Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉逸軒(I-Hsuan Liu)
dc.contributor.authorYen-Hua Leeen
dc.contributor.author李妍樺zh_TW
dc.date.accessioned2021-07-10T21:39:12Z-
dc.date.available2021-07-10T21:39:12Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citationAmara, A., Lorthioir, O., Valenzuela, A., Magerus, A., Thelen, M., Montes, M., Virelizier, J.L., Delepierre, M., Baleux, F., Lortat-Jacob, H., et al. (1999). Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine. J Biol Chem 274, 23916-23925.
Ando, K., Shibata, E., Hans, S., Brand, M., and Kawakami, A. (2017). Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance. Dev Cell 43, 643-650 e643.
Ashton, B.A., Allen, T.D., Howlett, C.R., Eaglesom, C.C., Hattori, A., and Owen, M. (1980). Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res, 294-307.
Bab, I., Ashton, B.A., Gazit, D., Marx, G., Williamson, M.C., and Owen, M.E. (1986). Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci 84, 139-151.
Baker, C.L., and Pera, M.F. (2018). Capturing Totipotent Stem Cells. Cell Stem Cell 22, 25-34.
Bakkers, J., Kramer, C., Pothof, J., Quaedvlieg, N.E., Spaink, H.P., and Hammerschmidt, M. (2004). Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development 131, 525-537.
Bardin, N., Anfosso, F., Masse, J.M., Cramer, E., Sabatier, F., Le Bivic, A., Sampol, J., and Dignat-George, F. (2001). Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood 98, 3677-3684.
Barritt, D.S., Pearn, M.T., Zisch, A.H., Lee, S.S., Javier, R.T., Pasquale, E.B., and Stallcup, W.B. (2000). The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. Journal of cellular biochemistry 79, 213-224.
Bayliss, P.E., Bellavance, K.L., Whitehead, G.G., Abrams, J.M., Aegerter, S., Robbins, H.S., Cowan, D.B., Keating, M.T., O'Reilly, T., Wood, J.M., et al. (2006). Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2, 265-273.
Becker, A.J., Mc, C.E., and Till, J.E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452-454.
Bhatt, D.H., Otto, S.J., Depoister, B., and Fetcho, J.R. (2004). Cyclic AMP-induced repair of zebrafish spinal circuits. Science 305, 254-258.
Billing, A.M., Ben Hamidane, H., Dib, S.S., Cotton, R.J., Bhagwat, A.M., Kumar, P., Hayat, S., Yousri, N.A., Goswami, N., Suhre, K., et al. (2016). Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Sci Rep 6, 21507.
Birbrair, A., Zhang, T., Wang, Z.M., Messi, M.L., Enikolopov, G.N., Mintz, A., and Delbono, O. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem cells and development 22, 2298-2314.
Blocki, A., Wang, Y., Koch, M., Peh, P., Beyer, S., Law, P., Hui, J., and Raghunath, M. (2013). Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem cells and development 22, 2347-2355.
Bouacida, A., Rosset, P., Trichet, V., Guilloton, F., Espagnolle, N., Cordonier, T., Heymann, D., Layrolle, P., Sensebe, L., and Deschaseaux, F. (2012). Pericyte-Like Progenitors Show High Immaturity and Engraftment Potential as Compared with Mesenchymal Stem Cells. Plos One 7.
Brown, A.J., Alicknavitch, M., D'Souza, S.S., Daikoku, T., Kirn-Safran, C.B., Marchetti, D., Carson, D.D., and Farach-Carson, M.C. (2008). Heparanase expression and activity influences chondrogenic and osteogenic processes during endochondral bone formation. Bone 43, 689-699.
Buczek-Thomas, J.A., Hsia, E., Rich, C.B., Foster, J.A., and Nugent, M.A. (2008). Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105, 108-120.
Buhring, H.J., Battula, V.L., Treml, S., Schewe, B., Kanz, L., and Vogel, W. (2007). Novel markers for the prospective isolation of human MSC. Annals of the New York Academy of Sciences 1106, 262-271.
Burg, M.A., Tillet, E., Timpl, R., and Stallcup, W.B. (1996). Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem 271, 26110-26116.
Cai, C.L., Liang, X., Shi, Y., Chu, P.H., Pfaff, S.L., Chen, J., and Evans, S. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5, 877-889.
Campagnoli, C., Roberts, I.A., Kumar, S., Bennett, P.R., Bellantuono, I., and Fisk, N.M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 2396-2402.
Campoli, M., Ferrone, S., and Wang, X. (2010). Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv Cancer Res 109, 73-121.
Caplan, A.I. (1991). Mesenchymal stem cells. J Orthop Res 9, 641-650.
Chang, N.Y., Chan, Y.J., Ding, S.T., Lee, Y.H., HuangFu, W.C., and Liu, I.H. (2016). Sterol O-acyltransferase 2 contributes to the yolk cholesterol trafficking during zebrafish embryogenesis. PLoS One 11, e0167644.
Chang, Y.C., Ding, S.T., Lee, Y.H., Wang, Y.C., Huang, M.F., and Liu, I.H. (2013). Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis. Amino Acids 44, 615-629.
