請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76857完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖尉斯(Wei-Ssu Liao) | |
| dc.contributor.author | Chih-Chang Lin | en |
| dc.contributor.author | 林志昌 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:46Z | - |
| dc.date.available | 2021-07-10T21:38:46Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Andersson, J.; Grönkvist, S., Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44 (23), 11901-11919. 2. Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S.; Lightfoot, H. D.; Manheimer, W.; Mankins, J. C.; Mauel, M. E.; Perkins, L. J.; Schlesinger, M. E.; Volk, T.; Wigley, T. M. L., Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science 2002, 298 (5595), 981. 3. Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U., Hydrogen sensors – A review. Sens. Actuators, B 2011, 157 (2), 329-352. 4. Mazloomi, K.; Gomes, C., Hydrogen as an energy carrier: Prospects and challenges. Renewable Sustainable Energy Rev. 2012, 16 (5), 3024-3033. 5. Villanueva, L. G.; Fargier, F.; Kiefer, T.; Ramonda, M.; Brugger, J.; Favier, F., Highly ordered palladium nanodot patterns for full concentration range hydrogen sensing. Nanoscale 2012, 4 (6), 1964-1967. 6. Firth, J. G.; Jones, A.; Jones, T. A., The principles of the detection of flammable atmospheres by catalytic devices. Combust. Flame 1973, 20 (3), 303-311. 7. Casey, V.; Cleary, J.; D’Arcy, G.; McMonagle, J. B., Calorimetric combustible gas sensor based on a planar thermopile array: fabrication, characterisation, and gas response. Sens. Actuators, B 2003, 96 (1), 114-123. 8. Cao, Z.; Buttner, W. J.; Stetter, J. R., The properties and applications of amperometric gas sensors. Electroanalysis 1992, 4 (3), 253-266. 9. Stetter, J. R.; Li, J., Amperometric Gas Sensors - A Review. Chem. Rev. 2008, 108 (2), 352-366. 10. Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M., A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34 (11), 1502-1503. 11. Wagner, C., The Mechanism of the Decomposition of Nitrous Oxide on Zinc Oxide as Catalyst. J. Chem. Phys. 1950, 18 (1), 69-71. 12. Lin, F.-G.; Takao, Y.; Shimizu, Y.; Egashira, M., Zinc Oxide Varistor Gas Sensors: I, Effect of Bi2O3 Content on the H2-Sensing Properties. J. Am. Ceram. Soc. 1995, 78 (9), 2301-2306. 13. Hyodo, T.; Baba, Y.; Wada, K.; Shimizu, Y.; Egashira, M., Hydrogen sensing properties of SnO2 varistors loaded with SiO2 by surface chemical modification with diethoxydimethylsilane. Sens. Actuators, B 2000, 64 (1), 175-181. 14. Ippolito, S. J.; Kandasamy, S.; Kalantar-zadeh, K.; Wlodarski, W., Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sens. Actuators, B 2005, 108 (1), 154-158. 15. Hughes, R. C.; Schubert, W. K., Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J. Appl. Phys. 1992, 71 (1), 542-544. 16. Stiblert, L.; Svensson, C., Hydrogen leak detector using a Pd‐gate MOS transistor. Rev. Sci. Instrum. 1975, 46 (9), 1206-1208. 17. Lundström, I.; Shivaraman, S.; Svensson, C.; Lundkvist, L., A hydrogen−sensitive MOS field−effect transistor. Appl. Phys. Lett. 1975, 26 (2), 55-57. 18. Steele, M. C.; Hile, J. W.; MacIver, B. A., Hydrogen‐sensitive palladium gate MOS capacitors. J. Appl. Phys. 1976, 47 (6), 2537-2538. 