Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘(Da-Ming Wang)
dc.contributor.authorShih-Yun Suen
dc.contributor.author蘇詩芸zh_TW
dc.date.accessioned2021-07-10T21:39:34Z-
dc.date.available2021-07-10T21:39:34Z-
dc.date.copyright2020-09-24
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation1. Mulder, M., Basic principles of membrane technology. 2012: Springer Science Business Media.
2. McGowan, W. and Harrison, J., Water processing: residential, commercial, light-industrial. Lisle, IL. Water Quality Association, 2000.
3. Lloyd, D.R., Kinzer, K.E., and Tseng, H., Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. Journal of Membrane Science, 1990. 52(3): p. 239-261.
4. Smolders, C.A., et al., Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. Journal of Membrane Science, 1992. 73(2): p. 259-275.
5. Park, H.C., et al., Membrane formation by water vapor induced phase inversion. Journal of Membrane Science, 1999. 156(2): p. 169-178.
6. Wang, D.-M. and Lai, J.-Y., Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2013. 2(2): p. 229-237.
7. Guillen, G.R., et al., Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial Engineering Chemistry Research, 2011. 50(7): p. 3798-3817.
8. Barton, A.F., CRC handbook of solubility parameters and other cohesion parameters. 1991: CRC press.
9. Conesa, A., Gumi, T., and Palet, C., Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of membrane science, 2007. 287(1): p. 29-40.
10. Ren, J., Zhou, J., and Deng, M., Morphology transition of asymmetric flat sheet and thickness-gradient membranes by wet phase-inversion process. Desalination, 2010. 253(1-3): p. 1-8.
11. Zhou, J., et al., Morphology evolution of thickness-gradient membranes prepared by wet phase-inversion process. Separation and purification technology, 2008. 63(2): p. 484-486.
12. Tsai, J., et al., Retainment of pore connectivity in membranes prepared with vapor-induced phase separation. Journal of Membrane Science, 2010. 362(1-2): p. 360-373.
13. Wijmans, J., et al., Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation. Polymer, 1985. 26(10): p. 1539-1545.
14. Altena, F.W. and Smolders, C., Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules, 1982. 15(6): p. 1491-1497.
15. Barnes, H.A., Hutton, J.F., and Walters, K., An introduction to rheology. Vol. 3. 1989: Elsevier.
16. Zeman, L. and Fraser, T., Formation of air-cast cellulose acetate membranes. Part I. Study of macrovoid formation. Journal of membrane science, 1993. 84(1-2): p. 93-106.
17. Gaides, G. and McHugh, A., Gelation in an amorphous polymer: a discussion of its relation to membrane formation. Polymer, 1989. 30(11): p. 2118-2123.
18. Mezger, T.G., The rheology handbook: for users of rotational and oscillatory rheometers. 2006: Vincentz Network GmbH Co KG.
19. Wijmans, J., Baaij, J., and Smolders, C., The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. Journal of Membrane Science, 1983. 14(3): p. 263-274.
20. Stropnik, Č., Musil, V., and Brumen, M., Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes. Polymer, 2000. 41(26): p. 9227-9237.
21. Chang‐sheng, Z., et al., An evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment. Artificial organs, 2001. 25(1): p. 60-63.
22. Zhao, C., et al., Modification of polyethersulfone membranes–a review of methods. Progress in Materials Science, 2013. 58(1): p. 76-150.
23. Xu, Z.-L. and Qusay, F.A., Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution. Journal of Membrane Science, 2004. 233(1-2): p. 101-111.
24. Su, S.-L., 高分子鏈糾纏對相分離動力學與薄膜結構之影響. 臺灣大學化學工程學研究所學位論文, 2017: p. 1-166.
25. Su, S.-L., Wang, D.-M., and Lai, J.-Y., Critical residence time in metastable region–a time scale determining the demixing mechanism of nonsolvent induced phase separation. Journal of membrane science, 2017. 529: p. 35-46.
26. 洪偉倫, 非溶劑誘導式相分離過程之膜結構生成探討. 臺灣大學化學工程學研究所學位論文, 2016: p. 1-256.
27. Vazquez, A., et al., Rubber-modified thermosets: prediction of the particle size distribution of dispersed domains. Polymer, 1987. 28(7): p. 1156-1164.
28. Kiefer, J., Hilborn, J., and Hedrick, J., Chemically induced phase separation: a new technique for the synthesis of macroporous epoxy networks. Polymer, 1996. 37(25): p. 5715-5725.
29. 蔡榮贊, 蒸氣誘導式相分離過程之蕾絲結構生成與合併探討. 臺灣大學化學工程學研究所學位論文, 2010: p. 1-207.
30. Kahrs, C., Gühlstorf, T., and Schwellenbach, J., Influences of different preparation variables on polymeric membrane formation via nonsolvent induced phase separation. Journal of Applied Polymer Science, 2020. 137(28): p. 48852.
31. Xu, Z., et al., Solvent polarity effect on chain conformation, film morphology, and optical properties of a water-soluble conjugated polymer. The Journal of Physical Chemistry B, 2010. 114(36): p. 11746-11752.
32. Mousavi, S.M. and Zadhoush, A., Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. Journal of Membrane Science, 2017. 532: p. 47-57.
33. Koenig, J.L. and Bobiak, J.P., Raman and infrared imaging of dynamic polymer systems. Macromolecular Materials and Engineering, 2007. 292(7): p. 801-816.
34. Kazarian, S.G. and van der Weerd, J., Simultaneous FTIR spectroscopic imaging and visible photography to monitor tablet dissolution and drug release. Pharmaceutical research, 2008. 25(4): p. 853-860.
35. Rafferty, D.W. and Koenig, J.L., FTIR imaging for the characterization of controlled-release drug delivery applications. Journal of controlled release, 2002. 83(1): p. 29-39.
36. Miller-Chou, B.A. and Koenig, J.L., Dissolution of symmetric diblock copolymers with neutral solvents, a selective solvent, a nonsolvent, and mixtures of a solvent and nonsolvent monitored by FT-IR imaging. Macromolecules, 2003. 36(13): p. 4851-4861.
37. Ribar, T., Bhargava, R., and Koenig, J.L., FT-IR imaging of polymer dissolution by solvent mixtures. 1. Solvents. Macromolecules, 2000. 33(23): p. 8842-8849.
38. Miller-Chou, B.A. and Koenig, J.L., FT-IR imaging of polymer dissolution by solvent mixtures. 3. Entangled polymer chains with solvents. Macromolecules, 2002. 35(2): p. 440-444.
39. 林郁評, 磺酸化聚碸高分子薄膜成膜機制探之探討. 台灣大學化學工程學系, 碩士論文, 2014.
40. Wei, Y.-M., et al., Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process. Desalination, 2006. 192(1-3): p. 91-104.
41. Shahmirzadi, M.A.A., et al., Tailoring PES nanofiltration membranes through systematic investigations of prominent design, fabrication and operational parameters. RSC Advances, 2015. 5(61): p. 49080-49097.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76890-
dc.description.abstract本研究藉由傅立葉紅外光顯微鏡(FTIR Microscope)分析高分子溶液在成膜過程中的組成路徑,再將組成對應到三成分熱力學相圖中,得到溶液組成於不同深度位置滯留於介穩區的時間(tm),tm與質傳速率有關,質傳速率越快,tm越小。對應到其不同位置下的膜結構變化,可以定義出溶液於介穩區的臨界滯留時間(tmc),tmc與系統的穩定度有關,當tmc越大,表示系統的穩定性越高。可以藉由tmc分辨系統的相分離機制。當tm大於tmc時,系統會以成核成長(Nucleation and growth)的機制相分離成蜂窩狀結構。反之,當tm小於tmc時,系統則會以Spinodal decomposition機制行相分離,形成孔洞連通的雙連續結構。
本研究使用分子量為25000及75000的聚醚碸(Polyethersulfone, PES)高分子,溶於2-吡咯酮(2-pyrrolidone , 2P)及N,N-二甲基乙醯胺(N,N-Dimethyl Acetamide, DMAc)兩種溶劑中,觀察不同系統的膜結構後可以發現,2P系統較容易得到雙連續的結構。然而,DMAc系統則皆會成核成長相分離形成蜂窩狀的結構。因此本研究同樣利用FTIR Microscope分析不同系統中高分子溶液的組成路徑變化,並利用tm及tmc分析不同溶劑系統的相分離機制,同時也會探討改變濃度及改變分子量對於膜結構的影響。從先前的研究中得知,tmc和高分子溶液的黏度有關,當黏度提高時,同時提升了系統的穩定度,因此tmc也會隨著增加,此時系統形成雙連續結構的機會應該較大。然而,當提升高分子溶液的黏度時,同時也會降低質傳速率,使tm變大,最終形成蜂窩狀的結構。本研究將會更進一步討論,質傳速率及系統穩定度兩者對於最終膜結構的影響程度。除此之外,由於聚碸(Polysulfone, PSf)高分子之分子結構與PES十分相似,本研究也探討了使用不同高分子系統之薄膜結構變化,而結果發現由於PSf系統的黏度比PES系統高,質傳阻力也較大,導致質傳速率較慢,較容易形成蜂窩狀的結構。
zh_TW
dc.description.abstractAccording to the previous research, the composition path of polymer solution during its membrane formation process can be analyzed by FTIR microscope. If we further corresponds each composition to the ternary phase diagram, we can obtain its residence time in the metastable region (tm) at different depth. tm is related to the mass transfer rate, when the mass transfer rate gets higher, tm will get smaller. Corresponding tm to the transition of the membrane structure along different position, the critical residence time in meta-stable region (tmc) can be defined. tmc is related to the stability of the system, the higher tmc indicates the higher system stability. tmc provides a criterion to determine which phase separation mechanism will happen. When tm is larger than tmc, the system will undergo nucleation and growth and phase separate into cellular structure. On the other hand, when tm is smaller than tmc, the system will phase separate via the spinodal decomposition and form the pore-connective bi-continuous structure.