Changyaleket, B., Chong, Z.Z., Dull, R.O., Nanegrungsunk, D., and Xu, H. (2017). Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J Neuroinflammation 14, 137.
Chatterjee, N., Stegmuller, J., Schatzle, P., Karram, K., Koroll, M., Werner, H.B., Nave, K.A., and Trotter, J. (2008). Interaction of syntenin-1 and the NG2 proteoglycan in migratory oligodendrocyte precursor cells. J Biol Chem 283, 8310-8317.
Cheng, C.C., Lee, Y.H., Lin, S.P., Huangfu, W.C., and Liu, I.H. (2014). Cell-autonomous heparanase modulates self-renewal and migration in bone marrow-derived mesenchymal stem cells. J Biomed Sci 21, 21.
Corselli, M., Chen, C.W., Crisan, M., Lazzari, L., and Peault, B. (2010). Perivascular ancestors of adult multipotent stem cells. Arteriosclerosis, thrombosis, and vascular biology 30, 1104-1109.
Costa, C., Gimenez-Capitan, A., Karachaliou, N., and Rosell, R. (2013). Comprehensive molecular screening: from the RT-PCR to the RNA-seq. Transl Lung Cancer Res 2, 87-91.
Courtney, S.M., Hay, P.A., Buck, R.T., Colville, C.S., Phillips, D.J., Scopes, D.I., Pollard, F.C., Page, M.J., Bennett, J.M., Hircock, M.L., et al. (2005). Furanyl-1,3-thiazol-2-yl and benzoxazol-5-yl acetic acid derivatives: novel classes of heparanase inhibitor. Bioorg Med Chem Lett 15, 2295-2299.
Covas, D.T., Panepucci, R.A., Fontes, A.M., Silva, W.A., Jr., Orellana, M.D., Freitas, M.C., Neder, L., Santos, A.R., Peres, L.C., Jamur, M.C., et al. (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36, 642-654.
Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T.S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301-313.
Davidoff, M.S., Middendorff, R., Enikolopov, G., Riethmacher, D., Holstein, A.F., and Muller, D. (2004). Progenitor cells of the testosterone-producing Leydig cells revealed. The Journal of cell biology 167, 935-944.
Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., Innocenzi, A., Galvez, B.G., Messina, G., Morosetti, R., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature cell biology 9, 255-267.
Diazflores, L., Gutierrez, R., Lopezalonso, A., Gonzalez, R., and Varela, H. (1992). Pericytes as a Supplementary Source of Osteoblasts in Periosteal Osteogenesis. Clin Orthop Relat R, 280-286.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317.
Eddy, A.C., Chapman, H., and George, E.M. (2019). Heparanase regulation of sFLT-1 release in trophoblasts in vitro. Placenta 85, 63-68.
Esko, J.D., and Selleck, S.B. (2002). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71, 435-471.
Eyries, M., Siegfried, G., Ciumas, M., Montagne, K., Agrapart, M., Lebrin, F., and Soubrier, F. (2008). Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circulation research 103, 432-440.
Farrington-Rock, C., Crofts, N.J., Doherty, M.J., Ashton, B.A., Griffin-Jones, C., and Canfield, A.E. (2004). Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110, 2226-2232.
Fathi, E., Farahzadi, R., and Sheikhzadeh, N. (2019). Immunophenotypic characterization, multi-lineage differentiation and aging of zebrafish heart and liver tissue-derived mesenchymal stem cells as a novel approach in stem cell-based therapy. Tissue Cell 57, 15-21.
Feyzi, E., Lustig, F., Fager, G., Spillmann, D., Lindahl, U., and Salmivirta, M. (1997). Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem 272, 5518-5524.
Finn, R.D., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge, A.J., Chang, H.Y., Dosztanyi, Z., El-Gebali, S., Fraser, M., et al. (2017). InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45, D190-D199.
Flores-Torales, E., Orozco-Barocio, A., Gonzalez-Ramella, O.R., Carrasco-Yalan, A., Gazarian, K., and Cuneo-Pareto, S. (2010). The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells. Folia Histochem Cytobiol 48, 682-686.
Freeman, C., and Parish, C.R. (1998). Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 330 ( Pt 3), 1341-1350.
Friedenstein, A.J., Deriglasova, U.F., Kulagina, N.N., Panasuk, A.F., Rudakowa, S.F., Luria, E.A., and Ruadkow, I.A. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2, 83-92.
Fukushi, J., Inatani, M., Yamaguchi, Y., and Stallcup, W.B. (2003). Expression of NG2 proteoglycan during endochondral and intramembranous ossification. Dev Dyn 228, 143-148.
Fukushi, J., Makagiansar, I.T., and Stallcup, W.B. (2004). NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Molecular biology of the cell 15, 3580-3590.
Gagnon, J.A., Valen, E., Thyme, S.B., Huang, P., Akhmetova, L., Pauli, A., Montague, T.G., Zimmerman, S., Richter, C., and Schier, A.F. (2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186.
Galmiche, M.C., Koteliansky, V.E., Briere, J., Herve, P., and Charbord, P. (1993). Stromal Cells from Human Long-Term Marrow Cultures Are Mesenchymal Cells That Differentiate Following a Vascular Smooth-Muscle Differentiation Pathway. Blood 82, 66-76.