19. Armgarth, M.; Söderberg, D.; Lundström, I., Palladium and platinum gate metal‐oxide‐semiconductor capacitors in hydrogen and oxygen mixtures. Appl. Phys. Lett. 1982, 41 (7), 654-655. 20. Butler, M. A., Optical fiber hydrogen sensor. Appl. Phys. Lett. 1984, 45 (10), 1007-1009. 21. Ando, M., Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air. TrAC, Trends Anal. Chem. 2006, 25 (10), 937-948. 22. Butler, M. A., Fiber Optic Sensor for Hydrogen Concentrations near the Explosive Limit. J. Electrochem. Soc. 1991, 138 (9), L46. 23. Butler, M. A., Micromirror optical-fiber hydrogen sensor. Sens. Actuators, B 1994, 22 (2), 155-163. 24. Bearzotti, A.; Caliendo, C.; Verona, E.; D'Amico, A., Integrated optic sensor for the detection of H2 concentrations. Sens. Actuators, B 1992, 7 (1), 685-688. 25. Graham, T., On the Absorption and Dialytic Separation of Gases by Colloid Septa. Philos. Trans. R. Soc. London 1866, 156, 399-439. 26. Lewis, F. A., The Hydrides of Palladium and Palladium Alloys. Johnson Matthey Technol. Rev. 1960. 27. Schwarz, R. B.; Khachaturyan, A. G., Thermodynamics of open two-phase systems with coherent interfaces: Application to metal–hydrogen systems. Acta Mater. 2006, 54 (2), 313-323. 28. Wadell, C.; Pingel, T.; Olsson, E.; Zorić, I.; Zhdanov, V. P.; Langhammer, C., Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes. Chem. Phys. Lett. 2014, 603, 75-81. 29. Kumar, R.; Malik, S.; Mehta, B. R., Interface induced hydrogen sensing in Pd nanoparticle/graphene composite layers. Sens. Actuators, B 2015, 209, 919-926. 30. Syrenova, S.; Wadell, C.; Nugroho, F. A. A.; Gschneidtner, T. A.; Diaz Fernandez, Y. A.; Nalin, G.; Świtlik, D.; Westerlund, F.; Antosiewicz, T. J.; Zhdanov, V. P.; Moth-Poulsen, K.; Langhammer, C., Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat. Mater. 2015, 14 (12), 1236-1244. 31. Weaver, J. H., Optical properties of Rh, Pd, Ir, and Pt. Phys. Rev. B 1975, 11 (4), 1416-1425. 32. Züttel, A.; Nützenadel, C.; Schmid, G.; Emmenegger, C.; Sudan, P.; Schlapbach, L., Thermodynamic aspects of the interaction of hydrogen with Pd clusters. Appl. Surf. Sci. 2000, 162-163, 571-575. 33. Silkin, V. M.; Díez Muiño, R.; Chernov, I. P.; Chulkov, E. V.; Echenique, P. M., Tuning the plasmon energy of palladium–hydrogen systems by varying the hydrogen concentration. J. Phys.: Condens. Matter 2012, 24 (10), 104021. 34. Griessen, R.; Strohfeldt, N.; Giessen, H., Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater. 2016, 15 (3), 311-317. 35. S, R.; P.N, S.; S, R., Nanostructured palladium modified graphitic carbon nitride – High performance room temperature hydrogen sensor. Int. J. Hydrogen Energy 2016, 41 (45), 20779-20786. 36. Corso, A. J.; Tessarolo, E.; Guidolin, M.; Della Gaspera, E.; Martucci, A.; Angiola, M.; Donazzan, A.; Pelizzo, M. G., Room-temperature optical detection of hydrogen gas using palladium nano-islands. Int. J. Hydrogen Energy 2018, 43 (11), 5783-5792. 37. Ribaupierre, Y. d.; Manchester, F. D., Isotope dependence for hydrogen diffusion in palladium at low temperatures. J. Phys. C: Solid State Phys. 1973, 6 (21), L390-L393. 