Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証(Wen-Jeng Hsueh)
dc.contributor.authorYu-Chuan Linen
dc.contributor.author林育全zh_TW
dc.date.accessioned2021-07-10T21:39:17Z-
dc.date.available2021-07-10T21:39:17Z-
dc.date.copyright2020-09-24
dc.date.issued2020
dc.date.submitted2020-08-16
dc.identifier.citation[1] W. Gao, M. Xiao, B. Chen, E. Y. B. Pun, C. T. Chan, W. Y. Tam, “Controlling interface states in 1D photonic crystals by tuning bulk geometric phases”, Opt. Lett. 42, 1500-1503 (2017).
[2] Y. C. Lin, C. H. Tsou, W. J. Hsueh, “Ultra-slow light in one-dimensional Cantor photonic crystals”, Opt. Lett. 43, 4120-4123 (2018).
[3] J. Hu, W. Liu, W. Xie, W. Zhang, E. Yao, Y. Zhang, Q. Zhan, “Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system”, Opt. Lett. 44, 5642-5645 (2019).
[4] L. Feng, K. Huang, J. Chen, J. Luo, H. Huang, S. Huo, “Magnetically tunable topological interface states for Lamb waves in one-dimensional magnetoelastic phononic crystal slabs”, AIP Adv. 9, 115201 (2019).
[5] K. Makles, T. Antoni, A. G. Kuhn, S. Deléglise, T. Briant, P. F. Cohadon, R. Braive, G. Beaudoin, L. Pinard, C. Michel, V. Dolique, R. Flaminio, G. Cagnoli, I. R. Philip, A. Heidmann, “2D photonic-crystal optomechanical nanoresonator”, Opt. Lett. 40, 174-177 (2015).
[6] S. Murakami, “Two-dimensional topological insulators and their edge states”, J. Phys. 302, 012019 (2011).
[7] Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature 425, 944–947 (2003).
[8] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, S. Noda, “Control of light emission by 3D photonic crystals”, Science 305, 227-229 (2004).
[9] L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions”, Nat. Phys. 12, 337-340 (2016).
[10] J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P. Chen, T. L. Hughes, M. C. Rechtsman, “Topological protection of photonic mid-gap defect modes”, Nat. Photonics 12, 408–415 (2018).
[11] S. Ma, B. Xiao, Y. Yu, K. Lai, G. Shvets, S. M. Anlage, “Topologically protected photonic modes in composite quantum Hall/quantum spin Hall waveguides”, Phys. Rev. B 100, 085118 (2019).
[12] M. Saba, S. Wong, M. Elman, S. S. Oh, O. Hess, “Nature of topological protection in photonic spin and valley Hall insulators”, Phys. Rev. B 101, 054307 (2020).
[13] L. Rayleigh, “On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure”, Philo. Maga. J. science 24, 145-159 (1887).
[14] V. P. Bykov, “Spontaneous emission in a periodic structure”, J. Exp. Theor. Phys. 35, 269-273 (1972).
[15] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett. 58, 2059-2062 (1978).
[16] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486-2489 (1978).
[17] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett. 65, 3152-3155 (1990).
[18] J. B. Pendry, A. M. Kinnon, “Calculation of photon dispersion relations”, Phys. Rev. Lett. 69, 2772-2775 (1992).
[19] M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals”, Nat. mater. 13, 211-219 (2004).
[20] T. Baba, “Slow light in photonic crystals”, Nat. photonics 2, 465-473 (2008).
[21] Y. P.Yang, K.C.Lin, I.C.Yang, K.Y. Lee, W. Y. Lee, Y. T. Tsai, “All-optical photonic-crystal encoder capable of operating at multiple wavelengths”, Optik 142, 354-359 (2017).
[22] L. Lu, J. D. Joannopoulos, M. Soljacic, “Topological photonics”, Nat. Photonics 8, 821-829 (2014).
[23] X. Shi, C. Xue, H. Jiang, H. Chen, “Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals”, Opt. Express 24, 18580-18591 (2016).
[24] E. Lustig, Y. Sharabi, M. Segev, “Topological aspects of photonic time crystals”, Optica 5, 1390-1395 (2018).
[25] B. Y. Xie, H. F. Wang, X. Y. Zhu, M. H. Lu, Z. D. Wang, Y. F. Chen, “Photonics meets topology”, Opt. Express 26, 24531 (2018).
[26] M. S. Rider, S. J. Palmer, S. R. Pocock, X. Xiao, P. A. Huidobro, V. Giannini, “A perspective on topological nanophotonics: current status and future challenges”, J. Appl. Phys. 125, 120901 (2019).