Gellert, M. (1981). DNA topoisomerases. Annu Rev Biochem 50, 879-910.
Gnecchi, M., He, H., Liang, O.D., Melo, L.G., Morello, F., Mu, H., Noiseux, N., Zhang, L., Pratt, R.E., Ingwall, J.S., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11, 367-368.
Golpanian, S., DiFede, D.L., Khan, A., Schulman, I.H., Landin, A.M., Tompkins, B.A., Heldman, A.W., Miki, R., Goldstein, B.J., Mushtaq, M., et al. (2017). Allogeneic Human Mesenchymal Stem Cell Infusions for Aging Frailty. J Gerontol A Biol Sci Med Sci 72, 1505-1512.
Goretzki, L., Burg, M.A., Grako, K.A., and Stallcup, W.B. (1999). High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J Biol Chem 274, 16831-16837.
Grako, K.A., Ochiya, T., Barritt, D., Nishiyama, A., and Stallcup, W.B. (1999). PDGF (alpha)-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J Cell Sci 112 ( Pt 6), 905-915.
Harichandan, A., and Buhring, H.J. (2011). Prospective isolation of human MSC. Best practice research Clinical haematology 24, 25-36.
He, S., Nakada, D., and Morrison, S.J. (2009). Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25, 377-406.
Heisenberg, C.P., Tada, M., Rauch, G.J., Saude, L., Concha, M.L., Geisler, R., Stemple, D.L., Smith, J.C., and Wilson, S.W. (2000). Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76-81.
Hellman, S., Botnick, L.E., Hannon, E.C., and Vigneulle, R.M. (1978). Proliferative capacity of murine hematopoietic stem cells. Proc Natl Acad Sci U S A 75, 490-494.
Hermida-Gomez, T., Fuentes-Boquete, I., Gimeno-Longas, M.J., Muinos-Lopez, E., Diaz-Prado, S., de Toro, F.J., and Blanco, F.J. (2011). Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects. Tissue Eng Part A 17, 1169-1179.
Horwitz, E.M., Prockop, D.J., Fitzpatrick, L.A., Koo, W.W., Gordon, P.L., Neel, M., Sussman, M., Orchard, P., Marx, J.C., Pyeritz, R.E., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5, 309-313.
Hwangbo, C., Kim, J., Lee, J.J., and Lee, J.H. (2010). Activation of the integrin effector kinase focal adhesion kinase in cancer cells is regulated by crosstalk between protein kinase Calpha and the PDZ adapter protein mda-9/Syntenin. Cancer Res 70, 1645-1655.
Iida, J., Wilhelmson, K.L., Ng, J., Lee, P., Morrison, C., Tam, E., Overall, C.M., and McCarthy, J.B. (2007). Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochem J 403, 553-563.
In 't Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., Noort, W.A., Claas, F.H., Willemze, R., Fibbe, W.E., and Kanhai, H.H. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102, 1548-1549.
Isern, J., Garcia-Garcia, A., Martin, A.M., Arranz, L., Martin-Perez, D., Torroja, C., Sanchez-Cabo, F., and Mendez-Ferrer, S. (2014). The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife 3, e03696.
Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., and Izpisua Belmonte, J.C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606-609.
Kawakami, K., Abe, G., Asada, T., Asakawa, K., Fukuda, R., Ito, A., Lal, P., Mouri, N., Muto, A., Suster, M.L., et al. (2010). zTrap: zebrafish gene trap and enhancer trap database. BMC Dev Biol 10, 105.
Knopf, F., Hammond, C., Chekuru, A., Kurth, T., Hans, S., Weber, C.W., Mahatma, G., Fisher, S., Brand, M., Schulte-Merker, S., et al. (2011). Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20, 713-724.
Kortesidis, A., Zannettino, A., Isenmann, S., Shi, S., Lapidot, T., and Gronthos, S. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105, 3793-3801.
Kovalszky, I., Dudas, J., Olah-Nagy, J., Pogany, G., Tovary, J., Timar, J., Kopper, L., Jeney, A., and Iozzo, R.V. (1998). Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 183, 11-23.
Kozanoglu, I., Boga, C., Ozdogu, H., Sozer, O., Maytalman, E., Yazici, A.C., and Sahin, F.I. (2009). Human bone marrow mesenchymal cells express NG2: possible increase in discriminative ability of flow cytometry during mesenchymal stromal cell identification. Cytotherapy 11, 527-533.
Kram, V., Zcharia, E., Yacoby-Zeevi, O., Metzger, S., Chajek-Shaul, T., Gabet, Y., Muller, R., Vlodavsky, I., and Bab, I. (2006). Heparanase is expressed in osteoblastic cells and stimulates bone formation and bone mass. J Cell Physiol 207, 784-792.
Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., and Brand, M. (2011). Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138, 4831-4841.
Kuci, S., Kuci, Z., Kreyenberg, H., Deak, E., Putsch, K., Huenecke, S., Amara, C., Koller, S., Rettinger, E., Grez, M., et al. (2010). CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 95, 651-659.