38. Schlapbach, L.; Züttel, A., Hydrogen-storage materials for mobile applications. Nature 2001, 414 (6861), 353-358. 39. Yamauchi, M.; Ikeda, R.; Kitagawa, H.; Takata, M., Nanosize Effects on Hydrogen Storage in Palladium. J. Phys. Chem. C 2008, 112 (9), 3294-3299. 40. Xie, B.; Zhang, S.; Liu, F.; Peng, X.; Song, F.; Wang, G.; Han, M., Response behavior of a palladium nanoparticle array based hydrogen sensor in hydrogen–nitrogen mixture. Sens. Actuators, A 2012, 181, 20-24. 41. Bardhan, R.; Hedges, L. O.; Pint, C. L.; Javey, A.; Whitelam, S.; Urban, J. J., Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat. Mater. 2013, 12 (10), 905-912. 42. Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A., In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13 (12), 1143-1148. 43. Ndaya, C. C. J., N.; Brioude, A., Recent Advances in Palladium Nanoparticles-Based Hydrogen Sensors for Leak Detection. Sensors 2019, 19, 4478. 44. Jones, M. G.; Nevell, T. G., The detection of hydrogen using catalytic flammable gas sensors. Sens. Actuators 1989, 16 (3), 215-224. 45. Han, C.-H.; Hong, D.-W.; Kim, I.-J.; Gwak, J.; Han, S.-D.; Singh, K. C., Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sens. Actuators, B 2007, 128 (1), 320-325. 46. Han, C.-H.; Hong, D.-U.; Gwak, J.; Han, S.-D., A planar catalytic combustion sensor using nano-crystalline F-doped SnO2 as a supporting material for hydrogen detection. Korean J. Chem. Eng. 2007, 24 (6), 927-931. 47. Lee, E.-B.; Hwang, I.-S.; Cha, J.-H.; Lee, H.-J.; Lee, W.-B.; Pak, J. J.; Lee, J.-H.; Ju, B.-K., Micromachined catalytic combustible hydrogen gas sensor. Sens. Actuators, B 2011, 153 (2), 392-397. 48. Rashid, T.-R.; Phan, D.-T.; Chung, G.-S., A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sens. Actuators, B 2013, 185, 777-784. 49. Rashid, T.-R.; Phan, D.-T.; Chung, G.-S., Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens. Actuators, B 2014, 193, 869-876. 50. Gupta, D.; Dutta, D.; Kumar, M.; Barman, P. B.; Som, T.; Hazra, S. K., Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces. J. Appl. Phys. 2015, 118 (16), 164501. 51. Hassan, K.; Chung, G.-S., Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection. Sens. Actuators, B 2017, 239, 824-833. 52. Zhao, M.; Wong, M. H.; Man, H. C.; Ong, C. W., Resistive hydrogen sensing response of Pd-decorated ZnO “nanosponge” film. Sens. Actuators, B 2017, 249, 624-631. 53. Kukkola, J.; Mohl, M.; Leino, A.-R.; Mäklin, J.; Halonen, N.; Shchukarev, A.; Konya, Z.; Jantunen, H.; Kordas, K., Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sens. Actuators, B 2013, 186, 90-95. 54. Chávez, F.; Pérez-Sánchez, G. F.; Goiz, O.; Zaca-Morán, P.; Peña-Sierra, R.; Morales-Acevedo, A.; Felipe, C.; Soledad-Priego, M., Sensing performance of palladium-functionalized WO3 nanowires by a drop-casting method. Appl. Surf. Sci. 2013, 275, 28-35. 55. Liu, B.; Cai, D.; Liu, Y.; Wang, D.; Wang, L.; Wang, Y.; Li, H.; Li, Q.; Wang, T., Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens. Actuators, B 2014, 193, 28-34. 56. Zhao, M.; Huang, J. X.; Ong, C. W., Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films. Sens. Actuators, B 2014, 191, 711-718. 