[27] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, S. Iwamoto, “Active topological photonics”, Nanophotonics 9, 547-567 (2020).
[28] H. Wang, S. K. Gupta, B. Xie, M. Lu, “Topological photonic crystals: a review”, Front. Optoelectron. 13, 50-72 (2020).
[29] S. Raghu, F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals”, Phys. Rev. A 78, 033834 (2008).
[30] F. D. M. Haldane, S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry”, Phys. Rev. Lett. 100, 013904 (2008).
[31] S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, E. Waks, “A topological quantum optics interface”, Science 359, 666-668 (2018).
[32] Z. Wang, Y. Chong, J. D. Joannopoulos, Marin Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states”, Nature 461, 772–775 (2009).
[33] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor, “Robust optical delay lines with topological protection”, Nat. Phys. 7, 907–912 (2011).
[34] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor, “Imaging topological edge states in silicon photonics”, Nat. Photonics 7, 1001–1005 (2013).
[35] L. H. Wu, X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material”, Phys. Rev. Lett. 114, 223901 (2015).
[36] L. Lu, J. D. Joannopoulos, Marin Soljacic, “Topological states in photonic systems”, Nat. Phys. 7, 907–912 (2011).
[37] M. I. Shalaev, W. Walasik, N. M. Litchinitser, “Optically tunable topological photonic crystal’’, Optica 6, 839 (2019).
[38] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, S. Iwamoto, “Photonic crystal nanocavity based on a topological corner state”, Optica 6, 786-789 (2019).
[39] F. Alpeggiani and L. Kuipers, “Topological edge states in bichromatic photonic crystals”, Optica 6, 96-103 (2019).
[40] J. Guo, H. Wang, X. Dai, Y. Xiang, D. Tang, “Enhanced nonlinear optical responses of graphene in multi-frequency topological edge modes”, Opt. Express 27, 32746-32763 (2019).
[41] H. Gao, G. G. Wei, C. Miao, P. Dong, Y. S. Zhou, “Ultra-narrow unidirectional transmission filter assisted by topological interface state in one-dimensional photonic crystal heterostructure”, J. Optics 48, 393–399 (2019).
[42] W. Wang, Y. Jin, W. Wang, B. Bonello, B. D. Rouhani, R. Fleury, “Robust Fano resonance in a topological mechanical beam”, Phys. Rev. B 101, 024101 (2020).
[43] D. K. Cheng, Fundamentals of Engineering Electromagnetics, Wesley, USA (1993).
[44] N. N. Rao, Elements of Engineering Electromagnetics, Pearson Prentice Hall, Upper Saddle River, N.J. (2004).
[45] A. Yariv, P. Yeh, Optical Waves in Crystals : Propagation and Control of Laser Radiation, Wiley, New York (1984).
[46] A. Yariv, P. Yeh, Photonics : Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
[47] P. Yeh, Optical Waves in Layered Media, Wiley, Hoboken, N.J. (2005).
[48] Z. Tianrong, S. Xi, D. Yunyun, L. Xiaohan, Z. Jian, “Transfer matrix method for optics in graphene layers”, J. Phys. Condens. Matter 25, 215301 (2013).
[49] Xiao, M., Zhang, Z. Q., Chan, C. T. “Surface impedance and bulk band geometric phases in one-dimensional systems”, Phys. Rev. X 4, 021017 (2014).
[50] W. S. Gao, M. Xiao, C. T. Chan, W. Y. Tam, “Determination of Zak phase by reflection phase in 1D photonic crystals”, Opt. Lett. 40, 5259-5262 (2015).
[51] K. H. Choi, C. W.Ling, K. F. Tsang, K. H. Fung, “Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals”, Opt. Lett. 41, 1644-1647 (2016).
[52] W. Zhu, Y. Ding, J. Ren, Y. Sun, Y. Li, H. Jiang, H. Chen, “Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials”, Phys. Rev. B 97, 195307 (2018).
[53] Q. Wang, M. Xiao, H. Liu, S. Zhu, C.T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of metasurface / photonic crystal”, Phys. Rev. B 93, 041415 (2016).
[54] Y. H. Cheng, W. J. Hsueh, “High-Q filter with complete transmission by quasi-periodic dielectric multilayers”, Opt. Lett. 38, 3631-3634 (2013).
[55] K. K. Mehta, J. S. Orcutt, O. T. Zahav, Z. Sternberg, R. Bafrali, R. Meade, R. J. Ram, “High-Q CMOS integrated photonic crystal microcavity devices”, Sci. Rep. 4, 4077 (2014).