Kuznetsov, S.A., Mankani, M.H., Gronthos, S., Satomura, K., Bianco, P., and Robey, P.G. (2001). Circulating skeletal stem cells. J Cell Biol 153, 1133-1140.
Laguri, C., Arenzana-Seisdedos, F., and Lortat-Jacob, H. (2008). Relationships between glycosaminoglycan and receptor binding sites in chemokines-the CXCL12 example. Carbohydr Res 343, 2018-2023.
Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., and Ringden, O. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439-1441.
Lee, K.D., Kuo, T.K., Whang-Peng, J., Chung, Y.F., Lin, C.T., Chou, S.H., Chen, J.R., Chen, Y.P., and Lee, O.K. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275-1284.
Lee, Y.H., Kawakami, K., HuangFu, W.C., and Liu, I.H. (2020). Chondroitin sulfate proteoglycan 4 regulates zebrafish body axis organization via Wnt/planar cell polarity pathway. PLoS One 15, e0230943.
Legg, J., Jensen, U.B., Broad, S., Leigh, I., and Watt, F.M. (2003). Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 130, 6049-6063.
Li, Q., Xu, X., Wang, Z., Liu, W., and Li, Z. (2007). [Investigation of canine mesenchymal stem cells differentiation to vascular endothelial cell in vitro]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 24, 1348-1351.
Li, Y., Liu, H., Huang, Y.Y., Pu, L.J., Zhang, X.D., Jiang, C.C., and Jiang, Z.W. (2013). Suppression of endoplasmic reticulum stress-induced invasion and migration of breast cancer cells through the downregulation of heparanase. Int J Mol Med 31, 1234-1242.
Lu, M., Kawamoto, H., Katsube, Y., Ikawa, T., and Katsura, Y. (2002). The common myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T and B cells. J Immunol 169, 3519-3525.
Lund, T.C., Patrinostro, X., Kramer, A.C., Stadem, P., Higgins, L.A., Markowski, T.W., Wroblewski, M.S., Lidke, D.S., Tolar, J., and Blazar, B.R. (2014). sdf1 Expression reveals a source of perivascular-derived mesenchymal stem cells in zebrafish. Stem Cells 32, 2767-2779.
Manton, K.J., Leong, D.F., Cool, S.M., and Nurcombe, V. (2007). Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells 25, 2845-2854.
Martens, T.P., See, F., Schuster, M.D., Sondermeijer, H.P., Hefti, M.M., Zannettino, A., Gronthos, S., Seki, T., and Itescu, S. (2006). Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 3 Suppl 1, S18-22.
Matsui, T., Raya, A., Kawakami, Y., Callol-Massot, C., Capdevila, J., Rodriguez-Esteban, C., and Izpisua Belmonte, J.C. (2005). Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes Dev 19, 164-175.
Matsumoto, Y., Matsumoto, K., Irie, F., Fukushi, J., Stallcup, W.B., and Yamaguchi, Y. (2010). Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenic protein signaling and severe skeletal defects. J Biol Chem 285, 19227-19234.
Mayourian, J., Cashman, T.J., Ceholski, D.K., Johnson, B.V., Sachs, D., Kaji, D.A., Sahoo, S., Hare, J.M., Hajjar, R.J., Sobie, E.A., et al. (2017). Experimental and Computational Insight Into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity. Circ Res 121, 411-423.
McKenzie, E.A. (2007). Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151, 1-14.
Mills, S.J., Cowin, A.J., and Kaur, P. (2013). Pericytes, mesenchymal stem cells and the wound healing process. Cells 2, 621-634.
Minasi, M.G., Riminucci, M., De Angelis, L., Borello, U., Berarducci, B., Innocenzi, A., Caprioli, A., Sirabella, D., Baiocchi, M., De Maria, R., et al. (2002). The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129, 2773-2783.
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G., and Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100, 5807-5812.
Monnot, M.J., Babin, P.J., Poleo, G., Andre, M., Laforest, L., Ballagny, C., and Akimenko, M.A. (1999). Epidermal expression of apolipoprotein E gene during fin and scale development and fin regeneration in zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 214, 207-215.
Montague, T.G., Cruz, J.M., Gagnon, J.A., Church, G.M., and Valen, E. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42, W401-407.
Montero, J.A., Kilian, B., Chan, J., Bayliss, P.E., and Heisenberg, C.P. (2003). Phosphoinositide 3-kinase is required for process outgrowth and cell polarization of gastrulating mesendodermal cells. Curr Biol 13, 1279-1289.
Morgan, T.H. (1895). The formation of the fish embryo. Journal of morphology 10.
Morikawa, S., Mabuchi, Y., Niibe, K., Suzuki, S., Nagoshi, N., Sunabori, T., Shimmura, S., Nagai, Y., Nakagawa, T., Okano, H., et al. (2009). Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 379, 1114-1119.
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55-63.
Nakahara, H., Dennis, J.E., Bruder, S.P., Haynesworth, S.E., Lennon, D.P., and Caplan, A.I. (1991). In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 195, 492-503.
