Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76860
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠(Ru-Jong Jeng)
dc.contributor.authorKuan-Ting Chenen
dc.contributor.author陳冠廷zh_TW
dc.date.accessioned2021-07-10T21:38:50Z-
dc.date.available2021-07-10T21:38:50Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation1. Geyer, R.; Jambeck, J. R.; Law, K. L., Production, use, and fate of all plastics ever made. Science advances 2017, 3 (7), e1700782.
2. Anastas, P.; Eghbali, N., Green chemistry: principles and practice. Chemical Society Reviews 2010, 39 (1), 301-312.
3. Achilias, D.; Roupakias, C.; Megalokonomos, P.; Lappas, A.; Antonakou, Ε., Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of hazardous materials 2007, 149 (3), 536-542.
4. Al-Salem, S.; Lettieri, P.; Baeyens, J., Recycling and recovery routes of plastic solid waste (PSW): A review. Waste management 2009, 29 (10), 2625-2643.
5. Kim, W. B.; Joshi, U. A.; Lee, J. S., Making polycarbonates without employing phosgene: An overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate. Industrial engineering chemistry research 2004, 43 (9), 1897-1914.
6. Elmaghor, F.; Zhang, L.; Fan, R.; Li, H., Recycling of polycarbonate by blending with maleic anhydride grafted ABS. Polymer 2004, 45 (19), 6719-6724.
7. Montaudo, G.; Puglisi, C.; Samperi, F., Thermal decomposition processes in polycarbonates. Polymer degradation and stability 1989, 26 (3), 285-304.
8. Gobin, K.; Manos, G., Thermogravimetric study of polymer catalytic degradation over microporous materials. Polymer degradation and Stability 2004, 86 (2), 225-231.
9. Antonakou, E.; Achilias, D., Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste and Biomass Valorization 2013, 4 (1), 9-21.
10. Hata, S.; Goto, H.; Yamada, E.; Oku, A., Chemical conversion of poly (carbonate) to 1, 3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer 2002, 43 (7), 2109-2116.
11. Lin, W.-H.; Guo, Y.-S.; Dai, S. A., An efficient one-pot synthesis of aliphatic diisocyanate from diamine and aiphenyl carbonate. Journal of the Taiwan Institute of Chemical Engineers 2015, 50, 322-327.
12. Wu, C.-H.; Chen, L.-Y.; Jeng, R.-J.; Dai, S. A., 100% atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustainable Chemistry Engineering 2018, 6 (7), 8964-8975.
13. Caplow, M., Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society 1968, 90 (24), 6795-6803.
14. Lu, Q. W.; Hoye, T. R.; Macosko, C. W., Reactivity of common functional groups with urethanes: models for reactive compatibilization of thermoplastic polyurethane blends. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (14), 2310-2328.
15. Yang, W.; Macosko, C.; Wellinghoff, S., Thermal degradation of urethanes based on 4, 4′-diphenylmethane diisocyanate and 1, 4-butanediol (MDI/BDO). Polymer 1986, 27 (8), 1235-1240.
16. Joel, D.; Hauser, A., Thermal dissociation of urethanes studied by FTIR spectroscopy. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 1994, 217 (1), 191-199.
17. Myers, R. R.; Long, J. S., Treatise on coatings. M. Dekker: 1967.
18. Jiao, L.; Xiao, H.; Wang, Q.; Sun, J., Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polymer Degradation and Stability 2013, 98 (12), 2687-2696.
19. May, C., Epoxy resins: chemistry and technology. Routledge: 2018.
20. Ellis, B., Chemistry and technology of epoxy resins. Springer: 1993.
21. Chen, Y.-C.; Chiu, W.-Y., Polymer chain buildup and network formation of imidazole-cured epoxy/phenol resins. Macromolecules 2000, 33 (18), 6672-6684.
22. Biernath, R. W.; Soane, D. S., Cure Kinetics of Epoxy Cresol Novolac Encapsulant for Microelectronics Packaging. In Advances in New Materials, Springer: 1992; pp 103-159.
23. Lin, C.-M.; Chen, C.-H.; Lin, C.-H.; Su, W. C.; Juang, T.-Y., Using Dicyclopentadiene-Derived Polyarylates as Epoxy Curing Agents To Achieve High T g and Low Dielectric Epoxy Thermosets. ACS omega 2018, 3 (4), 4295-4305.
24. Han, S.; Gyu Yoon, H.; Suh, K. S.; Gun Kim, W.; Jin Moon, T., Cure kinetics of biphenyl epoxy‐phenol novolac resin system using triphenylphosphine as catalyst. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37 (6), 713-720.