57. Wang, Y.; Liu, B.; Xiao, S.; Li, H.; Wang, L.; Cai, D.; Wang, D.; Liu, Y.; Li, Q.; Wang, T., High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide. J. Mater. Chem. A 2015, 3 (3), 1317-1324. 58. Annanouch, F. E.; Roso, S.; Haddi, Z.; Vallejos, S.; Umek, P.; Bittencourt, C.; Blackman, C.; Vilic, T.; Llobet, E., p-Type PdO nanoparticles supported on n-type WO3 nanoneedles for hydrogen sensing. Thin Solid Films 2016, 618, 238-245. 59. Kabcum, S.; Channei, D.; Tuantranont, A.; Wisitsoraat, A.; Liewhiran, C.; Phanichphant, S., Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods. Sens. Actuators, B 2016, 226, 76-89. 60. Wang, Z.; Huang, S.; Men, G.; Han, D.; Gu, F., Sensitization of Pd loading for remarkably enhanced hydrogen sensing performance of 3DOM WO3. Sens. Actuators, B 2018, 262, 577-587. 61. Xiang, C.; She, Z.; Zou, Y.; Cheng, J.; Chu, H.; Qiu, S.; Zhang, H.; Sun, L.; Xu, F., A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram. Int. 2014, 40 (10, Part B), 16343-16348. 62. Sta, I.; Jlassi, M.; Kandyla, M.; Hajji, M.; Koralli, P.; Krout, F.; Kompitsas, M.; Ezzaouia, H., Surface functionalization of sol–gel grown NiO thin films with palladium nanoparticles for hydrogen sensing. Int. J. Hydrogen Energy 2016, 41 (4), 3291-3298. 63. Liu, B.; Cai, D.; Liu, Y.; Li, H.; Weng, C.; Zeng, G.; Li, Q.; Wang, T., High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 2013, 5 (6), 2505-2510. 64. Zhang, H.; Li, Z.; Liu, L.; Xu, X.; Wang, Z.; Wang, W.; Zheng, W.; Dong, B.; Wang, C., Enhancement of hydrogen monitoring properties based on Pd–SnO2 composite nanofibers. Sens. Actuators, B 2010, 147 (1), 111-115. 65. Zeng, W.; Liu, T.; Liu, D.; Han, E., Hydrogen sensing and mechanism of M-doped SnO2 (M=Cr3+, Cu2+ and Pd2+) nanocomposite. Sens. Actuators, B 2011, 160 (1), 455-462. 66. Li, Y.; Deng, D.; Chen, N.; Xing, X.; Liu, X.; Xiao, X.; Wang, Y., Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. J. Alloys Compd. 2017, 710, 216-224. 67. Sanger, A.; Kumar, A.; Kumar, A.; Chandra, R., Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens. Actuators, B 2016, 234, 8-14. 68. Sanger, A.; Kumar, A.; Kumar, A.; Jaiswal, J.; Chandra, R., A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing. Sens. Actuators, B 2016, 236, 16-26. 69. Kumar, R.; Varandani, D.; Mehta, B. R.; Singh, V. N.; Wen, Z.; Feng, X.; Müllen, K., Fast response and recovery of hydrogen sensing in Pd–Pt nanoparticle–graphene composite layers. Nanotechnology 2011, 22 (27), 275719. 70. Chung, M. G.; Kim, D.-H.; Seo, D. K.; Kim, T.; Im, H. U.; Lee, H. M.; Yoo, J.-B.; Hong, S.-H.; Kang, T. J.; Kim, Y. H., Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators, B 2012, 169, 387-392. 71. Phan, D.-T.; Chung, G.-S., A novel Pd nanocube–graphene hybrid for hydrogen detection. Sens. Actuators, B 2014, 199, 354-360. 72. Phan, D.-T.; Chung, G.-S., Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrogen Energy 2014, 39 (1), 620-629. 73. Phan, D.-T.; Chung, G.-S., Reliability of hydrogen sensing based on bimetallic Ni–Pd/graphene composites. Int. J. Hydrogen Energy 2014, 39 (35), 20294-20304. 74. Martínez-Orozco, R. D.; Antaño-López, R.; Rodríguez-González, V., Hydrogen-gas sensors based on graphene functionalized palladium nanoparticles: impedance response as a valuable sensor. New J. Chem. 2015, 39 (10), 8044-8054. 75. Peng, Y.; Ye, J.; Zheng, L.; Zou, K., The hydrogen sensing properties of Pt–Pd/reduced graphene oxide based sensor under different operating conditions. RSC Adv. 2016, 6 (30), 24880-24888. 76. Alfano, B.; Massera, E.; Polichetti, T.; Miglietta, M. L.; Di Francia, G., Effect of palladium nanoparticle functionalization on the hydrogen gas sensing of graphene based chemi-resistive devices. Sens. Actuators, B 2017, 253, 1163-1169. 77. Sharma, B.; Kim, J.-S., Graphene decorated Pd-Ag nanoparticles for H2 sensing. Int. J. Hydrogen Energy 2018, 43 (24), 11397-11402. 78. Singh, V.; Dhall, S.; Kaushal, A.; Mehta, B. R., Room temperature response and enhanced hydrogen sensing in size selected Pd-C core-shell nanoparticles: Role of carbon shell and Pd-C interface. Int. J. Hydrogen Energy 2018, 43 (2), 1025-1033. 79. Ju, S.; Lee, J. M.; Jung, Y.; Lee, E.; Lee, W.; Kim, S.-J., Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles. Sens. Actuators, B 2010, 146 (1), 122-128. 80. Kim, J. H.; Jeon, J. G.; Ovalle-Robles, R.; Kang, T. J., Aerogel sheet of carbon nanotubes decorated with palladium nanoparticles for hydrogen gas sensing. Int. J. Hydrogen Energy 2018, 43 (12), 6456-6461. 81. Li, X.; Le Thai, M.; Dutta, R. K.; Qiao, S.; Chandran, G. T.; Penner, R. M., Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes. ACS Sens. 2017, 2 (2), 282-289. 82. Cho, S.; Lee, J. S.; Jun, J.; Jang, J., High-sensitivity hydrogen gas sensors based on Pd-decorated nanoporous poly(aniline-co-aniline-2-sulfonic acid):poly(4-styrenesulfonic acid). J. Mater. Chem. A 2014, 2 (6), 1955-1966. 83. Chen, Z. H.; Jie, J. S.; Luo, L. B.; Wang, H.; Lee, C. S.; Lee, S. T., Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors. Nanotechnology 2007, 18 (34), 345502. 84. Yang, F.; Kung, S.-C.; Cheng, M.; Hemminger, J. C.; Penner, R. M., Smaller is Faster and More Sensitive: The Effect of Wire Size on the Detection of Hydrogen by Single Palladium Nanowires. ACS Nano 2010, 4 (9), 5233-5244. 85. Ahn, J.-H.; Yun, J.; Choi, Y.-K.; Park, I., Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection. Appl. Phys. Lett. 2014, 104 (1), 013508. 86. Gu, F.; Zeng, H.; Zhu, Y. B.; Yang, Q.; Ang, L. K.; Zhuang, S., Single-Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection. Adv. Opt. Mater. 2014, 2 (2), 189-196. 87. Fang, J.; Levchenko, I.; Lu, X.; Mariotti, D.; Ostrikov, K., Hierarchical bi-dimensional alumina/palladium nanowire nano-architectures for hydrogen detection, storage and controlled release. Int. J. Hydrogen Energy 2015, 40 (18), 6165-6172. 88. Li, X.; Liu, Y.; Hemminger, J. C.; Penner, R. M., Catalytically Activated Palladium@Platinum Nanowires for Accelerated Hydrogen Gas Detection. ACS Nano 2015, 9 (3), 3215-3225. 89. Hassan, K.; Chung, G.-S., Fabrication and Characterization of Fast Response H2 Sensor based on Pd-Pt Core-shell Nanoparticles Decorated Si Nanowires Cluster. Procedia Eng. 2016, 168, 235-238. 90. Seo, J.; Lim, Y.; Shin, H., Self-heating hydrogen gas sensor based on an array of single suspended carbon nanowires functionalized with palladium nanoparticles. Sens. Actuators, B 2017, 247, 564-572. 