Neudenberger, J., Hotfilder, M., Rosemann, A., Langebrake, C., Reinhardt, D., Pieters, R., Schrauder, A., Schrappe, M., Rottgers, S., Harbott, J., et al. (2006). Lack of expression of the chondroitin sulphate proteoglycan neuron-glial antigen 2 on candidate stem cell populations in paediatric acute myeloid leukaemia/abn(11q23) and acute lymphoblastic leukaemia/t(4;11). Br J Haematol 133, 337-344.
Ng, F., Boucher, S., Koh, S., Sastry, K.S., Chase, L., Lakshmipathy, U., Choong, C., Yang, Z., Vemuri, M.C., Rao, M.S., et al. (2008a). PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112, 295-307.
Ng, F., Boucher, S., Koh, S., Sastry, K.S.R., Chase, L., Lakshmipathy, U., Choong, C., Yang, Z., Vemuri, M.C., Rao, M.S., et al. (2008b). PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112, 295-307.
Nishiyama, A., Dahlin, K.J., Prince, J.T., Johnstone, S.R., and Stallcup, W.B. (1991). The primary structure of NG2, a novel membrane-spanning proteoglycan. J Cell Biol 114, 359-371.
Nugent, M.A., and Edelman, E.R. (1992). Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity. Biochemistry 31, 8876-8883.
Oh, S.H., Muzzonigro, T.M., Bae, S.H., LaPlante, J.M., Hatch, H.M., and Petersen, B.E. (2004). Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84, 607-617.
Ozerdem, U., Grako, K.A., Dahlin-Huppe, K., Monosov, E., and Stallcup, W.B. (2001). NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222, 218-227.
Ozerdem, U., and Stallcup, W.B. (2004). Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7, 269-276.
Passino, M.A., Adams, R.A., Sikorski, S.L., and Akassoglou, K. (2007). Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 315, 1853-1856.
Peister, A., Mellad, J.A., Larson, B.L., Hall, B.M., Gibson, L.F., and Prockop, D.J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103, 1662-1668.
Pittenger, M.F., Discher, D.E., Peault, B.M., Phinney, D.G., Hare, J.M., and Caplan, A.I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4, 22.
Pluschke, G., Vanek, M., Evans, A., Dittmar, T., Schmid, P., Itin, P., Filardo, E.J., and Reisfeld, R.A. (1996). Molecular cloning of a human melanoma-associated chondroitin sulfate proteoglycan. Proc Natl Acad Sci U S A 93, 9710-9715.
Poleo, G., Brown, C.W., Laforest, L., and Akimenko, M.A. (2001). Cell proliferation and movement during early fin regeneration in zebrafish. Dev Dyn 221, 380-390.
Poss, K.D., Shen, J., Nechiporuk, A., McMahon, G., Thisse, B., Thisse, C., and Keating, M.T. (2000). Roles for Fgf signaling during zebrafish fin regeneration. Developmental biology 222, 347-358.
Psaltis, P.J., Paton, S., See, F., Arthur, A., Martin, S., Itescu, S., Worthley, S.G., Gronthos, S., and Zannettino, A.C. (2010). Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 223, 530-540.
Purushothaman, A., Hurst, D.R., Pisano, C., Mizumoto, S., Sugahara, K., and Sanderson, R.D. (2011). Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 286, 30377-30383.
Rider, C.C. (2006). Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans 34, 458-460.
Rivara, S., Milazzo, F.M., and Giannini, G. (2016). Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 8, 647-680.
Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. (2007). p53 activation by knockdown technologies. PLoS Genet 3, e78.
Rolny, C., Nilsson, I., Magnusson, P., Armulik, A., Jakobsson, L., Wentzel, P., Lindblom, P., Norlin, J., Betsholtz, C., Heuchel, R., et al. (2006). Platelet-derived growth factor receptor-beta promotes early endothelial cell differentiation. Blood 108, 1877-1886.
Rosada, C., Justesen, J., Melsvik, D., Ebbesen, P., and Kassem, M. (2003). The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif Tissue Int 72, 135-142.
Russell, K.C., Tucker, H.A., Bunnell, B.A., Andreeff, M., Schober, W., Gaynor, A.S., Strickler, K.L., Lin, S., Lacey, M.R., and O'Connor, K.C. (2013). Cell-surface expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) in heterogeneous cultures of marrow-derived mesenchymal stem cells. Tissue Eng Part A 19, 2253-2266.
Saito, T., Dennis, J.E., Lennon, D.P., Young, R.G., and Caplan, A.I. (1995). Myogenic Expression of Mesenchymal Stem Cells within Myotubes of mdx Mice in Vitro and in Vivo. Tissue Eng 1, 327-343.
Saleh, F.A., Whyte, M., Ashton, P., and Genever, P.G. (2011). Regulation of mesenchymal stem cell activity by endothelial cells. Stem Cells Dev 20, 391-403.
Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T.B., Saporta, S., Janssen, W., Patel, N., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247-256.
Sarma, N.J., Takeda, A., and Yaseen, N.R. (2010). Colony forming cell (CFC) assay for human hematopoietic cells. J Vis Exp.
Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M.M., and Davies, J.E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23, 220-229.
Schmitt, C.E., Holland, M.B., and Jin, S.W. (2012). Visualizing vascular networks in zebrafish: an introduction to microangiography. Methods Mol Biol 843, 59-67.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675.
Scholer, H.R. (2007). The Potential of Stem Cells: An Inventory. In Human Biotechnology as Social Challenge, S.D. Knoepffler N, Sorgner SL, ed. (Burlington (USA): Ashgate Publishing Ltd).
Sheng, G. (2015). The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev Biol 15, 44.
Shi, S., and Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18, 696-704.
Simmons, P.J., and Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78, 55-62.
Sisson, B.E., Dale, R.M., Mui, S.R., Topczewska, J.M., and Topczewski, J. (2015). A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis. Mech Dev 138 Pt 3, 279-290.
Smith, A., Avaron, F., Guay, D., Padhi, B.K., and Akimenko, M.A. (2006). Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function. Developmental biology 299, 438-454.
Song, C., and Li, G. (2011). CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors. Cytotherapy 13, 549-561.
Song, S., Ewald, A.J., Stallcup, W., Werb, Z., and Bergers, G. (2005). PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature cell biology 7, 870-879.
Song, W.Y., Jiang, X.H., Ding, Y., Wang, Y., Zhou, M.X., Xia, Y., Zhang, C.Y., Yin, C.C., Qiu, C., Li, K., et al. (2020). Inhibition of heparanase protects against pancreatic beta cell death in streptozotocin-induced diabetic mice via reducing intra-islet inflammatory cell infiltration. Br J Pharmacol.
Sorrentino, A., Ferracin, M., Castelli, G., Biffoni, M., Tomaselli, G., Baiocchi, M., Fatica, A., Negrini, M., Peschle, C., and Valtieri, M. (2008). Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Experimental hematology 36, 1035-1046.
Sousa, S., Afonso, N., Bensimon-Brito, A., Fonseca, M., Simoes, M., Leon, J., Roehl, H., Cancela, M.L., and Jacinto, A. (2011). Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138, 3897-3905.
Stallcup, W.B. (2002). The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31, 423-435.
Stegmuller, J., Werner, H., Nave, K.A., and Trotter, J. (2003a). The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial progenitor cells - Implications for glial-neuronal signaling. Journal of Biological Chemistry 278, 3590-3598.
Stegmuller, J., Werner, H., Nave, K.A., and Trotter, J. (2003b). The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial pr
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76876-
dc.description.abstract細胞命運決定為胚胎發育或組織再生過程中,決定細胞增生、遷移分化成最終形態之重要過程。了解細胞命運之決定機制可提升細胞療法於再生醫學之臨床應用。細胞命運決定之機制可受細胞內源及外源因子調控。其中硫酸軟骨素醣胺多醣、硫酸肝素蛋白多醣等蛋白多醣為調控細胞命運之重要外源因子。由於這些蛋白多醣和生長因子或型態生成誘導物間有高度親和力,可作為輔助受體或協助形成型態生成誘導物之濃度梯度,以影響細胞命運決定。本研究首先探討硫酸肝素分解酵素「硫酸肝素酶」對骨髓間葉幹細胞命運決定之影響。利用硫酸肝素酶抑制劑OGT2115抑制硫酸肝素酶之酵素活性,並檢測其對間葉幹細胞增生、聚落形成、分化及遷移之影響。結果顯示,當抑制間葉幹細胞內源硫酸肝素酶活性,細胞外硫酸肝素堆積增加,細胞增殖、聚落形成及軟骨分化能力降低,但可透過增強SDF-1/CXCR4訊息傳遞路徑增加細胞遷移行為。
上述研究證實細胞內源硫酸肝素酶活性對間葉幹細胞體外培養細胞命運決定扮演重要角色,但其在體內之真實調控機制仍待釐清。因此,若能產製標定間葉幹細胞之模式動物,有助於研究間葉幹細胞於體內之命運決定機制。先前研究顯示,間葉幹細胞位於血管周圍,且和血管周邊細胞具有類似特性。本研究嘗試以血管周邊細胞標誌基因「硫酸軟骨素蛋白多醣四」(chondroitin sulfate proteoglycan 4,Cspg4)於斑馬魚標定間葉幹細胞,以研究間葉幹細胞之活體功能。結果顯示,在Tg(Cspg4:Gal4; UAS:EGFP)基因轉殖斑馬魚胚及成魚尾鰭皆可觀察到帶有綠色螢光之細胞(Cspg4+)分佈於血管周邊。當基因轉殖斑馬魚尾鰭切除後,綠色螢光細胞(Cspg4+)數目增加,且多分佈於新生之尾鰭組織,當尾鰭再生至原有長度後,綠色螢光細胞(Cspg4+)逐漸消失,顯示這些細胞與組織再生有密切關聯。
最後,本研究進一步探討硫酸軟骨素蛋白多醣四於斑馬魚胚胎發育時期之功能。在胚胎發育時期調降硫酸軟骨素蛋白多醣四之表現量,會造成魚胚體軸過短。而此發育異常現象,可透過過量表現wnt11f2恢復正常。表示硫酸軟骨素蛋白多醣四可能透過調控Wnt/平面細胞極化通路影響體軸發育。此外,還發現當魚胚過量表現硫酸軟骨素蛋白多醣四會造成低比例的獨眼畸形,而硫酸軟骨素蛋白多醣四之穿膜結構域去除後也會造成此現象,表示硫酸軟骨素蛋白多醣四之分佈位置對於胚胎中線發育十分重要。
綜而言之,幹細胞或前驅細胞產生之硫酸肝素分解酵素「硫酸肝素酶」及細胞表面之硫酸軟骨素蛋白多醣四可調控細胞增生遷移、影響胚胎發育,為幹細胞命運決定機制中之重要調控因子。且本研究產製之Tg(Cspg4:Gal4; UAS:EGFP)基因轉殖斑馬魚可作為探討間葉幹細胞功能之有力工具,未來可利用此轉基因魚進一步研究硫酸肝素酶於活體中對幹細胞命運決定之影響。
zh_TW
dc.description.abstractCell fate determination is the key step controlling cellular proliferation, differentiation and migration during embryogenesis and tissue regeneration. Understanding the mechanism of cell fate determination can improve the clinical application of cell therapy in regenerative medicine. Cell fate determination is regulated by both intrinsic and extrinsic mechanism. Extracellular matrix (ECM) is one of the important extrinsic factors regulating cell fate. One of the main components of ECM is proteoglycan, for example heparan sulfate proteoglycans and chondroitin sulfate proteoglycans. Proteoglycans have high affinity with growth factors and morphogens and consequently can act as a co-receptor or shape the morphogen gradient to regulate cell fate. In the first part of my study, the function of a heparan sulfate-degrading enzyme “heparanase” in bone marrow-derived mesenchymal stem cells (MSCs) fate determination was studied. I used a heparanase inhibitor “OGT2115” to inhibit the enzyme activity of cell-autonomous heparanase and tested the ability of cell proliferation, tri-lineage differentiation and migration of MSCs. The results showed that inhibiting cell autonomous heparanase increased the heparan sulfate deposition in the culture of MSCs, suppressed the cell proliferate, colony-forming and chondrogenic ability, and augmented the migratory behavior of MSCs by potentiating SDF-1/CXCR4 signaling axis.
Although I found the heparanase as one of the key components regulating MSC fate in vitro, the endogenous niche of MSC is still not elucidated. Therefore, in the second part of my study, I tried to generate a transgenic zebrafish labeling MSCs to study the cell fate determination during embryogenesis and tissue regeneration in vivo. Previous studies suggested MSCs reside in the perivascular niche and have similar properties to perivascular cells. So I used a perivascular marker chondroitin sulfate proteoglycan 4 (Cspg4) as a marker and generated the Tg(Cspg4:Gal4; UAS:EGFP) transgenic zebrafish to study the MSCs in vivo. The results demonstrated that Cspg4+ cells wrap around the blood vessels in the zebrafish embryos and adult caudal fin. During caudal fin regeneration, theses Cspg4+ cells increased and migrated to the injured site and largely disappeared after fin regeneration indicating that Cspg4+ cells might contribute to tissue regeneration.
In the third part of my study, I further evaluated the cellular function of the MSC marker Cspg4 in zebrafish by knocking down cspg4 in zebrafish embryos. The result demonstrated that knocking-down cspg4 resulted in a shorter anterior-posterior axis compared to control embryo, which could be rescued by co-injecting wnt11f2 mRNA suggesting that Cspg4 regulates body axis organization through modulating the Wnt/planar cell polarity signaling pathway. In addition, overexpressing cspg4 caused cyclopia. The Cspg4 transmembrane domain mutant embryo phenocopied the global overexpression of cspg4 mRNA and led to 8% cyclopia. These results demonstrated that the quantitative and spatial accuracy of Cspg4 expression is critical for body axis and midline development during gastrulation.
