Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76871Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蕭斐元(Fei-Yuan Hsiao) | |
| dc.contributor.author | Mei-Tsen Chen | en |
| dc.contributor.author | 陳玫岑 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:06Z | - |
| dc.date.available | 2021-07-10T21:39:06Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | Lipton JH, Chuah C, Guerci-Bresler A, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. The Lancet Oncology. 2016; 17: 612-21. 2. Douxfils J, Haguet H, Mullier F, et al. Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: a systematic review and meta-analysis. JAMA oncology. 2016; 2: 625-32. 3. Klatsky AL, Armstrong MA, Poggi J. Risk of pulmonary embolism and/or deep venous thrombosis in Asian-Americans. The American journal of cardiology. 2000; 85: 1334-37. 4. White RH. The epidemiology of venous thromboembolism. Circulation. 2003; 107: I-4-I-8. 5. Taiwan Cancer Registry. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=269. Accessed May 22, 2020. 6. Kantarjian H, Cortes J. Chronic Myeloid Leukemia. In: Jameson JL, Fauci AS, Kasper DL, et al., eds., Harrison's Principles of Internal Medicine, 20e. New York, NY: McGraw-Hill Education, 2018. 7. Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in' good-risk' chronic granulocytic leukemia. 1984. 8. Hasford J, Pfirrmann M, Hehlmann R, et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa Writing Committee for the Collaborative CML Prognostic Factors Project Group. JNCI: Journal of the National Cancer Institute. 1998; 90: 850-59. 9. Hasford J, Baccarani M, Hoffmann V, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood, The Journal of the American Society of Hematology. 2011; 118: 686-92. 10. O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. New England Journal of Medicine. 2003; 348: 994-1004. 11. Hughes TP, Hochhaus A, Branford S, et al. Reduction of BCR-ABL transcript levels at 6, 12, and 18 months (mo) correlates with long-term outcomes on imatinib (IM) at 72 mo: an analysis from the International Randomized Study of Interferon versus STI571 (IRIS) in patients (pts) with chronic phase chronic myeloid leukemia (CML-CP). American Society of Hematology, 2008. 12. Saglio G, Kim D-W, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. New England Journal of Medicine. 2010; 362: 2251-59. 13. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. New England Journal of Medicine. 2010; 362: 2260-70. 14. Breccia M, Alimena G. Second-generation tyrosine kinase inhibitors (Tki) as salvage therapy for resistant or intolerant patients to prior TKIs. Mediterranean journal of hematology and infectious diseases. 2014; 6. 15. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) - Chronic Myeloid Leukemia (Version 3.2020-January 30, 2020). https://www.nccn.org/professionals/physician_gls/default.aspx. Accessed June 1st, 2020. 16. Product Information: SPRYCEL(R) oral tablets, dasatinib oral tablets., 2017. 17. Product Information: TASIGNA(R) oral capsules, nilotinib oral capsules. 2015. 18. Product Information: BOSULIF(R) oral tablets, bosutinib oral tablets. 2017. 19. Product Information: ICLUSIG(R) oral tablets, ponatinib oral tablets. 2013. 20. Product Information: BOSULIF(R) oral tablets, bosutinib oral tablets. 2018. 21. Product Information: ICLUSIG(R) oral tablets, ponatinib oral tablets. 2016. 22. 衛生福利部中央健康保險署-藥品給付規定第九節抗癌瘤藥物. https://www.nhi.gov.tw/Content_List.aspx?n=E70D4F1BD029DC37 topn=3FC7D09599D25979. Accessed May 22nd, 2020. 23. Aichberger KJ, Herndlhofer S, Schernthaner GH, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. American journal of hematology. 2011; 86: 533-39. 24. Le Coutre P, Rea D, Abruzzese E, et al. Severe peripheral arterial disease during nilotinib therapy. Journal of the National Cancer Institute. 2011; 103: 1347-48. 25. Levato L, Cantaffa R, Kropp MG, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in chronic myeloid leukemia: a single institution study. European journal of haematology. 2013; 90: 531-32. 26. Quintás-Cardama A, Kantarjian H, Cortes J. Nilotinib-associated vascular events. Clinical Lymphoma Myeloma and Leukemia. 2012; 12: 337-40. 27. Kim T, Rea D, Schwarz M, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013; 27: 1316-21. 28. Giles F, Mauro M, Hong F, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013; 27: 1310-15. 29. Gora-Tybor J, Medras E, Calbecka M, et al. Real-life comparison of severe vascular events and other non-hematological complications in patients with chronic myeloid leukemia undergoing second-line nilotinib or dasatinib treatment. Leukemia lymphoma. 2015; 56: 2309-14. 30. Dahlén T, Edgren G, Lambe M, et al. Cardiovascular events associated with use of tyrosine kinase inhibitors in chronic myeloid leukemia: a population-based cohort study. Annals of internal medicine. 2016; 165: 161-66. 31. Kantarjian HM, Hochhaus A, Saglio G, et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. The lancet oncology. 2011; 12: 841-51. 32. Larson R, Hochhaus A, Hughes T, et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia. 2012; 26: 2197-203. 33. Hochhaus A, Saglio G, Hughes T, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016; 30: 1044-54. 34. Hughes TP, Saglio G, Larson RA, et al. Long-Term Outcomes in Patients with Chronic Myeloid Leukemia in Chronic Phase Receiving Frontline Nilotinib Versus Imatinib: Enestnd 10-Year Analysis. American Society of Hematology Washington, DC, 2019. 35. Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naïve chronic myeloid leukemia patients trial. Journal of Clinical Oncology. 2016; 34: 2333. 36. Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Long-term follow-up of ponatinib efficacy and safety in the phase 2 PACE trial. American Society of Hematology Washington, DC, 2014. 37. Jain P, Kantarjian H, Boddu PC, et al. Analysis of cardiovascular and arteriothrombotic adverse events in chronic-phase CML patients after frontline TKIs. Blood advances. 2019; 3: 851-61. 38. Minson AG, Cummins K, Fox L, et al. The natural history of vascular and other complications in patients treated with nilotinib for chronic myeloid leukemia. Blood advances. 2019; 3: 1084-91. 39. Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period: results from the Japanese registry obtained by the New TARGET system. International journal of hematology. 2019; 109: 426-39. 40. Kuo C-Y, Wang P-N, Hwang W-L, et al. Safety and efficacy of nilotinib in routine clinical practice in patients with chronic myeloid leukemia in chronic or accelerated phase with resistance or intolerance to imatinib: results from the NOVEL study. Therapeutic advances in hematology. 2018; 9: 65-78. 41. Chai-Adisaksopha C, Lam W, Hillis C. Major arterial events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a meta-analysis. Leukemia lymphoma. 2016; 57: 1300-10. 42. Fujioka I, Takaku T, Iriyama N, et al. Features of vascular adverse events in Japanese patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a retrospective study of the CML Cooperative Study Group database. Annals of hematology. 2018; 97: 2081-88. 43. Breccia M, Muscaritoli M, Aversa Z, et al. Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. Journal of Clinical Oncology. 2004; 22: 4653-55. 44. Agostino NM, Chinchilli VM, Lynch CJ, et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. Journal of Oncology Pharmacy Practice. 2011; 17: 197-202. 45. Fitter S, Vandyke K, Schultz CG, et al. Plasma adiponectin levels are markedly elevated in imatinib-treated chronic myeloid leukemia (CML) patients: a mechanism for improved insulin sensitivity in type 2 diabetic CML patients? The Journal of Clinical Endocrinology Metabolism. 2010; 95: 3763-67. 46. Lassila M, Allen TJ, Cao Z, et al. Imatinib attenuates diabetes-associated atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2004; 24: 935-42. 47. Masuda S, Nakano K, Funakoshi K, et al. Imatinib mesylate-incorporated nanoparticle-eluting stent attenuates in-stent neointimal formation in porcine coronary arteries. Journal of atherosclerosis and thrombosis. 2011: 1110110423-23. 48. Rea D, Mirault T, Cluzeau T, et al. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematologica. 2014; 99: 1197-203. 49. Breccia M, Muscaritoli M, Gentilini F, et al. Impaired fasting glucose level as metabolic side effect of nilotinib in non-diabetic chronic myeloid leukemia patients resistant to imatinib. Leukemia research. 2007; 31: 1770. 50. Manley PW, Drueckes P, Fendrich G, et al. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2010; 1804: 445-53. 51. Rix U, Hantschel O, Dürnberger G, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood, The Journal of the American Society of Hematology. 2007; 110: 4055-63. 52. Franco C, Hou G, Ahmad PJ, et al. Discoidin Domain Receptor 1 (Ddr1) Deletion Decreases Atherosclerosis by Accelerating Matrix Accumulation and Reducing Inflammation in Low-Density Lipoprotein Receptor–Deficient Mice. Circulation research. 2008; 102: 1202-11. 53. Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Further evaluation of pro-atherogenic and anti-angiogenic effects of nilotinib in mice and in patients with Ph-Chromosome+ CML. American Society of Hematology Washington, DC, 2014. 54. Alhawiti N, Burbury KL, Kwa FA, et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thrombosis research. 2016; 145: 54-64. 55. Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017; 31: 2388-97. 56. Sukegawa M, Wang X, Nishioka C, et al. The BCR/ABL tyrosine kinase inhibitor, nilotinib, stimulates expression of IL-1β in vascular endothelium in association with downregulation of miR-3p. Leukemia research. 2017; 58: 83-90. 57. Hadzijusufovic E, Kirchmair R, Theurl M, et al. Ponatinib exerts multiple effects on vascular endothelial cells: possible mechanisms and explanations for the adverse vascular events seen in CML patients treated with Ponatinib. American Society of Hematology Washington, DC, 2016. 58. Valent P, Sillaber C, Baghestanian M, et al. What have mast cells to do with edema formation, the consecutive repair and fibrinolysis? International archives of allergy and immunology. 1998; 115: 2-8. 59. Sillaber C, Baghestanian M, Bevec D, et al. The mast cell as site of tissue-type plasminogen activator expression and fibrinolysis. The Journal of Immunology. 1999; 162: 1032-41. 60. Valent P, Baghestanian M, Bankl H, et al. New aspects in thrombosis research: possible role of mast cells as profibrinolytic and antithrombotic cells. Thrombosis and haemostasis. 2002; 87: 786-90. 61. Olin JW, Sealove BA. Peripheral artery disease: current insight into the disease and its diagnosis and management. Mayo Clinic Proceedings: Elsevier, 2010. 62. Assunção PM, Lana TP, Delamain MT, et al. Cardiovascular risk and cardiovascular events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Clinical Lymphoma Myeloma and Leukemia. 2019; 19: 162-66. 63. Pagnano KB, Assunção PM, Zullli R, et al. Assessment of cardiovascular events in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors. American Society of Hematology Washington, DC, 2015. 64. Breccia M, Colafigli G, Molica M, et al. Cardiovascular risk assessments in chronic myeloid leukemia allow identification of patients at high risk of cardiovascular events during treatment with nilotinib. American journal of hematology. 2015; 90: E100-E01. 65. Breccia M, Molica M, Zacheo I, et al. Application of systematic coronary risk evaluation chart to identify chronic myeloid leukemia patients at risk of cardiovascular diseases during nilotinib treatment. Annals of hematology. 2015; 94: 393-97. 66. Rea D, Mirault T, Raffoux E, et al. Identification of patients (pts) with chronic myeloid leukemia (CML) at high risk of artery occlusive events (AOE) during treatment with the 2nd generation tyrosine kinase inhibitor (TKI) nilotinib, using risk stratification for cardiovascular diseases (CVD). American Society of Hematology Washington, DC, 2013. 67. Emir H, Albrecht-Schgoer K, Huber K, et al. Nilotinib exerts direct pro-atherogenic and anti-angiogenic effects on vascular endothelial cells: a potential explanation for drug-induced vasculopathy in CML. American Society of Hematology Washington, DC, 2013. 68. Rea D, Mirault T, Raffoux E, et al. Usefulness of the 2012 European CVD risk assessment model to identify patients at high risk of cardiovascular events during nilotinib therapy in chronic myeloid leukemia. Leukemia. 2015; 29: 1206-09. 69. Knickerbocker R, Dorer DJ, Haluska FG, et al. Impact of dose intensity of ponatinib on selected adverse events: multivariate analyses from a pooled population of clinical trial patients. Blood. 2014; 124: 4546. 70. Valent P, Hadzijusufovic E, Hoermann G, et al. Risk factors and mechanisms contributing to TKI-induced vascular events in patients with CML. Leukemia research. 2017; 59: 47-54. 71. Gugliotta G, Castagnetti F, Breccia M, et al. Rotation of nilotinib and imatinib for first‐line treatment of chronic phase chronic myeloid leukemia. American journal of hematology. 2016; 91: 617-22. 72. Valent P, Herndlhofer S, Schneeweiß M, et al. TKI rotation-induced persistent deep molecular response in multi-resistant blast crisis of Ph+ CML. Oncotarget. 2017; 8: 23061. 73. Anand S, Yusuf S, Xie C. Warfarin Antiplatelet Vascular Evaluation Trial Investigators. Oral anticoagulant and antiplatelet therapy and peripheral arterial disease. N Engl J Med. 2007; 357: 217-27. 74. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor–associated cardiovascular toxicity in chronic myeloid leukemia. Journal of clinical oncology. 2015; 33: 4210. 75. Caocci G, Mulas O, Abruzzese E, et al. Arterial occlusive events in chronic myeloid leukemia patients treated with ponatinib in the real‐life practice are predicted by the Systematic Coronary Risk Evaluation (SCORE) chart. Hematological oncology. 2019; 37: 296-302. 76. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research. 2011; 46: 399-424. 77. Suissa S, Moodie EE, Dell'Aniello S. Prevalent new‐user cohort designs for comparative drug effect studies by time‐conditional propensity scores. Pharmacoepidemiology and drug safety. 2017; 26: 459-68. 78. Lin H-MD, Lai C-L, Dong Y-H, et al. Re-evaluating Safety and Effectiveness of Dabigatran Versus Warfarin in a Nationwide Data Environment: A Prevalent New-User Design Study. Drugs-real world outcomes. 2019; 6: 93-104. 79. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical care. 2005: 1130-39. 80. Yang D, Dalton JE. A unified approach to measuring the effect size between two groups using SAS®. SAS global forum, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76871 | - |
| dc.description.abstract | 研究背景: 近期研究顯示使用新一代tyrosine kinase inhibitors (TKIs)會增加慢性骨髓性白血病(chronic myeloid leukemia, CML)病人發生血管栓塞副作用(vascular adverse events, VAEs)的風險,但目前多數觀察性研究因為人數較少、沒有排除曾有血管栓塞病史之病人等限制,無法進行穩固的統計推論。部分研究間之結果不一致,且缺少亞洲族群之相關研究。 研究目的: 本研究目的為分析臺灣CML病人,探討其血管栓塞事件發生率與一般病人族群之差異,並以incident new user design探討使用不同種類TKIs是否會影響血管栓塞副作用的發生率,再進一步使用羅吉斯迴歸分析可能存在之危險因子。另外,本研究亦使用prevalent new user design探討曾經使用過一線imatinib而後改用新一代TKI之CML病人,其血管栓塞副作用發生率之差異。 研究方法: 本研究為一回溯性世代研究,使用衛生福利部資料科學中心臺灣健保資料庫以及癌症登記檔做為資料蒐集來源。本研究納入癌症登記檔中,於2008年至2016年間新診斷為CML,且新使用TKI藥物之病人作為研究族群。本研究將分三部分進行:第一部分中,每位CML病人將依照出生年份、性別及處方年份,與五位一般病人族群做配對。接著,本研究將針對兩組間之血管栓塞事件發生率進行統計分析。本研究之第二部分及第三部分,將著重於探討使用不同種類的TKI對於日後血管栓塞副作用發生率之影響,並分別使用incident new user design及prevalent new user design之研究設計進行配對及統計分析。於incident new user design中,CML病人將依照一線所使用的TKI種類分為三組(imatinib、nilotinib或dasatinib),接著每位nilotinib使用者及dasatinib使用者再分別以傾向分數與n位imatinib使用者做配對(n ≤ 2)。於prevalent new user design當中,所有曾經使用過nilotinib或dasatinib者,包含一線或二線使用者,會分別以先前imatinib暴露狀態與傾向分數,與imatinib使用者做配對。 於前三部分配對成功之病人則進入研究結果之分析。本研究將使用multivariable logistic regression,探討CML病人與一般病人族群對於血管栓塞事件之影響,並使用Cox proportional hazard ratio model以及Kaplan-Meier存活曲線,分析不同種類之TKI對於血管栓塞副作用發生率之影響。最後,再使用univariable及multivariable logistic regression,分析可能存在之危險因子。 研究結果: 本研究共收納1,111位CML病人,追蹤時間中位數約為2.2年。在本研究的第一部分,共有5,555位一般病人族群成功與1,111位CML病人進行配對,但在multivariable logistic regression當中,CML病人族群並不會增加血管栓塞事件的風險,反而有降低的趨勢,與一般病人族群相比,風險比為0.63 (95% CI 0.47-0.86, p < 0.01)。 本研究incident new user design中,經過傾向分數配對後,imatinib與dasatinib之發生率分別為7.4/千人年及15.3/千人年,dasatinib之風險比為1.71 (95% CI: 0.71-4.26, p = 0.23),顯示dasatinib可能增加發生血管栓塞副作用之風險,但未達統計上的顯著差異。imatinib與nilotinib之發生率則分別為5.8/千人年與19.2/千人年,nilotinib之風險比為3.13(95% CI: 1.30 – 7.51, p = 0.01),顯示nilotinib確實會顯著增加CML病人發生血管栓塞副作用之風險。 本研究prevalent new user design中,經過兩階段配對後,imatinib與nilotinib之粗發生率則分別為10.2/千人年及21.0/千人年,經校正後之nilotinib發生率比為0.79 (95% CI: 0.15-4.25, p = 0.78),nilotinib prevalent new user似乎有較低的血管栓塞副作用發生風險,但並未達統計上的顯著差異。imatinib與dasatinib之粗發生率分別為8.0/千人年及15.2/千人年,經校正後之dasatinib發生率比為0.04 (95% CI: 0.00-∞, p = 0.98),但因人數及血管栓塞事件數過少,導致信賴區間過寬。 在multivariable logistic regression當中,除了nilotinib之外,僅年齡及腦血管疾病相關病史會顯著增加發生血管栓塞副作用之風險,年齡每增加一歲之風險比為1.04 (95% CI 1.01-1.06, p<0.01),而具有腦血管病史者之風險比為3.49 (95% CI 1.19-10.30, p=0.02)。 研究結論: CML病人族群之血管栓塞副作用發生率較一般病人族群顯著較低。但在incident new user design當中,使用新一代TKI,尤其是nilotinib,確實會顯著增加發生血管栓塞副作用的風險,dasatinib也會增加血管栓塞副作用發生的風險,但並未達顯著差異。在prevalent new user design中,nilotinib與dasatinib使用者的血管栓塞副作用粗發生率,皆較imatinib使用者高,但經校正後的發生率比及風險比則因為血管栓塞事件數過少,無法進一步進行穩固的統計推論。危險因子的部分,本研究發現除了nilotinib之外,年齡及腦血管疾病病史會顯著增加血管栓塞副作用的發生風險。 | zh_TW |
| dc.description.abstract | Backgrounds: Tyrosine kinase inhibitors (TKIs) have shown long-term survival benefits in chronic myeloid leukemia (CML) patients. Nevertheless, significant concern has been raised regarding the long-term TKIs associated vascular adverse events (VAEs). Objectives: The objective of this retrospective cohort study is to investigate the incidence of VAEs in Taiwanese CML patients treated with different TKIs (imatinib, nilotinib, and dasatinib). Two different study designs, the incident new user design and the prevalent new user design, were adopted. The incidence of VAEs in CML patients compared to general patient population were also analyzed. The potential risk factors were identified by conducting multivariable logistic regression. We also discussed about the incidence of VAEs in prevalent new users. Methods: We conducted a retrospective cohort study using Taiwan Cancer Registry (TCR) and National Health Insurance Research Database (NHIRD). Adult patients diagnosed with CML during 2008 to 2016 were identified from TCR. In our first analysis, each CML patients was matched to 5 general patients by birth year, sex, and prescription year. We compared incidence of VAEs between CML patients and general patients. In the second and third analysis, incidence of VAEs between different TKI users were assessed using two study design: incident new user design and prevalent new user design. In the incident new user design, CML patients were categorized into three groups according to their first-line TKI treatment (imatinib, nilotinib, and dasatinib). Nilotinib users and dasatinib users were separately matched to imatinib users by 1:n (n≤2) propensity score matching. In the prevalent new user design, patients initiated nilotinib/dasatinib, including the incident new users and the prevalent new users, were separately matched to imatinib users according to previous imatinib exposure condition and propensity score. Successfully matched patients in every parts of our study were qualified for outcome analyses. Outcome were assessed by using Cox proportional hazard model and Kaplan-Meier survival curves. Logistic regressions were used to investigate potential risk factors. Results: A total of 1,111 CML patients treated with first-line imatinib, nilotinib, and dasatinib, were identified (mean age: 48.9 years; female: 41.7%) and followed for a median of 2.2 years. In the first part of our study, the incidence of VAEs in general patient population is significantly lower than that of CML patients, with hazard ratio of 0.63 (95% CI 0.47-0.86, p < 0.01). In the incident new user design, after propensity score matching, the incidence of VAEs for dasatinib (15.3 per 1000 person-years vs. imatinib 7.4 per 1000 person-years) and nilotinib (19.2 per 1000 person-years vs. imatinib 5.8 per 1000 person-years) were significantly higher than imatinib. The hazard ratio of dasatinib and nilotinib were 1.71 (95% CI: 0.71-4.26, p = 0.23) and 3.13 (95% CI: 1.30-7.51, p = 0.01) as compared to imatinib. In multivariable logistic regression, older age (IRR: 1.04 for each year increase in age, p<0.01) and history of cerebrovascular diseases (IRR: 3.49, p=0.02) were associated with increased risk of VAEs. In the prevalent new user design, after two-stage matching, the crude incidence of VAEs for nilotinib (21.0 per 1000 person-years vs. imatinib 10.2 per 1000 person-years) were non-significantly higher than imatinib, with adjusted incidence rate ratio of 0.79 (95% CI 0.15-4.25, p = 0.78). The crude incidence of VAEs in dasatinib (15.2 per 1000 person-years vs. imatinib 8.0 per 1000 person-years) is non-significantly higher than imatinib, with adjusted incidence rate ratio of 0.04 (95% CI 0.00-∞, p = 0.78). Conclusions: The risk of VAEs in CML patients treated with TKI is significantly lower than that of general patient population. Second generation TKIs, particularly nilotinib, were associated with higher incidence rate of VAEs as compared with imatinib in incident new user design. In prevalent new user design, nilotinib and dasatinib were associated with lower incidence rate of VAEs, although the number of VAEs were so low that a robust analysis was not available. Potential risk factors of TKIs-associated VAEs include older age and history of cerebrovascular diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:06Z (GMT). No. of bitstreams: 1 U0001-1208202016121500.pdf: 4863027 bytes, checksum: a1480e2a5695caf1e07d98405e3f0165 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝辭 i 中文摘要 ii Abstract v 目錄 vii 表目錄 x 圖目錄 xii 附件目錄 xiii 第一章 前言 1 第一節 研究背景與現況 1 第二節 研究目的 2 第二章 文獻探討 3 第一節 慢性骨髓性白血病(CML, chronic myeloid leukemia) 3 2.1.1 流行病學 3 2.1.2 病理機轉、危險因子、分期與預後評估分數 3 2.1.3 治療概況及疾病監測 4 第二節 酪氨酸激酶抑制劑(TKI, tyrosine kinase inhibitor) 6 2.2.1 臨床療效 6 2.2.2 副作用 7 2.2.3 臺灣TKI健保給付現況 7 第三節 TKI引起之血管相關副作用(VAE, vascular adverse events) 8 2.3.1 發生率 8 2.3.2 流行病學 13 2.3.3 可能致病機轉與危險因子 14 2.3.4 藥物、非藥物治療、預防措施與復發率 16 第三章 研究方法 24 第一節 研究材料 24 第二節 研究設計與研究族群 24 3.2.1 一般病人族群與CML病人血管栓塞副作用發生率之差異 24 3.2.2 Incident new users 26 3.2.3 Prevalent new users 28 3.2.4 研究終點及追蹤期間定義 34 第三節 研究變項 39 2.3.1 病人基本特性 39 2.3.2 主要探討藥物-TKI對VAE發生率之影響與其他危險因子 43 第四節 統計分析 44 3.4.1 描述性統計分析 44 3.4.2 研究終點事件之推論性統計與危險因子 44 3.4.3 統計分析軟體 44 第四章 研究結果 45 第一節 研究族群之建立 45 4.1.1 CML病人與一般病人族群 45 4.1.2 Incident new users 47 4.1.3 Prevalent new users 48 第二節 研究族群之基本特性分析 51 4.2.1 CML病人與一般病人族群 51 4.2.2 Incident new users 53 4.2.3 Prevalent new users 60 第三節 TKI-associated VAE發生率 67 4.2.1 CML病人與一般病人族群 67 4.2.2 Incident new users 69 4.2.3 Prevalent new users 75 第四節 TKI-associated VAE其他相關危險因子 77 第五節 Sensitivity analysis 79 第五章 討論與結論 83 第一節 CML病人與一般病人族群 83 第二節 使用不同種TKI對其後續發生VAE之影響 85 5.2.1 Incident new users 85 5.2.2 Prevalent new users 88 第三節 其他可能影響TKI-associated VAE發生率之危險因子 89 第四節 研究特色及限制 90 6.6.1研究優點及特色 90 6.6.2研究限制 91 第五節 結論與建議 92 參考文獻 93 第六章 附錄 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 血管栓塞副作用 | zh_TW |
| dc.subject | 酪氨酸激酶抑制劑 | zh_TW |
| dc.subject | 慢性骨髓性白血病 | zh_TW |
| dc.subject | 新上市藥品新使用者研究設計 | zh_TW |
| dc.subject | prevalent new user design | en |
| dc.subject | vascular adverse events | en |
| dc.subject | tyrosine kinase inhibitors | en |
| dc.subject | chronic myeloid leukemia | en |
| dc.title | 臺灣慢性骨髓性白血病病人使用酪氨酸激酶抑制劑與血管栓塞事件之相關性 | zh_TW |
| dc.title | Tyrosine Kinase Inhibitors-associated Vascular Adverse Events among Chronic Myeloid Leukemia Patients in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文鍾(Wen-Jone Chen),柯博升(Bor-Sheng Ko),陳建煒(Kin-Wei Chan) | |
| dc.subject.keyword | 慢性骨髓性白血病,酪氨酸激酶抑制劑,血管栓塞副作用,新上市藥品新使用者研究設計, | zh_TW |
| dc.subject.keyword | chronic myeloid leukemia,tyrosine kinase inhibitors,vascular adverse events,prevalent new user design, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU202003119 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
| Appears in Collections: | 臨床藥學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1208202016121500.pdf Restricted Access | 4.75 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