25. Ren, S.-p.; Lan, Y.-x.; Zhen, Y.-q.; Ling, Y.-d.; Lu, M.-g., Curing reaction characteristics and phase behaviors of biphenol type epoxy resins with phenol novolac resins. Thermochimica acta 2006, 440 (1), 60-67.
26. GHAEMI, M.; RAH, P. G.; Behmadi, H., Effect of triphenylphosphine on the cure reaction and thermal stability of diglycidyl ether of bisphenol A-based epoxy resin. 2008.
27. Dell'Erba, I. E.; Williams, R. J. J., Homopolymerization of epoxy monomers initiated by 4‐(dimethylamino) pyridine. Polymer Engineering Science 2006, 46 (3), 351-359.
28. Chen, C. H.; Tsai, Y. L.; Jeng, R. J.; Lin, C. H., Identification of the reaction mechanism between phenyl methacrylate and epoxy and its application in preparing low-dielectric epoxy thermosets with flexibility. Polymer 2018, 140, 225-232.
29. Han, J.; Chern, Y.; Hsieh, K.; Chiu, W.; Ma, C., Kinetics of curing reaction of urethane function on base‐catalyzed epoxy reaction. Journal of applied polymer science 1998, 68 (1), 121-127.
30. Li, M.-S.; Ma, C.-C. M.; Lin, M.-L.; Lu, M.-S.; Chen, J.-L.; Chang, F.-C., The mechanism and model reactions of epoxy-polycarbonate blends cured with aliphatic amine. Polymer 1997, 38 (4), 845-853.
31. Edwards, P. A.; Striemer, G.; Webster, D. C., Novel polyurethane coating technology through glycidyl carbamate chemistry. JCT research 2005, 2 (7), 517-527.
32. Harkal, U. D.; Muehlberg, A. J.; Webster, D. C., Linear glycidyl carbamate (GC) resins for highly flexible coatings. Journal of Coatings Technology and Research 2013, 10 (2), 141-151.
33. Harkal, U. D.; Muehlberg, A. J.; Edwards, P. A.; Webster, D. C., Novel water-dispersible glycidyl carbamate (GC) resins and waterborne amine-cured coatings. Journal of coatings technology and research 2011, 8 (6), 735.
34. Harkal, U. D.; Muehlberg, A. J.; Webster, D. C., UV curable glycidyl carbamate based resins. Progress in Organic Coatings 2012, 73 (1), 19-25.
35. Edwards, P. A.; Striemer, G.; Webster, D. C., Synthesis, characterization and self-crosslinking of glycidyl carbamate functional resins. Progress in organic coatings 2006, 57 (2), 128-139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76860-
dc.description.abstract本研究探討以回收聚碳酸酯(Polycarbonate, PC)為原料,利用胺解法製成反應含酚末端基之氨基甲酸酯中間體後,透過選擇適合之觸媒並搭配市售環氧單體,製成熱塑性聚合物環氧樹脂。將此具有羥基的中間體導入市售環氧單體,經由選擇適當催化劑控制反應中間體與環氧單體的反應性以避免交聯反應發生,並以一鍋二步法合成出熱塑性聚合物,進行結構與性質探討。本研究以氨基甲酸酯、苯酚及二級醇建立本研究環氧樹脂合成之模型,並以多種催化劑相互比較反應性,由核磁共振(Nuclear Magnetic Resonance Spectrometer, NMR)及微差掃描熱分析(Differential Scanning Calorimetry, DSC)證實透過磷系觸媒(三苯基膦烯)乙酸甲酯可有效控制反應中間體與環氧單體之反應選擇性,使環氧基選擇與苯酚進行反應的同時避免與氨基甲酸酯或二級醇產生反應,此結果證明磷系觸媒可適於熱塑性高分子之合成,並避免交聯副反應發生。zh_TW
dc.description.abstractChemical recycling of poly(bisphenol-A carbonate), (PC), into thermoplastic epoxy resin was studied by aminolysis of amine carbonylation reaction and a highly efficient and selective epoxy reaction ststem. Through using the epoxy curing catalyst with highly selectivity, the interim prepolymers can react with epoxy resin without any crosslinking effects between carbamate groups and epoxide. Via two-step one-pot process in this work, linear thermoplastic epoxy resin are prepared.
Using carbamate, phenol and secondary hydroxyl group as model compounds, the epoxy curing mechanism is established by comparing three different kinds of catalyst system, tertiary-amine catalyst, phosphonium catalyst and non catalyst. Based on the nuclear magnetic resonance spectrometer (NMR) and differential scanning calorimetry (DSC) result, the choosing of methyl (triphenylphosphoranylidene)acetate (TPPA) as catalyst to control curing reaction between epoxide and carbamate groups could be achieved. This results prove that TPPA can be applied in the process of PC digested interim prepolymers epoxy reaction.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:38:50Z (GMT). No. of bitstreams: 1
U0001-1308202012305900.pdf: 5364049 bytes, checksum: 77fa3ec7808f70333ab051dac75c88ab (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 2
摘要 3
Abstract 4
目錄 5
圖目錄 8
表目錄 11
1、 緒論 12
2、 文獻回顧 14
2. 1 循環材料與高分子 14
2. 2 聚碳酸酯回收 17
2. 2. 1 聚碳酸酯簡介 17
2. 2. 2 聚碳酸酯回收方法 18
2. 2. 3 回收聚碳酸酯至聚氨酯 19
2. 3 氨基甲酸酯簡介 21
2. 3. 1 氨基甲酸酯熱裂解 21
2. 3. 2 氨基甲酸酯反應性 22
2. 4 環氧樹脂定義 25
2. 5 環氧樹脂與活性氫反應 25
2. 5. 1 與醇類反應 26
2. 5. 2 與胺類反應 30
2. 5. 3 觸媒對環氧基之影響 31
2. 6 環氧樹脂與聚氨酯 33
2. 6. 1 環氧基與氨基甲酸酯反應 33
2. 6. 2 氨基甲酸縮水甘油樹脂 36
2. 7 研究動機 39
3、 實驗內容 40
3. 1 藥品與溶劑 40
3. 2 實驗儀器 44
3. 3 實驗流程圖 46
3. 4 合成步驟 48
3. 4. 1 以醇類及異氰酸酯合成氨基甲酸酯單體 48
3. 4. 2 以苯基縮水甘油醚研究環氧反應機制 49
3. 4. 3 以胺類消化聚碳酸酯為反應中間體 51
3. 4. 4 以反應中間體合成線性環氧高分子 53
4、 結果與討論 55
4. 1 自主合成氨基甲酸酯之結構分析 55
4. 2 以氨基甲酸酯反應環氧基之模型研究 57
4. 2. 1 DSC微差掃描熱分析 57
4. 2. 2 1H-NMR核磁共振氫譜分析 58
4. 3 以苯酚反應環氧基之模型研究 61
4. 3. 1 DSC微差掃描熱分析 61
4. 3. 2 1H-NMR核磁共振氫譜分析 62
4. 4 以二級醇反應環氧基之模型研究 63
4. 4. 1 DSC微差掃描熱分析 63
4. 5 以胺類消化聚碳酸酯為反應中間體之鑑定 65
4. 6 以聚碳酸酯消化物產物為反應中間體合成熱塑性環氧樹脂之分析 68
4. 6. 1 熱塑性環氧樹脂之分子量分佈及成膜性 68
4. 6. 2 熱塑性環氧樹脂之FT-IR光譜分析圖 69
4. 6. 3 熱塑性環氧樹脂之1H-NMR核磁共振氫譜分析圖 70
4. 6. 4 熱塑性環氧樹脂之拉伸性質分析 73
4. 7 以聚碳酸酯消化產物合成之熱塑性環氧樹脂熱性質分析 74
4. 7. 1 DSC微差掃描熱分析 74
5、 結論與未來展望 76
6、 參考文獻 77
附錄 80
dc.language.isozh-TW
dc.subject環氧樹脂zh_TW
dc.subject氨基甲酸酯zh_TW
dc.subject聚碳酸酯zh_TW
dc.subject熱塑性高分子zh_TW
dc.subject反應選擇性zh_TW
dc.subjectCatalytic Selectivityen
dc.subjectPolycarbonateen
dc.subjectRecyclingen
dc.subjectCarbamateen
dc.subjectEpoxy Resinsen
dc.subjectThermoplastic Polymeren
dc.title回收聚碳酸酯製備一劑型環氧樹脂zh_TW
dc.titlePreparation of One-pot Epoxy Resin from Recycled Polycarbonateen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴憲弘(Sheng-Hong Dai),吳建欣(Chien-Hsin Wu)
dc.subject.keyword聚碳酸酯,氨基甲酸酯,環氧樹脂,熱塑性高分子,反應選擇性,zh_TW
dc.subject.keywordPolycarbonate,Recycling,Carbamate,Epoxy Resins,Thermoplastic Polymer,Catalytic Selectivity,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202003223
dc.rights.note未授權
dc.date.accepted2020-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202012305900.pdf
  未授權公開取用
5.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved