請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76865完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 董桂書(Kuei-Shu Tung) | |
| dc.contributor.author | Yun-Hsuan Lin | en |
| dc.contributor.author | 林昀暄 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:57Z | - |
| dc.date.available | 2021-07-10T21:38:57Z | - |
| dc.date.copyright | 2020-09-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science (New York, NY) 309 (5737):1052-1056. doi:10.1126/science.1115983 Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell 28:500-512 Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant journal : for cell and molecular biology 57 (3):426-435. doi:10.1111/j.1365-313X.2008.03695.x Castro Marin I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D (2011) Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233 (3):539-552. doi:10.1007/s00425-010-1316-5 Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major Alterations of the Regulation of Root NO3- Uptake Are Associated with the Mutation of Nrt2.1 and Nrt2.2 Genes in Arabidopsis. Plant physiology 127 (1):262-271 Cheng JZ, Zhou YP, Lv TX, Xie CP, Tian CE (2017) Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol Mol Biol Plants 23 (3):477-485. doi:10.1007/s12298-017-0458-3 Cheng LH (2010) Functional study of Arabidopsis AtNRT1.13. Master thesis, National Twaiwan University, Twaiwan Chou YT (2012) The role of CIPK8 in nitrate sensing. Master thesis, National Taiwan University, Taiwan Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science (New York, NY) 317 (5827):1030-1033. doi:10.1126/science.1141752 Crawford NM (1995) Nitrate: Nutrient and Signal for Plant Growth. Plant Cell 7:859-868 Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trend in Plant Science 3 (10):389-395 Filleura S, Dorbea MF, Cerezob M, Orsela M, Granierc F, Gojonb A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489 (2-3):220-224. doi:10.1016/s0014-5793(01)02096-8 Gras DE, Vidal EA, Undurraga SF, Riveras E, Moreno S, Dominguez-Figueroa J, Alabadi D, Blazquez MA, Medina J, Gutierrez RA (2018) SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. J Exp Bot 69 (3):619-631. doi:10.1093/jxb/erx423 Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, Ye D, Crawford NM (2017) Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci U S A 114 (9):2419-2424. doi:10.1073/pnas.1615676114 Guilbaud CS, Dalchau N, Purves DW, Turnbull LA (2015) Is 'peak N' key to understanding the timing of flowering in annual plants? New Phytol 205 (2):918-927. doi:10.1111/nph.13095 Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. The Plant journal : for cell and molecular biology 46 (2):183-192. doi:10.1111/j.1365-313X.2006.02686.x Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138 (6):1184-1194. doi:10.1016/j.cell.2009.07.004 Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, Huang X, Yu F, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C (2019) Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants. doi:10.1038/s41477-019-0384-1 Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant journal : for cell and molecular biology 57 (2):264-278. doi:10.1111/j.1365-313X.2008.03685.x Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and Functional Characterization of an Arabidopsis Nitrate Transporter Gene That Encodes a Constitutive Component of Low-Affinity Uptake. Plant Cell 11:1381-1392 Jung JH, Ju Y, Seo PJ, Lee JH, Park CM (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant journal : for cell and molecular biology 69 (4):577-588. doi:10.1111/j.1365-313X.2011.04813.x Jung JH, Lee HJ, Ryu JY, Park CM (2016) SPL3/4/5 Integrate Developmental Aging and Photoperiodic Signals into the FT-FD Module in Arabidopsis Flowering. Molecular plant 9 (12):1647-1659. doi:10.1016/j.molp.2016.10.014 Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in arabidopsis. PLoS genetics 7 (3):e1002021. doi:10.1371/journal.pgen.1002021 Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Brehaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A (2012) The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24 (1):245-258. doi:10.1105/tpc.111.092221 Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 4:1617. doi:10.1038/ncomms2621 Konishi M, Yanagisawa S (2019) The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression. BMC Plant Biol 19 (1):90. doi:10.1186/s12870-019-1692-3 Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. The Plant journal : for cell and molecular biology 55 (5):832-843. doi:10.1111/j.1365-313X.2008.03552.x Leran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19 (1):5-9. doi:10.1016/j.tplants.2013.08.008 Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A (2014) The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. The Plant journal : for cell and molecular biology 80 (2):230-241. doi:10.1111/tpj.12626 Lin YH (2018) NRT1.13 Mediated Regulatory Mechanism of Flowering. Bachelor thesis, National Chung Hsing University, Taiwan Lin YL, Tsay YF (2017) Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. Journal of Experimental Botany 68 (10):2603-2609. doi:10.1093/jxb/erx053 Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, Kurai T, Ueda Y, Sakakibara H, Yanagisawa S (2018) A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat Commun 9 (1):1376. doi:10.1038/s41467-018-03832-6 Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17 (12):1055-1060. doi:10.1016/j.cub.2007.05.009 Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7 (7):e1000148. doi:10.1371/journal.pbio.1000148 Michaels SD, Amasino RM (1999) FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell 11 (5):949-956. doi:10.1105/tpc.11.5.949 Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C Activity Eliminates the Late-Flowering Phenotype of FRIGIDA and Autonomous Pathway Mutations but Not Responsiveness to Vernalization. Plant Cell 13 (4):935-941. doi:10.1105/tpc.13.4.935 Mutasa-Gottgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60 (7):1979-1989. doi:10.1093/jxb/erp040 Ogawa K, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of Glutathione Is Regulated by ATP-dependent Ligation of Glutamate and Cysteine Through Photosynthesis in Arabidopsis Thaliana: Mechanism of Strong Interaction of Light Intensity With Flowering. Plant Cell Physiol 45 (1):1-8. doi:10.1093/pcp/pch008 Olas JJ, Van Dingenen J, Abel C, Dzialo MA, Feil R, Krapp A, Schlereth A, Wahl V (2019) Nitrate acts at the Arabidopsis thaliana shoot apical meristem to regulate flowering time. New Phytol. doi:10.1111/nph.15812 Poethig RS (1990) Phase Change and the Regulation of Shoot Morphogenesis in Plants. Science (New York, NY) 250 (4983):923-930 Rahayu YS, Walch-Liu P, Neumann G, Romheld V, von Wiren N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3--induced stimulation of leaf growth. J Exp Bot 56 (414):1143-1152. doi:10.1093/jxb/eri107 Richter R, Behringer C, Muller IK, Schwechheimer C (2010) The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24 (18):2093-2104. doi:10.1101/gad.594910 Ryu JY, Lee HJ, Seo PJ, Jung JH, Ahn JH, Park CM (2014) The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Molecular plant 7 (2):377-387. doi:10.1093/mp/sst114 Sato T, Maekawa S, Yasuda S, Sonoda Y, Katoh E, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Goto DB, Ikeda A, Yamaguchi J (2009) CNI1/ATL31, a RING-type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. The Plant journal : for cell and molecular biology 60 (5):852-864. doi:10.1111/j.1365-313X.2009.04006.x Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20 (7):898-912. doi:10.1101/gad.373506 Seligman K, Saviani EE, Oliveira HC, Pinto-Maglio CA, Salgado I (2008) Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant Cell Physiol 49 (7):1112-1121. doi:10.1093/pcp/pcn089 Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18 (10):575-583. doi:10.1016/j.tplants.2013.05.003 Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development (Cambridge, England) 124 (3):645-654 Teng Y, Liang Y, Wang M, Mai H, Ke L (2019) Nitrate Transporter 1.1 is involved in regulating flowering time via transcriptional regulation of FLOWERING LOCUS C in Arabidopsis thaliana. Plant Sci 284:30-36. doi:10.1016/j.plantsci.2019.04.002 Tsukaya H, Shoda K, Kim GT, Uchimiya H (2000) Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta 210 (4):536-542. doi:10.1007/s004250050042 Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573-594. doi:10.1146/annurev.arplant.59.032607.092755 Usami T, Horiguchi G, Yano S, Tsukaya H (2009) The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development (Cambridge, England) 136 (6):955-964. doi:10.1242/dev.028613 Wang JW (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65 (17):4723-4730. doi:10.1093/jxb/eru246 Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY Controls Floral Meristem Identity in Arabidopsis. Cell 69 (5):843-859. doi:10.1016/0092-8674(92)90295-n Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138 (4):750-759. doi:10.1016/j.cell.2009.06.031 Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development (Cambridge, England) 133 (18):3539-3547. doi:10.1242/dev.02521 Wu JJ (2017) The downstream mechanisms of NRT1.13 in flowering regulation. . Master thesis, National Taiwan University, Taiwan Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46 (8):1175-1189. doi:10.1093/pcp/pci151 Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y, Bi YM, Provart N, Guttman D, Krapp A, Rothstein SJ, Nambara E (2016) NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat Commun 7:13179. doi:10.1038/ncomms13179 Yuan S, Zhang ZW, Zheng C, Zhao ZY, Wang Y, Feng LY, Niu G, Wang CQ, Wang JH, Feng H, Xu F, Bao F, Hu Y, Cao Y, Ma L, Wang H, Kong DD, Xiao W, Lin HH, He Y (2016) Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proc Natl Acad Sci U S A 113 (27):7661-7666. doi:10.1073/pnas.1602004113 Zhao L, Zhang W, Yang Y, Li Z, Li N, Qi S, Crawford NM, Wang Y (2018) The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium. Sci Rep 8 (1):1487. doi:10.1038/s41598-018-20038-4 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76865 | - |
| dc.description.abstract | 硝酸鹽不僅是植物的主要氮源,更是調節開花的重要信號分子。硝酸鹽轉運蛋白NRT1.13是一個硝酸鹽感應蛋白,可在低硝酸鹽條件下促進開花。此外,在酵母菌雙雜合試驗中,它與硝酸鹽信號相關的蛋白:磷酸激酶CIPK8、CIPK23和轉錄因子NLP2、NLP7產生交互作用。為了探討硝酸鹽如何及何時參與開花,我們在正常以及低硝酸鹽條件下觀察野生型、nrt1.13、cipk8、cipk23、nlp2和nlp7的開花表型以及幼年期至成年期的轉換時間。結果顯示在低硝酸鹽條件下,野生型在藉由延長幼年期而延遲開花,nrt1.13和nlp7則是透過延長成年期來影響開花。cipk8和nlp2雖然提早開花但他們的開花時間不受硝酸鹽所調控,而cipk23的開花時間則與野生型無異。 此外,為了了解硝酸鹽所調控的開花路徑,我們在nrt1.13,野生型和nlp7中分析已知開花相關基因,例如FLC,FT和SPL3的表現情形。結果顯示,FLC 在nrt1.13葉片及莖頂分生組織SAM的表現量均增加。值得注意的是,在nrt1.13葉片中,FLC受低硝酸鹽的誘導更為顯著。這表示NRT1.13可以在葉片中監測硝酸鹽含量,並通過抑制葉片中的FLC來促進開花。 在低硝酸鹽環境下的野生型葉片中,FLC表現量上升,而FT表現量下降。然而,FT的反應早於FLC。這表示除了NRT1.13所調控的路徑外,低硝酸鹽也透過其他未知的路徑抑制FT並延遲開花。 在低硝酸鹽條件下的nlp7中,我們並沒有找到在葉片中被調控的基因,但在莖頂分生組織SAM中,我們發現SPL3表現量上升的速度變慢,此現象合乎nlp7只在低硝酸鹽條件下延後開花的表現型。這表示NLP7可能透過加速表現莖頂分生組織SAM中SPL3表現而促進開花,進而對低硝酸鹽環境做出適當反應。 在本篇研究中,我們發現硝酸鹽透過NRT1.13和NLP7調節開花,在此之外仍有其他未知途徑參與其中,這也反映出硝酸鹽調控的開花機制是相當複雜的。 | zh_TW |
| dc.description.abstract | Nitrate is not only a major N source of plants but also a vital signaling molecule regulating flowering. NRT1.13 is a putative nitrate sensor and promotes flowering at low nitrate. Yeast-two hybrid assays showed that NRT1.13 interacts with CIPK8, CIPK23, NLP2 and NLP7, the regulators in nitrate signaling pathway. To verify how and when nitrate participates in flowering control, the flowering phenotype and vegetative phase change of wild type, nrt1.13, cipk8, cipk23, nlp2 and nlp7 were examined under normal or low nitrate conditions. The results show that wild type delays flowering at low nitrate through prolonging juvenile stage. Compared to wild type, nrt1.13 and nlp7 delay flowering especially at low nitrate through prolonging adult stage. However, the flowering of cipk8 and nlp2 are earlier but nitrate-independent, while flowering of cipk23 is similar to wild type. In addition, we monitored temporal and spatial expression changes of floral-related genes in nrt1.13, wild type and nlp7 to uncover the nitrate-regulatory pathways. The results show that compared to wild type, FLC expression increased in nrt1.13 in both leaf and SAM. It is worth noting that in leaf, the increase at low nitrate was more obvious in nrt1.13. This suggests that NRT1.13 could monitor low nitrate then promotes flowering through repressing FLC expression in leaf. In wild type, FLC expression was up-regulated and FT expression was down-regulated in leaf under low nitrate condition; however, the major difference of FT expression was previous to that of FLC expression. This implied that apart from NRT1.13-dependent pathway, low nitrate postpones flowering through other unidentified pathways, which repressing FT expression in leaf. In nlp7, expression of the genes examined show no differences in leaf. In SAM, the ascending rate of SPL3 became slow under low nitrate condition, corresponding to the nitrate-dependently late flowering phenotype. This suggests that NLP7 responds to low nitrate then promotes flowering through accelerates SPL3 expression in SAM. In this study, we found that nitrate regulates flowering through NRT1.13-dependent and NLP7-dependent pathways; behind these, there are still other unidentified pathways. This demonstrates that nitrate regulates flowering through multiple mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:57Z (GMT). No. of bitstreams: 1 U0001-1208202023090000.pdf: 9854636 bytes, checksum: 64a70610efba45d2170f80bfe54f5f2e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Table of contents v List of Tables and Figures viii 1. Introduction 1 1-1. Nitrate is an essential nutrient and signaling molecule for plants 1 1-2. CHL1 acts as a nitrate transceptor in root 1 1-3. NRT1.13 monitors the internal nitrate condition in shoot 2 1-4. NLPs act as master regulators in nitrate signaling 3 1-5. CIPK8, NLP2 and NLP7 can interact with NRT1.13 and display flowering phenotypes when mutated 5 1-6. Shoot development and flowering control 6 1-7. Nitrate regulates flowering time 7 1-8. Aim of this study 9 2. Material and method 11 2-1. Plant material 11 2-2. Growth condition 11 2-3. Flowering phenotype, vegetative phase change and leaf initiation rate 12 2-4. RNA expression analysis 13 2-4-1. RNA extraction 13 2-4-2. Quantitative RT PCR analysis 13 2-5. Statistical analysis 15 3. Results 17 3-1. Nitrate regulate flowering 17 3-1-1. Late flowering phenotype at low nitrate is due to the postponement of the vegetative phase change 17 3-1-2. The expression levels of CRY1, CO and SMZ were not nitrate-dependent 18 3-1-3. Low nitrate enhances FLC expression in both leaf and SAM 18 3-1-4. Low nitrate alters the expression of FT and FD in leaf 19 3-1-5. Low nitrate represses SOC1, LFY and AP1 in SAM 21 3-2. NRT1.13 may sense nitrate availability and regulate flowering 22 3-2-1. Late flowering phenotype of nrt1.13 at low nitrate is due to prolonging the adult stage 22 3-3. NRT1.13 positively regulates flowering time through regulating FLC and FT in leaf as well as FLC, SPL3, LFY and AP1 in SAM 23 3-4. CIPK8 regulates flowering 26 3-4-1. The early flowering phenotype of cipk8-1 may due to the shortened adult stage 26 3-4-2. CIPK8 and NRT1.13 regulate flowering through distinct pathways 27 3-5. CIPK8 postpones flowering time through regulating FT and FD in leaf as well as FLC, SPL3, LFY and AP1 in SAM 28 3-5-1. Functional CIPK23 is required for the late flowering phenotype of nrt1.13 29 3-5-2. The early flowering phenotype of nlp2 at normal nitrate is due to the shortened adult stage 30 3-6. NLP7 regulates flowering 31 3-6-1. The prolonged adult stage in nlp7 results in delayed flowering at low nitrate 31 3-7. NLP7 repress FD in leaf and induce several meristematic genes to promote flowering 33 4. Discussion 35 4-1. Nitrate availability plays an important role in flowering 35 4-2. CRY1, CO and SMZ is not required for nitrate-dependent modulation of flowering under neutral day 36 4-3. The hypothesis of nitrate-regulatory flowering pathway 37 4-4. NRT1.13 senses internal nitrate and regulates flowering pathway via FLC 39 4-5. CIPK8 regulates the flowering pathway in leaf via FT 41 4-6. NLP7 promote flowering via SPL3 in response to low nitrate 42 5. Reference 45 6. Appendix 123 | |
| dc.language.iso | en | |
| dc.subject | 莖頂分生組織 | zh_TW |
| dc.subject | 硝酸鹽 | zh_TW |
| dc.subject | NRT1.13 | zh_TW |
| dc.subject | NLP7 | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | 葉子 | zh_TW |
| dc.subject | flowering | en |
| dc.subject | nitrate | en |
| dc.subject | NLP7 | en |
| dc.subject | SAM | en |
| dc.subject | leaf | en |
| dc.subject | NRT1.13 | en |
| dc.title | 探討硝酸鹽調控開花的路徑 | zh_TW |
| dc.title | Regulatory Pathways of Nitrate in Flowering Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡宜芳(Yi-Fang Tsay) | |
| dc.contributor.oralexamcommittee | 余天心(Tien-Shin Yu),王雅筠(Ya-Yun Wang) | |
| dc.subject.keyword | 硝酸鹽,NRT1.13,NLP7,開花,葉子,莖頂分生組織, | zh_TW |
| dc.subject.keyword | nitrate,NRT1.13,NLP7,flowering,leaf,SAM, | en |
| dc.relation.page | 124 | |
| dc.identifier.doi | 10.6342/NTU202003169 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202023090000.pdf 未授權公開取用 | 9.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