In summary, the Cspg4 on the cell surface and the heparan sulfate degrading enzyme heparanase contribute to cell fate determination of stem cells or progenitor cells. The Tg(Cspg4:Gal4; UAS:EGFP) transgenic zebrafish could be a useful model to study the in vivo roles of heparanase and Cspg4 in MSC fate determination.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:39:12Z (GMT). No. of bitstreams: 1
U0001-1208202014233300.pdf: 3824821 bytes, checksum: ec4b634804f1ebf92f08e880a9a887e1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCHAPTER 1. HEPARAN SULFATE PROTEOGLYCANS AND CHONDROITIN SULFATE PROTEOGLYCANS IN MESENCHYMAL STEM CELLS 1
1.1. STEM CELLS 1
1.1.1. Mesenchymal stem cells 2
1.1.2. Clinical application of mesenchymal stem cells 3
1.1.3. The markers of mesenchymal stem cells 4
1.1.4. The perivascular niche of mesenchymal stem cells 7
1.2. PROTEOGLYCANS IN STEM CELL FATE DETERMINATION 9
1.2.1. Heparan sulfate proteoglycans 10
1.2.2. Heparanase 12
1.2.3. Chondroitin sulfate proteoglycans 13
1.3. SPECIFIC AIMS OF THE THESIS 14
CHAPTER 2. THE PHYSIOLOGICAL ROLE OF HEPANRANASE IN MOUSE BONE MARROW MESENCHYMAL STEM CELLS 15
2.1. INTRODUCTION 15
2.2. HYPOTHESIS 16
2.3. MATERIAL AND METHODS 16
2.3.1. Experimental animal 16
2.3.2. Isolation of mouse bone marrow MSCs 16
2.3.3. RNA extraction and reverse transcription polymerase chain reaction (RT-PCR) …………………………………………………………………………………………18
2.3.4. Immunocytochemistry 18
2.3.5. Heparanase activity 19
2.3.6. Preparation of mouse recombinant heparanase 20
2.3.7. In vitro differentiation 21
2.3.8. Quantitative polymerase chain reaction (qPCR) 24
2.3.9. MTT (3-(4, 5-dimethylithiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay …………………………………………………………………………………………………………………25
2.3.10. Colony forming assay 25
2.3.11. Transwell cell migration assay 26
2.3.12. DNA Topoisomerase assay 26
2.3.13. Statistic analysis 27
2.4. RESULTS 28
2.4.1. BM-MSCs express enzymatically active Hpse1 28
2.4.2. The effect of heparanase inhibitor on tri-lineage differentiation 31
2.4.3. Heparanase modulates proliferation, clonogenic ability of MSCs 35
2.4.4. Heparanase regulates cell migration ability of MSCs 37
2.4.5. The effect of heparanase activity in topoisomerase 39
2.5. DISCUSSION 41
CHAPTER 3. USING CSPG4 AS A MARKER TO LABEL MESENCHYMAL STEM CELLS IN ZEBRAFISH 44
3.1. INTRODUCTION 44
3.2. HYPOTHESIS 45
3.3. MATERIAL AND METHODS 45
3.3.1. Zebrafish maintenance and egg collection 45
3.3.2. Generation of Tg(cspg4:Gal4; UAS:EGFP) zebrafish 46
3.3.3. Angiography of zebrafish embryo 46
3.3.4. Angiography of adult zebrafish 47
3.3.5. Zebrafish caudal fin amputation 47
3.4. RESULTS 48
3.4.1. Cspg4+ cells reside in the perivascular niche 48
3.4.2. The dynamics of Cspg4+ cells during zebrafish tail fin regeneration 52
3.5. DISCUSSION 56
CHAPTER 4. THE ROLES OF CSPG4 DURING ZEBRAFISH EMBRYO DEVELOPMENT 59
4.1. INTRODUCTION 59
4.2. HYPOTHESIS 60
4.3. MATERIAL AND METHODS 60
4.3.1. Experimental animal 60
4.3.2. Temporal and spatial expression pattern of cspg4 60
4.3.3. Molecular cloning 63
4.3.4. Morpholino and mRNA microinjection 64
4.3.5. Alcian blue staining 65
4.3.6. Generation of Cspg4 mutant line by using CRISPR/Cas9 system 65
4.3.7. Genotyping of Cspg4 mutant line 67
4.3.8. Western blot 67
4.3.9. Immunoprecipitation 68
4.3.10. Statistic analysis 69
4.4. RESULTS 70
4.4.1. Cspg4 is expressed during zebrafish embryogenesis 70
4.4.2. Zebrafish body axis elongation and pharyngeal cartilage patterning required Cspg4 76
4.4.3. The location of Cspg4 is important for midline development 86
4.4.4. Cspg4 regulates body axis organization by Wnt11f2 pathway 89
4.5. DISCUSSION 97
CHAPTER 5. CONCLUSIONS AND PERSPECTIVE 101
REFERENCES 102
APPENDIX 119

dc.language.isoen
dc.subject胚胎發育zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject硫酸肝素酶zh_TW
dc.subject斑馬魚zh_TW
dc.subject硫酸軟骨素蛋白多醣四zh_TW
dc.subject再生zh_TW
dc.subject原腸胚形成zh_TW
dc.subjectmesenchymal stem cellsen
dc.subjectgastrulationen
dc.subjectembryonic developmenten
dc.subjectzebrafishen
dc.subjectfin regenerationen
dc.subjectchondroitin sulfate proteoglycan 4en
dc.subjectheparanaseen
dc.title蛋白多醣於幹細胞命運決定之角色zh_TW
dc.titleThe Roles of Proteoglycans in Stem Cell Fate Determinationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee李士傑(Shyh-Jye Lee),林劭品(Shau-Ping Lin),陳全木(Chuan-Mu Chen),陳振輝(Chen-Hui Chen),皇甫維君(Wei-Chun HuangFu)
dc.subject.keyword間葉幹細胞,硫酸肝素酶,斑馬魚,硫酸軟骨素蛋白多醣四,再生,原腸胚形成,胚胎發育,zh_TW
dc.subject.keywordmesenchymal stem cells,heparanase,chondroitin sulfate proteoglycan 4,fin regeneration,zebrafish,embryonic development,gastrulation,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202003084
dc.rights.note未授權
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-1208202014233300.pdf
  未授權公開取用
3.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved