請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76892完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安(Chin-An Dai) | |
| dc.contributor.author | Yung-Sheng Chang | en |
| dc.contributor.author | 張詠勝 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:38Z | - |
| dc.date.available | 2021-07-10T21:39:38Z | - |
| dc.date.copyright | 2020-08-20 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | M. R. Krejsa and J. L. Koenig, 'A Review of Sulfur Crosslinking Fundamentals for Accelerated and Unaccelerated Vulcanization,' Rubber Chemistry and Technology, p. 376–410, 1993. H. Mouri and K. Akutagawa, 'Improved Tire Wet Traction through the Use of Mineral Fillers,' Rubber Chemistry and Technology, p. 960–968, 1999. H.-D.Luginsland and C.Röben, 'The development of sulphur-functional silanes as coupling agents in silica-reinforced rubber compounds.Their historical development over several decades,' Gummi Fasern Kunststoffe, vol. 68, no. 11, pp. 734-737, 2015. M.-J. Wang, 'Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates,' Rubber Chemistry and Technology, vol. 71, no. 3, pp. 520-589, 1998. A. I. Medalia, 'Heat Generation in Elastomer Compounds: Causes and Effects,' Rubber Chemistry and Technology, vol. 64, no. 3, pp. 481-492, 1991. H. S. Lee, 'Development of a new solution for viscoelastic wave propagation of pavement structures and its use in dynamic backcalculation,' Thesis of Civil Enginerring of Michigan State University, 2013. N. Hasheminejad, 'Characterizing the Complex Modulusof Asphalt Concrete Using a Scanning LaserDoppler Vibrometer,' Materials, vol. 12, no. 3542, 2019. J. D. Ferry, L. M. Williams and R. F. Landel, 'The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids.,' vol. 77, 1955, pp. 3701-3707. E. Ueda, X. Liang, K. Nakajima and M. Ito, 'Dynamic Moduli Mapping of Silica-Filled Styrene–Butadiene Rubber Vulcanizate by Nanorheological Atomic Force Microscopy.,' Macromolecules, vol. 52, no. 1, pp. 311-319, 2019. J. Fröhlich, W. Niedermeier and H. Luginsland, 'The effect of filler–filler and filler–elastomer interaction on rubber reinforcement,' Composites, vol. 36, no. 4, pp. 449-460, 2005. F. Yatusyanagi, N. Suzuki and M. Ito, 'Effects of Surface Chemistry of Silica Particles on the Mechanical Properties of Silica Filled Styrene–Butadiene Rubber Systems,' Polymer Journal, vol. 34, no. 5, pp. 332-339, 2002. G. Heinrich, M. Kluüppel and T. Vilgis, 'Reinforcement Theories,' in Physical Properties of Polymers Handbook, pp. 599-608. S. N. Lawandy, S. F. Halim and N. A. Darwish, 'Structure aggregation of carbon black in ethylene-propylene diene polymer,' eXPRESS Polymer Letters, vol. 3, no. 3, pp. 152-158, 2009. K. Sahakaro, 'Mechanism of reinforcement using nanofillers in rubber nanocomposites,' in Progress in Rubber Nanocomposites, 2017. A. Medalia, 'Effective Volume of Aggregates of Carbon Black from Electron Microscopy; Application to Vehicle Absorption and to Die Swell of Filled Rubber,' Journal of Colloid and Interlace Science,, vol. 32, no. 1, pp. 115-131, 1970. N. Vennemann and M. Wu, 'Thermoelastic properties and relaxation behavior of S-SBR/silica vulcanizates,' Rubber World, vol. 246, no. 6, pp. 18-23, 2012. P. P. A. Smit, 'Glass Transition in Carbon Black Reinforced Rubber,' Rubber Chemistry and Technology, vol. 41, no. 5, pp. 1194-1202, 1968. N. T. Irwin Pliskin, 'Bound rubber in elastomers: Analysis of elastomer‐filler interaction and its effect on viscosity and modulus of composite systems,' JOURNAL OF APPIAIED POLYMER SCIENCE, pp. 473-492, 1972. S. Futamura, 'Deformation Index—Concept for Hysteretic Energy-Loss Process,' Rubber Chemistry and Technology, vol. 64, no. 1, pp. 57-64, 1991. P. Zhang, M. Morris and D. Doshi, 'MATERIALS DEVELOPMENT FOR LOWERING ROLLING RESISTANCE OF TIRES,' Rubber Chemistry and Technology, vol. 89, no. 1, pp. 79-116, 2016. D. Lockhorn and M. Klüppel, 'Structure–property relationships of silica/silane formulations in natural rubber, isoprene rubber and styrene–butadiene rubber composites,' Journal of applied polymer science, 2019. A. L. Gal, X. Yang and M. Klüppel, 'Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis,' J. Chem. Phys, vol. 123, no. 1, p. 14704, 2005. G. Heinrich and H. Klüppel, 'The role of polymer-filler interphase in reinforcement of elastomers,' Kautschuk und Gummi Kunststoffe, vol. 57, no. 9, pp. 452-454, 2004. S. Merabia, P. Sotta and D. R. Long, 'A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects),' American Chemical Society, vol. 41, no. 21, pp. 8252-8266, 2008. H.-D. Luginsland, 'Reactivity of the Sulfur Chains of the Tetrasulfane Silane Si 69 and the Disulfane Silane TESPD,' KGK Kautschuk Gummi Kunststoffe, vol. 53, no. 1, 2000. J. Brinke, S. Debnath, L. Reuvekamp and J. Noordermeer, 'Mechanistic aspects of the role of coupling agents in silica–rubber composites,' Composites Science and Technology, vol. 63, no. 8, pp. 1165-1174, 2003. F. Vilmin, I. Bottero, A. Travert, N. Malicki, F. Gaboriaud, A. Trivella and F. Thibault-Starzyk, 'Reactivity of Bis[3-(triethoxysilyl)propyl] Tetrasulfide (TESPT) Silane Coupling Agent over Hydrated Silica: Operando IR Spectroscopy and Chemometrics Study,' The journal of physical chemistry, vol. 118, no. 8, pp. 4056-4071, 2014. A. Hasse, O. Klockmann, A. Wehmeier and H. Luginsland, 'Influence of the amount of di-and polysulfane silanes on the crosslinking density of silica-filled rubber compounds.,' KAUTSCHUK UND GUMMI KUNSTSTOFFE, vol. 55, no. 5, pp. 236-243, 2002. H. Palmgren, 'Processing Conditions in the Batch-Operated Internal Mixer,' Rubber Chemistry and Technology , pp. 462-494, 1975. C.-S. Tsao, Theory of X-ray and Neutron Scattering. O. M. Londoño, P. Tancredi, P. Rivas, D. Muraca, L. M. Socolovsky and M. Knobel, 'Small-Angle X-Ray Scattering to Analyze the Morphological Properties of Nanoparticulated Systems,' in Handbook of Materials. B. Hammouda, 'PROBING NANOSCALE STRUCTURES –THE SANS TOOLBOX'. J. Teixeira, 'Small-Angle Scattering by Fractal Systems,' International Union of Crystallography, pp. 781-785, 1988. D. W. SCHAEFER, 'Polymers, Fractals, and Ceramic Materials,' Science, vol. 243, no. 4894, pp. 1023-1027, 1989. A. T. Brinke, 'Silica Reinforced Tyre Rubbers,' in Ph.D. thesis University of Twente, 2002. E. Industries, 'Product information ULTRASIL 9100GR,' 2015. T. Maekawa, 'TIRE TREAD AND TIRE'. JP Patent US2018/0327572, 8 5 2018. W. Kaewsakul, K. Sahakaro, W. K. Dierkes and J. W. Noordermeer, 'Factors influencing the flocculation process in silica-reinforced natural rubber compounds,' Journal of Elastomers Plastics, pp. 1-16, 2015. N. Vleugels, D. Wilma K, A. Blume, L. A. E. M and W. M. N. Reuvekamp Jacques, 'Understanding the Behavior of the Coupling Agents TESPT and SI 363 in short-cut Aramid Fibre reinforced Elastomers,' KGK, 2017. J. Wu, L. Ling, J. X. Ma and B. Wang, 'Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction,' Chemical Physics Letters, vol. 591, no. 20, pp. 227-232, 2014. K. SENGLOYLUAN, K. SAHAKARO, W. DIERKES and J. NOORDERMEER, 'Synergistic Effects in Silica-Reinforced Natural Rubber Compounds Compatibilised by ENR in Combination with Different Silane Coupling Agent Types,' Journal of Rubber Research, vol. 19, no. 3, pp. 170-189, 2016. M. Sato, Reinforcing mechanisms of silica/sulfide-silane vs. mercapto-silane filled tire tread compounds., 2018.. S.-H. Ha, S.-W. Kim and H.-K. Jeong, 'Investigation of Reaction Rate of Bis(triethoxysilylpropyl)tetrasulphide in Silica-Filled Compound Using Pyrolysis-Gas Chromatography/Mass Spectrometry,' Asian Journal of Chemistry, vol. 25, no. 9, pp. 5245-5250, 2013. U. Goerl, A. Hunsche, A. Mueller and H. G. Koban, 'Investigations into the Silica/Silane Reaction System,' Rubber Chemistry and Technology , vol. 70, no. 4, pp. 608-623, 1997. Z.-H. Zheng, Effect of mixing process on the dynamic mechanical properties of silica-filled rubber system: mixing parameters and the reactivity of silane coupling agent, 2018. L. Hui En, Non-Equilibrium Dynamic Mixing Process and Dispersant Reactions for High Efficiency Green Tires:, 2018. J. Janzen and G. Kraus, 'Specific surface area measurements on carbon black.,' Rubber Chem Technol, vol. 45, no. 5, pp. 44-1287, 1971. A. Voet, J. C. Morawski and J. B. Donnet, 'Reinforcement of elastomers by silica,' Rubber Chemistry and Technology , vol. 50, no. 2, pp. 50-342, 1977. G. Tian, 'Size-dependent adsorption and its application indetermining the number of surfactant moleculeadsorbed on multimodal SiO2particles by2D-DCS,' Royal Society of Chemistry, vol. 143, pp. 4630-4637, 2018. S. Brunauer, P. H. Emmett and E. Teller, 'Adsorption of gases in multimolecular layers,' J Am Chem Soc, pp. 60-309, 1938. D. Bassett, E. Boucher and A. Zettlemoyer, 'Adsorption Studies on Hydrated and Dehydrated Silicas,' JouTnal of Colioid and Interface Science, vol. 27, no. 4, pp. 649-658, 1968. A. Blume, 'Silica and Silanes,' in Rubber Compounding Chemistry and Applications, 2015, pp. 252-324. H.-D. Luginsland and C. Röben, 'The Development of Sulphur-Functional Silanes as Coupling Agents in Silica-Reinforced Rubber Compounds. Their Historical Development over Several Decades.,' Gummi Fasern Kunststo, vol. 68, no. 11, pp. 734-737, 2015. Y. Li, M. J. Wang, T. Zhang, F. Zhang and X. Fu, 'Study on Dispersion Morphology of Silica in Rubber,' Rubber Chemistry and Technology, vol. 67, no. 4, pp. 639-699, 1994. F. Clement, L. Bokobza and L. Monnerie, 'Investigation of the Payne Effect and its Temperature Dependence on Silica-Filled Polydimethylsiloxane Networks. Part I: Experimental Results,' Rubber Chemistry and Technology, vol. 78, no. 2, pp. 211-231, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76892 | - |
| dc.description.abstract | 本研究中使用萬馬力混煉機(banbury),將橡膠材料與高分散性二氧化矽(highly-dispersive silica)進行混合,用以強化橡膠之機械性質並作為製造輪胎之胎面(tire tread)配方。 由於二氧化矽與橡膠的親疏水性不同,因此必須使用矽烷耦合劑(silane)以降低二氧化矽顆粒表面的極性並使其在親油性橡膠中均勻分散。 在本研究將改變這些工業級的配方(二氧化矽與矽烷耦合劑)來使胎面膠達到理想的滾動阻力、濕地抓地力、剛性之三重性能。 研究內容包含-改變混煉配方: 一、添加不同比表面積(specific surface area)的二氧化矽顆粒。 本研究利用Evonik公司製造之SilicaB與SilicaA兩種二氧化矽顆粒,研究填充物(filler)大小形狀的不同對於胎面膠以及矽烷耦合劑使用量之影響。 二、使用不同矽烷耦合劑:A.雙邊乙氧基團官能基的TESPT(俗稱SilaneA)與B.一邊乙氧基團一邊硫醇基(thiol)的SilaneB,我也研究不同矽烷耦合劑對二氧化矽顆粒的分散效果之影響。 實驗分析分為三大部分: silane反應量分析、動態機械性質量測、二氧化矽結構分析。 Silane反應量分析由熱裂解氣相質譜儀(Pyrolysis GC-MS)分析未與二氧化矽顆粒表面反應所剩餘的silane相對含量,了解此配方在二氧化矽顆粒表面之矽烷化(silanization)程度。 動態機械性質量測胎面膠的潘恩效應(Payne effect)以及濕抓、滾阻、剛性等物理性質。 二氧化矽顆粒之聚集狀態結構分析利用原子力顯微鏡(AFM)以及穿透式電子顯微鏡(TEM)切片觀察二氧化矽顆粒分布,以及使用國家同步輻射中心(NSRRC)之TPS25A1工作站,以同步加速環的X光穿透樣品,並以X光之散射(SAXS)分析二氧化矽顆粒在橡膠中所表現的結構變化。 | zh_TW |
| dc.description.abstract | In this study, we use a banbury mixer at CST Ind. Co. to mix rubbers with highly-dispersible silica to improve the mechanical properties of rubbers for uses as a tire tread. Due to the different hydrophilicity between silica and rubbers, silane coupling agent must be used to reduce the polarity of silicas and make them evenly dispersed in the rubber system. I modify the tread formulas to achieve a better rolling resistance, wet grip, and stiffness. The compound formula is modified according to the following principles: 1. Silica is changed by using the fillers with different specific surface area: SilicaB and SilicaA silicas manufactured by Evonik. The effect of different silica addition on the morphology of the fillers and the resulting tread property as a function of silane coupling agent loading is studied. 2. The effect of using different silane coupling agents, TESPT (commonly known as SilaneA) with bilateral ethoxy groups and SilaneB with only one ethoxy group and one thiol (SH) group at the other end is investigated as a function of their addition concentrations. The analysis of the nanocomposites is mainly divided into three parts: the analysis for the extent of silane reaction during banbury mixing, the measurement of dynamic mechanical property, the analysis of silica hierarchical structure and their structure- property relation. The extent of silane reaction is based using pyrolysis GC-MS technique to analyze the relative amount of unreacted silane with inorganic filler left in the compounds to understand the degree of silanization coverage on silica surface. The dynamic mechanical property measures the Payne effect which is related to the effect of filler-filler interaction. In addition tan (delta) and elastic modulus at different temperature of their dynamic property can be related to the physical properties of the tire tread compounds such as wet grip, rolling resistance, and stiffness. The structural analysis of silica is based on the complimentary techniques of atomic force microscopy, transmission electron microscopy and small angle X-ray scattering (SAXS) located at the TPS25A1 workstation of the NSRRC to analyze their hierarchical structural transformation of different silica types, loadings, and different silane surface modifications in the rubber system. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:38Z (GMT). No. of bitstreams: 1 U0001-1108202016135800.pdf: 8966528 bytes, checksum: ed01d1c7faa26ed99499980bb5b4f086 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Chapter 1 緒論 1 Chapter 2 文獻回顧 3 2.1 橡膠動態性質理論 3 2.1.1 動態機械性質 3 2.2 填料在橡膠中的影響與潘恩效應 6 2.2.1 橡膠中的作用力 6 2.2.2 潘恩效應 8 2.2.3 圍困橡膠 8 2.2.4 束縛橡膠 9 2.3 玻璃轉移溫度與玻璃態橡膠 10 2.3.1 玻璃轉移溫度 10 2.3.2 玻璃態橡膠 (confined glassy polymer) 10 2.4 矽烷化反應 12 2.4.1 矽烷耦合劑與二氧化矽反應 12 2.4.2 矽烷耦合劑與橡膠反應 14 2.5 混煉原理與顆粒聚集結構 16 2.5.1 混煉程序 16 2.5.2 二氧化矽的階層結構 17 2.6 小角度X光散射(SAXS)原理 18 2.6.1 X光散射原理 18 2.6.2 形狀因子與結構因子 23 2.6.3 碎形結構 26 Chapter 3 研究方法及量測方式 29 3.1 實驗材料 29 3.2 樣品的製備 (橡膠混煉) 33 3.3 實驗儀器 35 3.3.1 矽烷耦合劑的反應性測量 35 3.3.2 二氧化矽結構分析 35 3.3.3 動態機械性質測量 38 3.4 實驗設計 39 Chapter 4 實驗結果與討論 41 4.1 SilicaA與SilicaB之比較 41 4.1.1 比表面積差異 41 4.1.2 型態分析-穿隧式電子顯微鏡TEM 44 4.1.3 型態分析-小角度散射SAXS 45 4.1.4 結果與討論 49 4.2 高比表面積二氧化矽搭配SilaneA的反應性以及性質分析 50 4.2.1 實驗設計 50 4.2.2 矽烷耦合劑反應性結果 51 4.2.3 二氧化矽結構分析-穿隧式電子顯微鏡TEM 52 4.2.4 二氧化矽結構分析-原子力顯微鏡AFM 53 4.2.5 二氧化矽結構分析-小角度散射分析 54 4.2.6 動態機械性質表現 (潘恩效應) 56 4.2.7 動態機械性質表現 (濕地抓地力) 58 4.2.8 動態機械性質表現 (剛性及滾動阻力) 59 4.2.9 混煉功率與溫度 62 4.2.10 與標準silica(SilicaB)添加SilaneA之性質比較 63 4.2.11 結果與討論 66 4.3 混用二氧化矽 69 4.3.1 實驗設計 69 4.3.2 矽烷耦合劑反應性結果 70 4.3.3 二氧化矽結構分析-小角度X光散射 71 4.3.4 動態機械性質表現 (潘恩效應) 74 4.3.5 動態機械性質表現 (濕地抓地力) 75 4.3.6 動態機械性質表現 (剛性及滾動阻力) 78 4.3.7 混煉功率與溫度 83 4.3.8 結果與討論 83 4.4 改變二氧化矽添加量 85 4.4.1 實驗目的 85 4.4.2 矽烷耦合劑反應性結果 86 4.4.3 二氧化矽結構分析-小角度X光散射 87 4.4.4 動態機械性質表現 (潘恩效應) 89 4.4.5 動態機械性質表現 (濕地抓地力) 93 4.4.6 動態機械性質表現 (剛性及滾動阻力) 96 4.4.7 混煉功率與溫度 101 4.4.8 結果與討論 102 4.5 高比表面積二氧化矽搭配SilaneB的反應性以及性質分析 104 4.5.1 實驗設計 104 4.5.2 矽烷耦合劑反應性結果 105 4.5.3 二氧化矽結構分析-穿隧式電子顯微鏡TEM 106 4.5.4 二氧化矽結構分析-原子力顯微鏡AFM 107 4.5.5 二氧化矽結構分析-小角度X光散射 108 4.5.6 動態機械性質表現 (潘恩效應) 110 4.5.7 動態機械性質表現 (濕地抓地力) 111 4.5.8 動態機械性質表現 (剛性及滾動阻力) 114 4.5.9 混煉功率與溫度 117 4.5.10 結果與討論 117 4.6 比較SilicaB與SilicaA之不同 119 4.6.1 實驗目的 119 4.6.2 矽烷耦合劑反應性結果 120 4.6.3 二氧化矽結構分析-小角度X光散射 120 4.6.4 動態機械性質表現 (潘恩效應) 123 4.6.5 動態機械性質表現 (濕地抓地力) 124 4.6.6 動態機械性質表現 (剛性及滾動阻力) 126 4.6.7 混煉功率與溫度 128 4.6.8 硫化曲線 128 4.6.9 結果與討論 129 4.7 不同混驗階段之小角散射分析 131 4.7.1 實驗設計 131 4.7.2 實驗結果 (標準品) 131 4.7.3 實驗結果 (增加二氧化矽添加量實驗) 133 Chapter 5 結論 138 Chapter 6 未來展望與建議 140 A. BET量測結果 142 B. 小角散射擬合參數 143 4.1 高比表面積二氧化矽搭配SilaneA的反應性以及性質分析 143 4.2 混用二氧化矽 144 4.3 改變二氧化矽添加量 147 4.4 高比表面積二氧化矽搭配SilaneB的反應性以及性質分析 149 4.5 SilicaSilicaB/SilicaA搭配SilaneA/SilaneB 151 4.6 不同混驗階段之小角散射分析 152 B. 以元素分析及ss-NMR分析矽烷耦合劑反應 162 參考文獻 167 | |
| dc.language.iso | zh-TW | |
| dc.subject | 矽烷耦合劑 | zh_TW |
| dc.subject | 動態機械性質 | zh_TW |
| dc.subject | 胎面膠 | zh_TW |
| dc.subject | 高分散二氧化矽 | zh_TW |
| dc.subject | 小角度散射 | zh_TW |
| dc.subject | tire tread | en |
| dc.subject | SAXS | en |
| dc.subject | DMA | en |
| dc.subject | silane | en |
| dc.subject | highly-dispersity silica | en |
| dc.title | 利用有機矽烷耦合劑及高分散性二氧化矽強化綠色輪胎之動態機械性質 | zh_TW |
| dc.title | Improvement of Dynamic Property for Green Tires with Organosilanes and Highly Dispersive Silicas | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 謝之真(Chih-Chen Hsieh) | |
| dc.contributor.oralexamcommittee | 邱文英(Wen-Ying Chiou),程耀毅(Yao-Yi Cheng) | |
| dc.subject.keyword | 胎面膠,動態機械性質,高分散二氧化矽,矽烷耦合劑,小角度散射, | zh_TW |
| dc.subject.keyword | tire tread,highly-dispersity silica,silane,DMA,SAXS, | en |
| dc.relation.page | 174 | |
| dc.identifier.doi | 10.6342/NTU202002974 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202016135800.pdf 未授權公開取用 | 8.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