In this study, Polyethersulfone (PES) polymer with molecular weight of 25000 and 75000 were solved in 2-pyrrolidone (2P) and N,N-dimethylacetamide (N,N-Dimethyl Acetamide, DMAc). It is observed that 2P system is easier to form bi-continuous structure while DMAc system will all form the cellular structure by nucleation and growth. Therefore, this study also used FTIR microscope to analyze the change of composition path for polymer solution in different systems, and the phase separation mechanism of different solvent systems can then be analyzed by tm and tmc. Meanwhile, we will also discuss the effect of concentration and polymer molecular weight on the membrane structure. From the previous research, we can know that tmc is related to the viscosity of polymer solution. When the viscosity increases, the stability of the system is also improved and thus results in the higher tmc, which will have larger chance to form bi-continuous structure. However, the mass transfer rate will also decrease when enhancing the solution viscosity, which will lead to the larger tm and thus the cellular structure. As a result, this study will have further discussion about the competitive effect of mass transfer rate and system stability on the membrane structure. In addition, because the molecular structure of polysulfone (PSf) polymer is similar to that of PES, this study will also discuss between the membrane structure of different polymer systems.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:39:34Z (GMT). No. of bitstreams: 1
U0001-1108202018004700.pdf: 6879773 bytes, checksum: 9421126634b61d91b3d23103a413449c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章、 緒論 1
1-1 薄膜簡介 1
1-2 薄膜製備程序 2
1-2-1 熱誘導式相分離法(Thermal-Induced phase separation, TIPS) 3
1-2-2 乾式法(Dry method) 4
1-2-3 溼式法(Wet method) 4
1-2-4 蒸氣誘導式相分離法(Vapor-Induced phase separation, VIPS) 4
1-3 非溶劑誘導式相分離法之成膜步驟 5
1-4 非溶劑誘導式相分離法之成膜理論 9
1-4-1 熱力學 9
1-4-1-1 單相區(Homogenous region) 10
1-4-1-2 液-液相分離(Liquid-Liquid phase separation) 10
1-4-1-3 膠化(Gelation) 10
1-4-1-4 三成分熱力學相圖 11
1-4-2 質傳動力學 12
1-5 聚醚碸 Poly(ethersulfone)性質簡介 15
1-6 文獻回顧 16
1-7 研究動機與目的 27
第二章、 實驗材料與研究方法 28
2-1 實驗藥品 28
2-2 實驗儀器 28
2-3 實驗方法 29
2-3-1 高分子溶液配製 29
2-3-2 溼式法成膜過程 29
2-3-3 薄膜結構分析 30
2-3-4 霧點量測(Clouding point measurement) 31
2-3-5 傅立葉轉換紅外光顯微鏡分析(FTIR-microscope) 32
2-3-6 三成分相圖建立(Construction of ternary phase diagram) 36
2-3-7 高分子溶液流變性質量測 36
第三章、 結果與討論 37
3-1 聚醚碸薄膜結構 37
3-2 FTIR-microscope分析 50
3-2-1 PES/2P/Water和PES/DMAc/Water三成分熱力學相圖 50
3-2-2 成膜路徑分析 54
3-2-3 質傳交換速率與系統穩定度對於薄膜結構之競爭關係 68
第四章、 結論 73
附錄、PES/2P/water及PES/DMAc/water 三成分系統FTIR-microscope檢量線 75
參考文獻 78
dc.language.isozh-TW
dc.subject質傳速率zh_TW
dc.subject傅立葉轉換紅外光顯微鏡zh_TW
dc.subject聚醚碸zh_TW
dc.subject相分離機制zh_TW
dc.subjectphase-separated mechanismen
dc.subjectPolyethersulfoneen
dc.subjectmass transfer rateen
dc.subjectFTIR Microscopeen
dc.title利用傅立葉轉換紅外光顯微鏡探討聚醚碸薄膜之成膜機制
zh_TW
dc.titleStudy on the PES Membrane Formation Mechanism by FTIR Microscope
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴君義(Juin-Yih Lai),李魁然(Kueir-Rarn Lee),張雍(Yung Chang)
dc.subject.keyword傅立葉轉換紅外光顯微鏡,聚醚碸,相分離機制,質傳速率,zh_TW
dc.subject.keywordFTIR Microscope,Polyethersulfone,phase-separated mechanism,mass transfer rate,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202002996
dc.rights.note未授權
dc.date.accepted2020-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1108202018004700.pdf
  未授權公開取用
6.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved