillus aryabhattai MN1 抑制植物生長的效果 46 三、 Bacillus aryabhattai MN1有效成分鑑定 49 四、 Bacillus aryabhattai MN1生產IAA條件試驗 51 五、 Bacillus aryabhattai MN1萌前與萌後的抑制效果試驗 59 (一) 阿拉伯芥對於 IAA 之感度差異 59 (二) Bacillus aryabhattai MN1上清液除草藥效試驗—萌前 62 (三) Bacillus aryabhattai MN1 上清液除草藥效試驗—萌後 67 (四) Bacillus aryabhattai MN1上清液對於大花咸豐草之除草藥效試驗 71 六、 Bacillus aryabhattai MN1 單子葉與雙子葉選擇性 74 七、 Bacillus aryabhattai MN1對植物之生理影響試驗 79 陸、 結論 89 柒、 參考資料 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物型除草劑 | zh_TW |
| dc.subject | 有害根圈細菌 | zh_TW |
| dc.subject | 吲哚-3-乙酸 | zh_TW |
| dc.subject | 生長抑制 | zh_TW |
| dc.subject | Bacillus aryabhattai MN1 | zh_TW |
| dc.subject | Indole-3-acetic acid | en |
| dc.subject | Bio-herbicide | en |
| dc.subject | Deleterious rhizobacteria | en |
| dc.subject | Growth inhibition | en |
| dc.subject | Bacillus aryabhattai MN1 | en |
| dc.title | Bacillus aryabhattai MN1 作為微生物除草劑之潛力研究 | zh_TW |
| dc.title | Research on Bacillus aryabhattai MN1 as a potential bio-herbicide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林乃君(Nai-Chun Lin),黃文達(Wen-Dar HUANG),蔣永正(Yeong-Jene Chiang),陳玟瑾(Wen-Ching Chen) | |
| dc.subject.keyword | Bacillus aryabhattai MN1,生物型除草劑,吲哚-3-乙酸,有害根圈細菌,生長抑制, | zh_TW |
| dc.subject.keyword | Bacillus aryabhattai MN1,Bio-herbicide,Deleterious rhizobacteria,Growth inhibition,Indole-3-acetic acid, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU202002856 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202018175000.pdf 未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
