請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76872完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宗昕(Chung-Hsin Lu) | |
| dc.contributor.author | Ting-Yu Chen | en |
| dc.contributor.author | 陳亭宇 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:07Z | - |
| dc.date.available | 2021-07-10T21:39:07Z | - |
| dc.date.copyright | 2020-09-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | [1] 劉怡君, 工業材料雜誌, (2018) 78. [2] M. Boholm and R. Arvidsson, NanoEthics, 10 (2016) 25. [3] R. Nadiv, M. Shtein, G. Shachar, M. Varenik, and O. Regev, Nanotechnology, 28 (2017) 305701. [4] C. Collier, T. Vossmeyer, and A. J. Heath, Annual Review of Physical Chemistry, 49 (1998) 371. [5] R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. Wang, P. W. Stephens, C. L. Cleveland, W. Luedtke, and U. Landman, Advanced Materials, 8 (1996) 428. [6] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295 (2002) 2425. [7] J. A. Rogers, M. Lagally, and R. G. Nuzzo, Nature, 477 (2011) 45. [8] C. C. Johnson and A. W. Guy, Proceedings of the IEEE, 60 (1972). 692. [9] J. E. C. Topps and D. T. A. Townend, Transactions of the Faraday Society, 42 (1946) 345. [10] J. D. Barrow, Physical Review D, 59 (1999) 043515. [11] P. Röhlich, T. Van Veen, and A. Szel, Neuron, 13 (1994) 1159. [12] Y. C. Chang and J. F. Reid, IEEE Transactions on Image Processing, 5 (1996) 1414. [13] T. Kumar and K. Verma, International Journal of Computer Applications, 7 (2010) 7. [14] Hunt, R. W. G. , and M. R. Pointer, Color Research Application, 10 (1985) 165. [15] Q. Fang, B. Xu, B. Jiang, H. Fu, X. Chen, and A. Cao, Chemical Communications, (2005) 1468. [16] A. R. Smith, ACM Siggraph Computer Graphics, 12 (1978) 12. [17] R. S. Berns, R. J. Motta, and M. E. Gorzynski, Color Research Application, 18 (1993) 299. [18] 王宏嘉, 工業材料雜誌, (2018) 140. [19] H. Helson, Contributions to Color Science, 545 (1979) 382. [20] Tseng, Sheng-Tsaing, Michael Hamada, and Chih-Hua Chiao, Journal of Quality Technology, 27 (1995) 363. [21] R. Könenkamp, R. C. Word, and C. Schlegel, Applied Physics Letters, 85 (2004) 6004. [22] Y. Wei, Z.Y. Cheng and J. Lin, Chemical Society Reviews, 48 (2019) 310. [23] E. Ivchenko, A. Kavokin, V. Kochereshko, P. Kop'ev and N. Ledentsov, Superlattices and Microstructures, 12 (1992) 317. [24] D. Q. Chen and X. Chen, Journal of Materials Chemistry C, 7 (2019) 1413-1446. [25] Oldwig von Roos, Physical Review B, 27 (1983) 7547. [26] X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, and X. W. Sun, Advanced Materials, 24 (2012) 4180. [27] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, Advanced Materials, 28 (2016) 6804. [28] Z. J. Ning, X. W. Gong, R. Comin, G. Walters, F. J. Fan, O. Voznyy, E. Yassitepe, A. Buin, S. Hoogland, and E. H. Sargent, Nature, 523 (2015) 324. [29] V. M. Goldschmidt, Naturwissenschaften, 14 (1926) 477. [30] M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nature Photonics, 8 (2014) 506. [31] C. H. Li, X. G. Lu, W. Z. Ding, L. M. Feng, Y. H. Gao, and Z. G. Guo, Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials, 64 (2008) 702. [32] L. Protesescu, S. Yakunin, S. Kumar, J. Bar, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, C. J. Shih, and M. V. Kovalenko, Acs Nano, 11 (2017) 3119. [33] H. H. Ma, M. Imran, Z. Dang, and Z. Hu, Crystals, 8 (2018) 182. [34] J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, R. G. Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, and J. Feldmann, Nano Letters, 15 (2015) 6521. [35] F. Zhang, H. Z. Zhong, C. Chen, X. G. Wu, X. M. Hu, H. L. Huang, J. B. Han, B. S. Zou, and Y. P. Dong, Acs Nano, 9 (2015) 4533. [36] M. Imran, V. Caligiuri, M. J. Wang, L. Goldoni, M. Prato, R. Krahne, L. De Trizio, and L. Manna, Journal of the American Chemical Society, 140 (2018) 2656. [37] W. Lv, L. Li, M. Xu, J. Hong, X. Tang, L. Xu, Y. Wu, R. Zhu, R. Chen, and W. Huang, Advanced Materials, 31 (2019) 1900682. [38] T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. H. Cheng, H. M. Chen, M. C. Tsai, L. Y. Chen, A. A. Dubale, and B. J. Hwang, Energy Environmental Science, 9 (2016) 323. [39] Y. Liu, F. Li, Q. L. Liu, and Z. G. Xia, Chemistry of Materials, 30 (2018) 6922. [40] S. Gonzalez-Carrero, L. Frances-Soriano, M. Gonzalez-Bejar, S. Agouram, R.E. Galian, and J. Perez-Prieto, Small, 12 (2016) 5245. [41] H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai, and R. S. Liu, Angewandte Chemie-International Edition, 55 (2016) 7924. [42] D. M. Trots and S. V. Myagkota, Journal of Physics and Chemistry of Solids, 69 (2008) 2520. [43] B. B. Luo, F. Li, K. Xu, Y. Guo, Y. Liu, Z. G. Xia, and J. Z. Zhang, Journal of Materials Chemistry C, 7 (2019) 2781. [44] R. K. Singh, R. Kumar, N. Jain, M. T. Kuo, C. P. Upadhyaya, and J. Singh, Applied Nanoscience, 9 (2019) 1953. [45] T. Cai, H. Yang, K. Hills-Kimball, J. P. Song, H. Zhu, E. Hofman, W. Zheng, B. M. Rubenstein, and O. Chen, Journal of Physical Chemistry Letters, 9 (2018) 7079. [46] W. van der Stam, J. J. Geuchies, T. Altantzis, K. H. W. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh, and C. de Mello Donega, Journal of the American Chemical Society, 139 (2017) 4087. [47] N. Mondal, A. De, and A. Samanta, ACS Energy Letters, 4 (2019) 32. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76872 | - |
| dc.description.abstract | 鈣鈦礦量子點具有發光強度高、放射峰半高寬窄、發光波長具可調控性等優點,是未來深具發展潛力的發光材料。在本研究中於室溫合成出發綠光的有機-無機鈣鈦礦量子點(CH3NH3PbBr3),並且將其摻雜鎘離子,以求其發光特性及穩定性能得到改善。以電腦程式模擬的結果,預測由於生成能與能隙的變化,鎘離子摻雜後的量子點將能有更高的穩定性和發射波長位置。經過實驗分析後,證明有機-無機鈣鈦礦量子點於鉛離子位置,以10 mol%鎘離子取代後,發光強度上升,發光波長位置改變,色純度提升。將量子點加熱到高溫,發現升溫到80℃時的相對強度上升。成果證明鎘離子的摻雜能提升鈣鈦礦量子點的穩定性。將鎘離子摻雜的樣品封裝成白色發光二極體後,亦表現出優異的發光性質。未來將此研究的成果應用於作為顯示器背光源的白色發光二極體將能有前瞻性的進展。 | zh_TW |
| dc.description.abstract | The Perovskite quantum dots have the advantages of high luminescent intensity, narrow FWHM for emission peak, and adjustable luminescent central wavelength. Perovskite quantum dots based luminescent material has deep potential in the future. In this study, organic-inorganic perovskite quantum dots (CH3NH3PbBr3) were synthesized at room temperature, and doped with cadmium ions to improve their luminescence properties and thermal stability. Based on the simulation results of the density functional theory (DFT), the quantum dots doped with cadmium ions might showed higher stability. The red shift in luminescent central wavelength due to the changes in the formation energy and band gap was observed. The organic-inorganic perovskite with 10 mol % doping of cadmium ion showed increases in luminescent intensity. The shift in luminescent central wavelength and improvement in color purity was observed. The relative intensity of the sample increased when the temperature was raised to 80°C. The results demonstrated that the perovskite quantum dots doped with cadmium ions can improve the stability of perovskite quantum dots. After encapsulating the cadmium ion-doped sample into a white light-emitting diode, the white light-emitting diode also showed excellent light-emitting properties. The current work showed futuristic application as back light source in white light emitting diode. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:07Z (GMT). No. of bitstreams: 1 U0001-1208202015440200.pdf: 2553071 bytes, checksum: 7b6da3f01290114ed3e5e73944efa387 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 ii Abstract iii 目錄 iiv 圖目錄 vii 第一章 緒論 1 1.1奈米材料的介紹 1 1.2發光材料介紹 1 1.2.1 電磁波介紹 1 1.2.2 色彩的原理與應用 2 1.2.3 顯示器介紹 3 1.2.4 照明設備簡介 4 1.2.5 發光材料相關介紹 5 1.3量子點簡介 8 1.3.1 量子點定義 8 1.3.2 量子點的發光原理 8 1.3.3 量子點種類 9 1.4鈣鈦礦量子點簡介 11 1.4.1 鈣鈦礦結構 11 1.4.2 鈣鈦礦量子點的合成 12 1.4.3 鈣鈦礦量子點的優缺點 13 1.4.4 鈣鈦礦量子點的改良策略 14 1.5研究動機與目的 15 第二章 實驗步驟與儀器分析原理 27 2.1實驗步驟 27 2.1.1 性質分析 27 2.2儀器分析原理 28 2.2.1 X射線繞射分析儀 28 2.2.2穿透式電子顯微鏡 29 2.2.3 X射線光電子能譜 30 2.2.4螢光光譜儀 31 第三章 結果與討論 32 3.1 X射線繞射分析結果 32 3.2相關穩定性數值估算 32 3.3 X射線光電子能譜 33 3.4電腦程式模擬 34 3.5光致發光螢光光譜 35 3.5.1 標準化放射光譜 36 3.5.2 發光特性與鎘離子摻雜的關係 37 3.6光致發光穩定性 38 3.6.1溫度上升時的發光性質改變 39 3.6.2高溫時的熱淬滅 41 3.6.3鎘離子摻雜量與量子點放射強度的變化 42 3.7封裝於LED後的應用 43 第四章 結論 64 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 鈣鈦礦 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 鎘離子 | zh_TW |
| dc.subject | perovskite | en |
| dc.subject | cadmium ion | en |
| dc.subject | LED | en |
| dc.subject | quantum dots | en |
| dc.title | 改質型鈣鈦礦量子點之合成與分析 | zh_TW |
| dc.title | Characterization and Synthesis of Modified Perovskite Quantum Dots | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉培毅(Pei-Yi Liu),郭真寬(Zhen-Kuan Guo) | |
| dc.subject.keyword | 鈣鈦礦,量子點,鎘離子,發光二極體, | zh_TW |
| dc.subject.keyword | perovskite,quantum dots,cadmium ion,LED, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202003109 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202015440200.pdf 未授權公開取用 | 2.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