91. Koo, W.-T.; Qiao, S.; Ogata, A. F.; Jha, G.; Jang, J.-S.; Chen, V. T.; Kim, I.-D.; Penner, R. M., Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration. ACS Nano 2017, 11 (9), 9276-9285. 92. Lundström, K. I.; Shivaraman, M. S.; Svensson, C. M., A hydrogen‐sensitive Pd‐gate MOS transistor. J. Appl. Phys. 1975, 46 (9), 3876-3881. 93. Sharma, B.; Sharma, A.; Kim, J.-S., Recent advances on H2 sensor technologies based on MOX and FET devices: A review. Sens. Actuators, B 2018, 262, 758-770. 94. Kracker, M.; Worsch, C.; Seeber, W.; Rüssel, C., Optical hydrogen sensing with modified Pd-layers: A kinetic study of roughened layers and dewetted nanoparticle films. Sens. Actuators, B 2014, 197, 95-103. 95. Isaac, N. A.; Ngene, P.; Westerwaal, R. J.; Gaury, J.; Dam, B.; Schmidt-Ott, A.; Biskos, G., Optical hydrogen sensing with nanoparticulate Pd–Au films produced by spark ablation. Sens. Actuators, B 2015, 221, 290-296. 96. Butler, M. A.; Ginley, D. S., Hydrogen sensing with palladium‐coated optical fibers. J. Appl. Phys. 1988, 64 (7), 3706-3712. 97. Monzón-Hernández, D.; Luna-Moreno, D.; Martínez-Escobar, D., Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sens. Actuators, B 2009, 136 (2), 562-566. 98. Monzón-Hernández, D.; Luna-Moreno, D.; Escobar, D. M.; Villatoro, J., Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing. Sens. Actuators, B 2010, 151 (1), 219-222. 99. Brambilla, G., Optical fibre nanotaper sensors. Opt. Fiber Technol. 2010, 16 (6), 331-342. 100. Perrotton, C.; Westerwaal, R. J.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P., A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. Opt. Express 2013, 21 (1), 382-390. 101. Ohodnicki, P. R.; Baltrus, J. P.; Brown, T. D., Pd/SiO2 and AuPd/SiO2 nanocomposite-based optical fiber sensors for H2 sensing applications. Sens. Actuators, B 2015, 214, 159-168. 102. Downes, F.; Taylor, C. M., Optical Fibre Surface Plasmon Resonance Sensor Based on a Palladium-Yttrium Alloy. Procedia Eng. 2015, 120, 602-605. 103. Poole, Z. L.; Ohodnicki, P. R.; Yan, A.; Lin, Y.; Chen, K. P., Potential to Detect Hydrogen Concentration Gradients with Palladium Infused Mesoporous-Titania on D-Shaped Optical Fiber. ACS Sens. 2017, 2 (1), 87-91. 104. He, J.; Villa, N. S.; Luo, Z.; An, S.; Shen, Q.; Tao, P.; Song, C.; Wu, J.; Deng, T.; Shang, W., Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing. RSC Adv. 2018, 8 (57), 32395-32400. 105. Tong, L.; Gattass, R. R.; Ashcom, J. B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E., Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 426 (6968), 816-819. 106. Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P., Nanoribbon Waveguides for Subwavelength Photonics Integration. Science 2004, 305 (5688), 1269. 107. Sirbuly, D. J.; Létant, S. E.; Ratto, T. V., Hydrogen Sensing with Subwavelength Optical Waveguides via Porous Silsesquioxane-Palladium Nanocomposites. Adv. Mater. 2008, 20 (24), 4724-4727. 108. Raj, V. B.; Singh, H.; Nimal, A. T.; Sharma, M. U.; Gupta, V., Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents. Sens. Actuators, B 2013, 178, 636-647. 109. Yang, L.; Yin, C.; Zhang, Z.; Zhou, J.; Xu, H., The investigation of hydrogen gas sensing properties of SAW gas sensor based on palladium surface modified SnO2 thin film. Mater. Sci. Semicond. Process. 2017, 60, 16-28. 110. Viespe, C.; Miu, D., Surface Acoustic Wave Sensor with Pd/ZnO Bilayer Structure for Room Temperature Hydrogen Detection. Sensors (Basel) 2017, 17 (7), 1529. 111. Sil, D.; Hines, J.; Udeoyo, U.; Borguet, E., Palladium Nanoparticle-Based Surface Acoustic Wave Hydrogen Sensor. ACS Appl. Mater. Interfaces 2015, 7 (10), 5709-5714. 112. Kalanur, S. S.; Heo, J.; Yoo, I.-H.; Seo, H., 2-D WO3 decorated with Pd for rapid gasochromic and electrical hydrogen sensing. Int. J. Hydrogen Energy 2017, 42 (26), 16901-16908. 113. Kalanur, S. S.; Yoo, I.-H.; Seo, H., Pd on MoO3 nanoplates as small-polaron-resonant eye-readable gasochromic and electrical hydrogen sensor. Sens. Actuators, B 2017, 247, 357-365. 114. Mary, C. W.; Janine, E. C.; Barbara, V. P.; Steve, T.; Cristina, M. B.; Nahid, M.; Gary, B.; Nazim, M.; Ali, T. R.; Jessica, M. In Chemochromic hydrogen detection, Proc.SPIE, 2006. 115. Hwang, K.; T-Raissi, A.; Qin, N., Effect of pigment concentration and particle size of TiO2 support on performance of chemochromic hydrogen tape sensor. Int. J. Hydrogen Energy 2018, 43 (20), 9877-9883. 116. Mohajeri, N.; T-Raissi, A.; Bokerman, G.; Captain, J. E.; Peterson, B. V.; Whitten, M.; Trigwell, S.; Berger, C.; Brenner, J., TEM–XRD analysis of PdO particles on TiO2 support for chemochromic detection of hydrogen. Sens. Actuators, B 2010, 144 (1), 208-214. 117. Huang, T. Y., Catalytic Polymer Container via Break-Seed-Growth Process. National Taiwan University, Taipei, Taiwan, 2017. 118. Lupan, O.; Postica, V.; Hoppe, M.; Wolff, N.; Polonskyi, O.; Pauporté, T.; Viana, B.; Majérus, O.; Kienle, L.; Faupel, F.; Adelung, R., PdO/PdO2 functionalized ZnO : Pd films for lower operating temperature H2 gas sensing. Nanoscale 2018, 10 (29), 14107-14127. 119. Gonzalez, E.; Barankin, M. D.; Guschl, P. C.; Hicks, R. F., Remote Atmospheric-Pressure Plasma Activation of the Surfaces of Polyethylene Terephthalate and Polyethylene Naphthalate. Langmuir 2008, 24 (21), 12636-12643. 120. Brun, M.; Berthet, A.; Bertolini, J. C., XPS, AES and auger parameter of Pd and PdO. J. Electron. Spectrosc. Relat. Phenom. 1999, 104, 55-60. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76857 | - |
| dc.description.abstract | 氫氣在作為永續發展的乾淨能源應用上日趨重要,但在空氣中超過4 個體積百分率的氫氣外洩容易引發爆炸,因此當使用高濃度氫氣時,氫氣外洩的即時檢測非常重要。本研究以氧化鈀奈米粒子修飾薄膜製作即時氫氣檢測裝置,將被活化的聚對苯二甲酸乙二酯(Polyethylene terephthalate,PET)薄膜浸在前驅物溶液中以生長單層氧化鈀奈米粒子(Palladium (II) oxide,PdO),並藉其對氫氣反應後從黃色薄膜轉黑的氣致變色特性作為氫氣偵測機制。為了可以遠端監控氫氣外洩狀況,研究中搭配發光二極體(Light-emitting diode,LED)和光電晶體(Phototransistor)藉由光穿透薄膜後產生的電訊號來偵測薄膜是否變色,並即時發送氫氣外洩的手機訊息以通知使用者。根據這樣的設計,此處所提出的可攜帶式氧化鈀奈米粒子修飾薄膜即時氫氣檢測裝置可提供室溫下可靠的氫氣外洩監控,因此能於氫能源相關應用中有效降低爆炸的風險。 | zh_TW |
| dc.description.abstract | Hydrogen gas has received increasing attention due to its use as a sustainable and clean energy resource. However, the risk of explosion because of gas leaking when the concentration is above 4 vol% has raised lots of concerns. Hydrogen gas leakage detection is therefore a critical issue when this source of energy supply is in use. Herein, a hydrogen gas responsive intelligent device relying on gasochromic films for real-time detection is demonstrated. Palladium (II) oxide (PdO) nanoparticles are generated on polyethylene terephthalate (PET) thin films by immersing an activated substrate in the precursor solution. This operation generates a monolayer of PdO nanoparticles decorating on the PET substrate, and the film color can change from yellow to black when it is exposed to hydrogen gas. A LED/phototransistor module can therefore be integrated to design a sensing device relying on output signal changes upon the film transmittance alteration. This hydrogen gas responsive design can transfer optical signals to a smartphone warning message, and a real-time hydrogen leakage can consequently be monitored. Current intelligent device design provides a portable and promising approach for hydrogen leaking detection at room temperature, which can lower the explosion risk when this type of energy resource is used. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:46Z (GMT). No. of bitstreams: 1 U0001-1308202013122600.pdf: 3293205 bytes, checksum: a155b87ba2680ffe1604804ab29e8894 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 中文摘要 ii Abstract iii Contents iv List of Figures vi Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Different Types of H2 Sensors 2 1.3 H2 Sensing Materials 4 1.4 Palladium (II) Oxide H2 Sensors 9 Chapter 2. Experimental Section 11 2.1 Materials 11 2.2 PdO/PET Gasochromic Film Preparation 11 2.3 Material Characterization 12 2.4 Hydrogen-sensing Measurement 12 2.5 Responsive Intelligent Device 13 Chapter 3. Results and Discussion 14 3.1 The Concept of the H2 Responsive Intelligent Device 14 3.2 PdO Nanoparticle Embedment onto Polymer 16 3.3 Absorbance Spectra of Films 21 3.4 Characterization – SEM and XPS 23 3.5 Optimization of PdO-Decorated Film Properties 25 3.6 H2 Concentration Dependence 28 3.7 Responsive Intelligent Device 32 Chapter 4. Conclusions 40 References 42 Appendix 61 The Python Program in The `Responsive Intelligent Device 61 | |
| dc.language.iso | en | |
| dc.subject | 氣致色變 | zh_TW |
| dc.subject | 氫氣檢測裝置 | zh_TW |
| dc.subject | 斷鍵-成核-長晶法 | zh_TW |
| dc.subject | 氧化鈀 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | nanoparticle | en |
| dc.subject | hydrogen sensor | en |
| dc.subject | gasochromic | en |
| dc.subject | Palladium (II) oxide | en |
| dc.subject | break-seed-growth process | en |
| dc.title | 以氧化鈀奈米粒子修飾薄膜製作即時氫氣檢測裝置 | zh_TW |
| dc.title | A Real-time Hydrogen Gas Responsive Intelligent Device by PdO-Decorated Gasochromic Films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳浩銘(Hao Ming Chen),王宗興(Tsung-Shing Wang),戴桓青(Hwan-Ching Tai),詹益慈(Yi-Tsu Chan) | |
| dc.subject.keyword | 氫氣檢測裝置,氣致色變,氧化鈀,斷鍵-成核-長晶法,奈米粒子, | zh_TW |
| dc.subject.keyword | hydrogen sensor,gasochromic,Palladium (II) oxide,break-seed-growth process,nanoparticle, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202003230 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202013122600.pdf 未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