[56] R. Merlin, S. M. Young, “Photonic crystals as topological high-Q resonators”, Opt. Express 22, 18579-18587 (2014).
[57] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device”, Science 290, 2282-2285 (2000).
[58] P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, D. Peyrade, “Ultra-high Q/V Fabry-Perot microcavity on SOI substrate”, Opt. Express 15, 16090-16096 (2007).
[59] X. Wu, Y. Wang, Q. Chen, Y. C. Chen, X. Li, L. Tong, X. Fan, “High-Q, low-mode-volume microsphere-integrated Fabry-Perot cavity for opto-fluidic lasing applications”, Photonics Res. 7, 50-60 (2019).
[60] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, “Ultra high-Q photonic crystal nanocavities realized by the local width modulation of a line defect”, App. Phys. Lett. 88, 041112 (2006).
[61] L. Wang, W. Cai, M. Bie, X. Zhang, J. Xu, “Zak phase and topological plasmonic Tamm states in one-dimensional photonic crystals”, Opt. Express 26, 28963-28975 (2018).
[62] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y. R. Shen, “Gate-variable optical transitions in graphene”, Science 320, 206-209 (2008).
[63] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics”, Nat. Photonics 4, 611 (2010).
[64] P. Tassin, T. Koschny, C. M. Soukoulis, “Graphene for terahertz applications”, Science 341, 620-621 (2013).
[65] Y. H. Cheng, C. H. Chen, K. Y. Yu, W. J. Hsueh, “Extraordinary light absorptance in graphene superlattices”, Opt. Express 23, 28755, (2015).
[66] X. He, Z. Y. Zhao, W. Shi, “Graphene-supported tunable near-IR metamaterials”, Opt. Lett. 40, 178, (2015).
[67] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A.K.Geim, “Fine structure constant defines visual transparency of graphene”, Science 320, 1308 (2008).
[68] X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance”, Opt. Express 25, 27028-27036 (2017).
[69] Y. H. Cheng, C. H. Chang, C. H. Chen, W. J. Hsueh, “Bragg-like interference in one-dimensional double-period quasicrystals”, Phys. Rev. A 90, 023830, (2014).
[70] V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljacic, F. Schaffler, I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation”, Opt. Express 22, 1895-1906 (2014).
[71] M. A. Kats, F. Capasso, “Optical absorbers based on strong interference in ultra-thin films”, Laser Photonics Rev. 10, 735–749 (2016).
[72] G. Perrakis, O. Tsilipakos, G. Kenanakis, M. Kafesaki, C. M. Soukoulis, E. N. Economou, “Perfect optical absorption with nanostructured metal films: design and experimental demonstration”, Opt. Express 27, 6842-6850 (2019).
[73] Z. Chen, P. Han, C. W. Leung, Y. Wang, M. Hu, Y. Chen, “Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals”, Opt. Express 20, 21618-21626 (2012).
[74] X. Lu, R. Wan, T. Zhang, “Metal - dielectric - metal based narrow band absorber for sensing applications”, Opt. Express 23, 29842-29847 (2015).
[75] R. G. Bikbaev, S. Y. Vetrov, I. V. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a gyroid layer”, J. Opt. Soc. Am. B 34, 2198 (2017).
[76] L. Niu, Y. Xiang, W. Cai, X. Zhao, N. Zhang, J. Qi, X. Zhang, J. Xu, “Plasmonic Tamm states in insulator - metal - insulator waveguides”, J. Opt. Soc. Am. B 35, 1368 (2018).
[77] X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene”, Photonics Res. 5, 536-542 (2017).
[78] Y. Liu, Y. Dai, Q. Feng, Y. Shan, L. Du, Y. Xia, G. Lu, F. Liu, G. Du, C. Tian, S. Wu, L. Shi, J. Zi, “Enhanced light-matter interactions in grapheme-covered dielectric magnetic mirror”, Opt. Express 25, 30754-30763 (2017).
[79] H. Lu, X. Gan, B. Jia, D. Mao, J. Zhao, “Tunable high-efficiency light absorption of monolayer grapheme via Tamm plasmon polaritons”, Opt. Lett. 41, 4743-4746 (2016).
[80] K. Zhou, L. Lu, J. Song, B. Li, Q. Cheng, “Ultra-narrow-band and hightly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure”, J. Appl. Phys. 124, 123102 (2018).
[81] Y. C. Lin, S. H. Chou, W. J. Hsueh, “Robust high-Q filter with complete transmission by conjugated topological photonic crystals”, Sci. Rep. 10, 7040 (2020).
[82] T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum”, Phys. Rev. B 78, 085432 (2008).
[83] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, “Measurement of the optical conductivity of graphene”, Phys. Rev. Lett. 101, 196405 (2008).
[84] L. S. Lima, “Superconductivity in the graphene monolayer calculated using the Kubo formulalism”, Physica C Supercond. 546, 71-75 (2018).
[85] J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, , S. Rogge, F. Karouta, R. W. van der Heijden, , H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs”, Appl. Phys. Lett. 93, 051117-1 (2008).
[86] Q. Wang, M. Xiao, H. Liu, S. Zhu, C. T. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface / photonic crystal”, Phys. Rev. B 93, 041415 (2016).
[87] H. Zhao, P. Miao, M. H. Teimourpour, S. Malzard, R. Ei-Ganainy, H. Schomerus, L Feng, “Topological hybrid silicon microlasers”, Nat. Commun. 9, 981 (2018).
[88] Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, Y. Arakawa, “Topological photonic crystals nanocavity laser”, Commun. Phys. 1, 86 (2018).
[89] Z. Tian, C. Shen, J. Li, E. Reit, H. Bachman, J. E. S. Socolar, S. A. Cummer, T. J. Huang, “Dispersion tuning and route reconfiguration of acoustic waves in valley topological photonic crystals”, Nat. Commun. 11, 762 (2020).
[90] S. Afzal, V. Van, “Topological phases and the bulk-edge correspondence in 2D photonic microring resonator lattices”, Opt. Express 26, 14567-14577 (2018).
[91] X. Wu, Y. Wang, Q. Chen, Y. C. Chen, X. Li, L. Tong, X. Fan, “High-Q, low-mode-volume microsphere-integrated Fabry-Perot cavity for opto fluidic lasing applications”, Photon. Res. 7, 50-60 (2019).
[92] S Bizw, “Ultrastable silicon Pabry-Perot cavity”, Nat. Photonics 6, 638-639 (2012).
[93] S. Kim, J. E. Froch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K.. Watanabe, T. Taniguchi, M. Toth, I. Adaronovich, “Photonic crystals cavities from hexagonal boron nitride”, Nat. Commun. 9, 2623 (2018).
[94] A. Li, W. Bogaerts, “Backcoupling manipulation in silicon ring resonators”, Photon. Res. 6, 620-629 (2018).
[95] I. Krasnokutska, J. L. J. Tambasco, A. Peruzzo, “Tunable large free spectral range microring resonators in lithium niobate on insulator”, Sec. Rep. 9, 11086 (2019).
[96] J. K. S. Poon, L. Zhu, G. A. D. DeRose, A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides”, Opt. Lett. 31, 456–458 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76879-
dc.description.abstract本研究主要探討一維共軛拓撲光子晶體及微環共振器之光學特性,提出共軛拓撲界面態的新物理概念,並研究其界面反射相位、Zak相位及光子能帶理論。研究結果發現,光在共軛拓撲光子晶體結構中傳輸時,與傳統拓撲光子晶體不同,其具有更優異的拓撲保護特性及強烈的界面共振現象,不受製程缺陷及雜質等影響,可達到穩健地高品質及完美光傳輸性能,即使品質因子隨著光子晶體的週期層數增加,這些共振峰值仍然是完全穿透,此優異的光學特性可應用於先進光學濾波器、感測器、雷射共振光源及光通訊元件。此外,本研究還討論將單層石墨烯嵌入在非對稱共軛拓撲光子晶體的界面中,發現由於共軛拓撲界面態的激發,會產生強烈的石墨烯光吸收現象,此吸收光譜強烈地依賴石墨烯的費米能階和光子晶體的週期數,並透過調整石墨烯的費米能階,可迅速地控制光的吸收、反射及穿透等光學特性,此效應的發現可大幅提升光學感測器、光吸收器及光開關切換之效能。最後,本文還理論驗證微環共振器亦存在共軛拓撲界面態,並在環徑填充因子互為共軛條件況下,具有超高品質因子及完美穿透之光學特性,與層狀拓譜光子晶體相較其光學性質更優異,這些優良的光學特性可大幅改善傳統光子晶體中,由於高質因子增加所導致光穿透降低的問題。zh_TW
dc.description.abstractOptical properties of conjugated topological photonic crystals (CTPC) and microring resonators are the subjects for study in this dissertation. A novel concept of conjugated topological interface states (CTIS) is first proposed. The effect of its topological phenomenon on high quality factor (High-Q) and absorption enhancement is also investigated. The interface reflection phase, Zak phase and photonic band-gap are developed to verify the existence of CTIS. The study results show that the robust high- quality factor with perfect transmission through one-dimensional CTPC is obtained. It is also found that even though the quality factor of resonances increases as the periodic number of multilayers increases, these resonances are still perfect transmission. Moreover, a monolayer graphene embedded in the interface of asymmetric conjugated topological photonic crystals (ACTPC) is studied. A strong absorption phenomenon occurs by the excitation of CTIS. It is found that the absorption spectra are intensively dependent on the Fermi energy of graphene and the periodic number of the ATPC. Therefore, the absorption can be rapidly switched in a slight variation of chemical potential, which is modulated by the applied gate voltage on graphene. The result shows great promise for applications in advanced optical filters, sensors and absorbers. Finally, optical properties of topological microring resonators are also discussed. The existence of topological interface states in the microring resonators is first theoretically demonstrated. It is found that an ultra-high-Q of more than 1012 with complete transmission is obtained by microring resonators from the excitation of CTIS. Therefore, the problem of transmission decreases resulting from high quality factor increases in the traditional photonic crystals is significantly improved by this approach. These extraordinary optical properties of CTIS contribute to the understanding of topological microring resonators and open up potential applications in topological devices.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:39:17Z (GMT). No. of bitstreams: 1
U0001-1208202011381600.pdf: 3668152 bytes, checksum: a35ead5cdcb807dc8f5a8b6f6d7d7a7e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
Chinese Abstract ...............................................................i
Abstract........................................................................ii
Contents........................................................................iv
List of Figure..................................................................vii
List of Symbols.................................................................xv
List of Abbreviations...........................................................xvii
Chapter 1 Introduction
1.1 Background and study goals..................................................1
1.2 Literature review...........................................................4
1.3 Chapter outlines............................................................8
Chapter 2 Theory of Electromagnetic Waves in 1 D Photonic Crystals
2.1 Maxwell’s equations.........................................................9
2.2 Wave equation and boundary conditions.......................................10
2.3 Bloch’s theory..............................................................12
2.4 Light in 1D photonic crystals...............................................13
Chapter 3 Theory of Topological Interface State in 1D Photonic Crystals
3.1 Basic concept and theory of topological interface state.....................18
3.2 Reflection phase of topological interface state.............................27
3.3 Zak phase of topological interface state....................................30
Chapter 4 Optical Properties of Topological Photonic Crystals (TPC)
4.1 Basic concept and theory of TPC.............................................31
4.2 Quality factor of TPC.......................................................42
4.3 Transmission of TPC.........................................................47
4.4 Electric field distribution of TPC..........................................52
Chapter 5 Optical Properties of Graphene Embedded in Asymmetric Topological Photonic Crystals (ATPC)
5.1 Basic concept and theory of ATPC............................................56
5.2 Absorption of monolayer graphene of ATPC....................................61
5.3 Absorption switching of monolayer graphene of ATPC..........................71
5.4 Electric field distribution of ATPC.........................................75
Chapter 6 Optical Properties of Topological Microring Resonators
6.1 Basic concept and theory of topological microring resonators................79
6.2 Quality factor of topological microring resonators..........................86
6.3 Transmission of topological microring resonators............................93
Chapter 7 Conclusions
7.1 Summary.....................................................................100
7.2 Suggestion for future research..............................................102
References......................................................................103
dc.language.isoen
dc.subject共振器zh_TW
dc.subject微環共振器zh_TW
dc.subject光子晶體zh_TW
dc.subject拓撲光子晶體zh_TW
dc.subject光波導zh_TW
dc.subject拓撲界面態zh_TW
dc.subjectResonatorsen
dc.subjectTopological photonic crystalsen
dc.subjectTopological interface statesen
dc.subjectMicroring resonatorsen
dc.subjectPhotonic crystalsen
dc.subjectWaveguideen
dc.title拓撲光子晶體及微環共振器之光學特性zh_TW
dc.titleOptical Properties of Topological Photonic Crystals and Microring Resonatorsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭勝文(Sheng-Wen Cheng),黃君偉(Jiun-Woei Huang),黃智賢(Jih-Shang Hwang),黃啟炎(Chi-Yen Huang),曹家維(Chia-Wei Tsao)
dc.subject.keyword拓撲光子晶體,拓撲界面態,微環共振器,光子晶體,光波導,共振器,zh_TW
dc.subject.keywordTopological photonic crystals,Topological interface states,Microring resonators,Photonic crystals,Waveguide,Resonators,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202003065
dc.rights.note未授權
dc.date.accepted2020-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1208202011381600.pdf
  未授權公開取用
3.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved