Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳思節(Sz-Jie Wu)
dc.contributor.authorYi-Yuan Keen
dc.contributor.author柯怡垣zh_TW
dc.date.accessioned2021-07-10T21:38:26Z-
dc.date.available2021-07-10T21:38:26Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. 王進生. 1993. 台灣之花菜類蔬菜-青花菜, P. 197-201. 刊於:黃涵主編. 台灣葉菜類蔬菜產業演進四十年. 農業試驗所.
2. 行政院農糧署. 農產品生產成本調查系統<https://agrcost.afa.gov.tw/pagepub/AppMainGuest.aspx>.
3. 李鮮. 陳昆松. 張明方. K.M. Mosbah. 2006. 十字花科植物中硫代葡萄糖苷的研究進展. 園藝學報. 3:675-679.
4. 行政院農委會. 農產品生產面積統計. 農業統計資料查詢. < https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>
5. 行政院農委會. 農產品生產量值統計. 農業統計資料查詢.<https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>
6. 林泳伸. 2017. 青花菜蘿蔔硫素生合成相關基因之構築及轉化微生物. 國立中興大學園藝學系所學位論文. 台中.
7. 林經偉、許涵鈞、陳昇寬、吳雅芳、鄭安秀. 2014. 青花菜合理化施肥及健康管理. 行政院農業委員會臺南區農業改良場. 臺南. 臺灣.
8. 洪儀君. 2014. 探討抗凋亡蛋白Survivin於α-山酮素之抗人類黑色素瘤效應的角色. 國立中興大學生物醫學研究所碩士論文. 台中.
9. 張雅雯、邵東燕、師俊玲、朱靜、黃慶生、楊慧. 2017. 山奈酚生物功能研究進展. 生命科學. 29:400-405.
10. 梁佳玟、賴怡君、朱燕華. 2004. 中草藥對於促發炎細胞激素生成之影響. J. Chin. Med. 15:293-304
11. 許嫚芯. 2018. 淹水逆境輔以高壓處理對提升毛豆γ-胺基丁酸含量之研究. 國立臺灣大學園藝學系碩士論文. 臺北.
12. 傅正思、戴堯種. 2007. 細胞激素IL-6在運動指標上的應用. 中華體育季刊. 21:9-17
13. 衛生福利部食品藥物管理署. 2013. 食品化學檢驗方法之確效規範第二次修正. <https://www.fda.gov.tw/tc/siteList.aspx?sid=4115>
14. 衛生福利部食品藥物管理署食品營養成分資料庫<https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178>
15. Abreu, A.C., A. Borges, L.C. Simoes, M.J. Saavedra, and M. Simoes. 2013. Antibacterial Activity of Phenyl Isothiocyanate on Escherichia coli and Staphylococcus aureus. J. Med. Chem. 9:756-761.
16. Adesida, L.A., G. Edwards, and P.J. Thornalley. 1996. Inhibition of human leukaemia 60 cell growth by mercapturic acid metabolites of phenylethyl isothiocyanate. Food Chem. Toxicol. 34:385-392.
17. Ballesta, M.D.C.M. and M. Carvajal. 2015. Myrosinase in Brassicaceae: the most important issue for glucosinolate turnover and food quality. Phytochem Rev. 14:1045-1051.
18. Barba, F.J., M.J. Esteve, and A. Frigola. 2013. Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Res. Int. 50:545-549.
19. Barrera, L.N., A. Cassidy, I.T. Johnson, Y. Bao, and N.J. Belshaw. 2012. Epigenetic and antioxidant effects of dietary isothiocyanates and selenium: potential implications for cancer chemoprevention. Proc. Nutr. Soc. 71:237-245.
20. Basak, S. and H.S. Ramaswamy. 1998. Effect of high pressure processing on the texture of selected fruits and vegetables. J. Texture Stud. 29:587-601.
21. Beevi, S.S., L.N. Mangamoori, V. Dhand, and D.S. Ramakrishna. 2009. Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L. Foodborne Pathog Dis. 6:129-136.
22. Brandenburg, L.O., M. Kipp, R. Lucius, T. Pufe, and C.J. Wruck. 2010. Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflamm. Res. 59:443-450.
23. Buckley, C.D., D.W. Gilroy, and C.N. Serhan. 2014. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 40:315-327.
24. Bügel, S. 2003. Vitamin K and bone health. Proc. Nutr. Soc. 62:839-843.
25. Bull, M.K., K. Zerdin, E. Howe, D. Goicoechea, P. Paramanandhan, R. Stockman, J. Sellahewa, E.A. Szabo, R.L. Johnson, and C.M. Stewart. 2004. The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innov. Food Sci. Emerg. Technol. 5: 35-149.
26. Burow, M., A. Losansky, R. Muller, A. Plock, D.J. Kliebenstein, and U. Wittstock. 2009. The genetic basis of constitutive and herbivore-induced esp-independent nitrile formation in arabidopsis. Plant Physiol. 149:561-574.
27. Casquete, R., S.M. Castro, A. Martín, S.R. Moyano, J.A. Saraiva, M.G. Córdoba, and P. Teixeira. 2015. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov. Food Sci. Emerg. Technol. 31:37-44.
28. Chang, C.C., M.H. Yang, H.M. Wen, and J.C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 10:178-182.
29. Cho, H.Y., C.W. Yun, W.K. Park, J.Y. Kong, K.S. Kim, Y. Park, S. Lee, and B.K. Kim. 2004. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 49:37-43.
30. Choi, S.H., S. Aid, and F. Bosetti. 2009. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol. Sci. 30:174-181.
31. Choi, W.J., S.K. Kim, H.K. Park, U.D. Sohn, and W. Kim. 2014. Anti-Inflammatory and Anti-Superbacterial Properties of Sulforaphane from Shepherd's Purse. Korean J. Physiol. Pharmacol. 18:33-39.
32. Choi, Y.J., W.S. Lee, E.G. Lee, M.S. Sung, and W.H. Yoo. 2014. Sulforaphane Inhibits IL-1β-Induced Proliferation of Rheumatoid Arthritis Synovial Fibroblasts and the Production of MMPs, COX-2, and PGE2. Inflammation. 37:1496-1502.
33. Clariana, M., J. Valverde, H. Wijngaard, A.M. Mullen, and B. Marcos. 2011. High pressure processing of swede (Brassica napus): Impact on quality properties. Innovative Food Sci. Emerg. Technol. 12:85-92.
34. Contreras, A.M.T., V. Nair, L.C. Zevallos, and D.A.J. Velázquez. 2017. Stability of bioactive compounds in broccoli as affected by cutting styles and storage time. Molecules. 22:1-15.
35. Cordeiro, R.P., J.H. Doria, G.G. Zhanel, R. Sparling, and R.A. Holley. 2015. Role of glycoside hydrolase genes in sinigrin degradation by E. coli O157:H7. Int. J. Food. Microbiol. 205:105-111.
36. Cozzi, R., R. Ricordy, T. Aglitti, V. Gatta, P. Perticone, and R.D. Salvia. 1997. Ascorbic acid and beta-carotene as modulators of oxidative damage. Carcinogenesis. 18:223-228.
37. Dias, C., A. Aires, and M.J. Saavedra. 2014. Antimicrobial activity of isothiocyanates from cruciferous plants against methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Mol. Sci. 15:19552-19561.
38. Dinkova-Kostova, A.T., S.N. Jenkins, J.W. Fahey, L. Ye, S.L. Wehage, K.T. Liby, K.K. Stephenson, K.L. Wade, and P. Talalay. 2006. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer letters. 240:243-252.
39. Dufour, V., B. Alazzam, G. Ermel, M. Thepaut, A. Rossero, O. Tresse, and C. Baysse. 2012. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front. Cell. Infect. Microbiol. 2:1-13.
40. Elamin, W.M., J.B. Endan, Y.A. Yosuf, R. Shamsudin, and A. Ahmedov. 2015. High pressure processing technology and equipment evolution: A review. J. Eng. Sci. Technol. Rev. 8:75-83.
41. Eren, E., K.U. Tufekci, K.B. Isci, B. Tastan, K. Genc, and S. Genc. 2018. Sulforaphane inhibits lipopolysaccharide-induced inflammation, cytotoxicity, oxidative stress, and miR-155 Expression and Switches to mox phenotype through activating extracellular signal-regulated kinase 1/2–nuclear factor erythroid 2-related factor 2/antioxidant response element pathway in murine microglial cells. Front. Immunol. 9:1-18.
42. Estaca, J.G., P. Montero, B. Giménez, and M.C.G. Guillén. 2007. Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chem. 105:511-520
43. Eylen, D.V., I. Oey, M. Hendrickx, and A.V. Loey. 2008. Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. J. Food Eng. 89:178-186.
44. Eylen, D.V., N. Bellostas, B.W. Strobel, I. Oey, M. Hendrickx, A.V. Loey, H. Sørensen, and J.C. Sørensen. 2009. Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleraceae L. cv Italica) heads. Food Chem. 112:646-653.
45. Fahey, J.W. and P. Talalay. 1999. Antioxidant function of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem. Toxicol. 37:973-979.
46. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 56:5-51.
47. Ferguson, L.R. 2010. Chronic inflammation and mutagenesis. Mutat Res-Fund Mok M. 690:3-11.
48. Fernandes, L., S. Casa, J.A. Pereira, E. Ramalhosa, and J.A. Saraiva. 2017. Effect of high hydrostatic pressure (HHP) treatment on edible flowers’ properties. Food Bioprocess Technol. 10:799-807.
49. Gabay C. 2006. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 8:1-6
50. García, D.V., V. Nair, L.C. Zevallos, and D.A.J. Velázquez. 2016. Plants as biofactories: postharvest stress-induced accumulation of phenolic compounds and glucosinolates in broccoli subjected to wounding stress and exogenous phytohormones. Front. Plant Sci. 7:1-11.
51. Gerster, H. 1997. Vitamin A-Function, dietary requirements and safety in humans. Internat. J. Vit. Nutr. Res. 67:71-90.
52. Giacoppo, S., M. Galuppo, S. Montaut, R. Iori, P. Rollin, P. Bramanti, and E. Mazzon. 2015. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia. 106:12-21.
53. Goosen, T.C., E.M. Danielle, and F.H. Paul. 2001. Effects of benzyl isothiocyanate on rat and human cytochromes P450: Identification of metabolites formed by P450 2B1. J. Pharmacol. Exp. Ther. 296:198-206.
54. Greco, T. J. Shafera, and G. Fiskum. 2011. Sulforaphane inhibits mitochondrial permeability transition and oxidative stress. Free Radic. Biol. Med. 51:2164-2171.
55. Grubb, C.D. and S. Abe. 2006. Glucosinolate metabolism and its control. Trends. Plant. Sci. 11:89-100.
56. Guo, S., P. Qiu, G. Xu, X. Wu, P. Dong, G. Yang, J. Zheng, D.J. McClements, and H. Xiao. 2012. Synergistic Anti-inflammatory Effects of Nobiletin and Sulforaphane in Lipopolysaccharide-Stimulated RAW264.7 Cells. J. Agric. Food Chem. 60:2157-2164.
57. Halkier, B.A. and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303-333.
58. Hanschen, F.S., S. Rohn, I. Mewis, M. Schreiner, and L.W. Kroh. 2012. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food.Chem. 130:1-8.
59. Hecht, S.S. 2000. Inhibition of carcinogenesis by isothiocyanates. Drug. Metab. Rev. 32:395-411.
60. Herr, I., V. Lozanovski, P. Houben, P. Schemmer, M.W. Büchler. 2013. Sulforaphane and related mustard oils in focus of cancer prevention and therapy. Wien Med Wochenschr. 163:80-88.
61. Hogan, E., A.L. Kelly, and D.W. Sun. 2005. High Pressure Processing of Foods: An Overview, p. 3-32. In: Sun, D. W (ed.). Proc. Symp. Emerging Technologies for Food Processing. Academic Press, US.https://link.springer.com/article/10.3839/jksabc.2011.030
62. Huang, H.W., C.P. Hsu, B.B. Yang, and C.Y. Wang. 2013. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 33:54-62.
63. Huang, H.W., S.J. Wu, J.K. Lu, Y.T. Shyu, and C.Y. Wang. 2017. Current status and future trends of high-pressure processing in food industry. Food Control. 72:1-8.
64. Hwang, J.H. and S.B. Lim. 2014. Antioxidant and anti-inflammatory activities of broccoli florets in LPS-stimulated RAW264.7 cells. Prev. Nutr. Food Sci. 19:89-97.
65. Hwang, P.A., S.Y. Chien, Y.L. Chan, M.K. Lu, C.H. Wu, Z.L. Kong, and C.J. Wu. 2011. Inhibition of Lipopolysaccharide (LPS)-Induced Inflammatory Responses by Sargassum hemiphyllum Sulfated Polysaccharide Extract in RAW264.7 Macrophage Cells. J. Agric. Food Chem. 59:2062-2068.
66. Jackson, S.J.T., K.W. Singletary, and R.C. Venema. 2007. Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtubule polymerization. Vasc. Pharmacol. 46:77-84.
67. Jeffery, E.H., A.F. Brown, A.C. Kurilich, A.S. Keck, N. Matusheski, B.P. Klein, and J.A.Juvik. 2003. Variation in content of bioactive components in broccoli. J. Food Compos. Anal. 16:323-330.
68. Jiao, D., K.I. Eklind, C.I. Choi, D.H. Desai, S.G. Amin, and F.L. Chung. 1994. Structure-Activity Relationships of Isothiocyanates as Mechanism-based Inhibitors of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced Lung Tumorigenesis in A/J Mice. Cancer Res. 54:4327-4337.
69. Jones, R.B., C.L. Frisina, S. Winkler, M. Imsic, and R.B. Tomkins. 2010. Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets. Food Chem. 123:237-242.
70. Jubete, L.A., J. Valverde, and A. Patras. 2014. Assessing the impact of high-pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. var. capitata alba). Food Bioprocess Technol. 7:682-692.
71. Jun, X. 2009. Caffeine extraction from green tea leaves assisted by high pressure processing. J. Food Eng. 94:105-109
72. Kim, H.G., B. Shrestha, S.Y. Lim, D.H. Yoon, W.C. Chang, D.J. Shin, S.K. Han, S.M. Park, J.H. Park, H.I. Park, J.M. Sung, Y. Jang, N. Chung, K.C. Hwang, and T.W. Kim. 2006. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW264.7 macrophage cells. Eur. J. Pharmacol. 545:192-199.
73. Kim, H.W., C.H. Lee, M.G. Kim, and H.S. Lee. 2009. Antibacterial activities of phenethyl isothiocyanate and its derivatives against human oral pathogens. J Korean Soc Appl Bi. 52:555-559.
74. Kim, M.G. and H.S. Lee. 2009. Growth‐Inhibiting Activities of Phenethyl Isothiocyanate and Its Derivatives against Intestinal Bacteria. J. Food Sci. 74:467-471.
75. Koh, E., K.M.S. Wimalasiri, A.W. Chassy, and A.E. Mitchell. 2009. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J. Food Compos. Anal. 22:637-643.
76. Koo, S.Y., K.H. Cha, D.G. Song, D. Chung, and C.H. Pan. 2011. Amplification of sulforaphane content in red cabbage by pressure and temperature treatments. J. Korean. Soc. Appl. Bi. 54:183-187.
77. Kouniaki, S., P. Kajda, and I. Zabetakis. 2004. The effect of high hydrostatic pressure on anthocyanins and ascorbic acid in blackcurrants (Ribes nigrum). Flavour Fragr. J. 19:281-286.
78. Lafarga, T., G. Bobo, I. Viñas, C. Collazo, and I. Aguiló-Aguayo. 2018. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. J. Food Sci. Technol. 55:1973-1981.
79. Lin, C.C., I.T. Lee, Y.L. Yang, C.W. Lee, Y.R. Kou, and C.M. Yang. 2010. Induction of COX-2/PGE2/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: Role of TLR4-dependent NADPH oxidase activation. Free Radical Biol. Med. 48:240-254.
80. Lin, W., R.T. Wu, T. Wu, T.O. Khor, H. Wang, and A.N. Kong. 2008. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. 76:967-973.
81. Ludikhuyze, L., L. Rodrigo, and M. Hendrickx. 2000. The activity of myrosinase from broccoli (Brassica oleracea L. cv. Italica): Influence of intrinsic and extrinsic factors. J. Food Prot. 63:400-403.
82. Mahéo, K., F. Morel, S. Langouët, H. Kramer, E.L. Ferrec, B. Ketterer, and A. Guillouzo. 1997. Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res. 57:3649-3652.
83. Maitland, J.E., R.R. Boyer, J.D. Eifert, and R.C. Williams. 2011. High hydrostatic pressure processing reduces Salmonella enterica serovars in diced and whole tomatoes. Int. J. Food Microbiol. 149:113-117.
84. Marín, E.R., C.S. Moreno, R. Lloría, B.D. Ancos, and M.P. Cano. 2009. Onion high-pressure processing: Flavonol content and antioxidant activity. LWT. 42:835-841.
85. Mathys, A., R. Kallmeyer, V. Heinz, and D. Knorr. 2008. Impact of dissociation equilibrium shift on bacterial spore inactivation by heat and pressure. Food Control. 19:1165-1173.
86. Matusheski, N.V. and E.H. Jeffery. 2001. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J. Agric. Food Chem. 49:5743-5749.
87. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature. 454:428-435.
88. Medzhitov, R. and C. Janeway. 2000. Innate immunity. N. Engl. J. Med. 343:338-344.
89. Mosser, D.M. and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958-969.
90. Muntean, M.V., O. Marian, V. Barbieru, G.M. Cătunescu, O. Ranta, I. Drocas, S. Terhes. 2016. High pressure processing in food industry-characteristics and applications. Agric. Agric. Sci. Procedia. 10:377-383.
91. Navarro S.L., F. Li, and J.W. Lampe. 2011. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct. 2:579-587.
92. Oey, I., M. Lille, A.V. Loey, and M. Hendrickx. 2008. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends Food Sci. Technol. 19:320-328.
93. Okunade, O.A., S.K. Ghawi, L. Methven, and K. Niranjan. 2015. Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food.Chem. 187:485-490.
94. Outes, C.V., J.L. Hernández, and M.A.L. Yusty. 2016. Modification of glucosinolates in turnip greens (Brassica rapa subsp. rapa L.) subjected to culinary heat processes. CyTA J. Food 14:536-540.
95. Papi, A., M. Orlandi, G. Bartolini, J. Barillari, R. Iori, M. Paolini, F. Ferroni, M.G. Fumo, G.F. Pedulli, and L. Valgimigli. 2008. Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. J. Agric. Food Chem. 56:875-883.
96. Parameswaran, N. and S. Patial. 2010. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 20:87-103.
97. Park, S.J., I. An, G.P. Noh, B.H. Yoo, and J.R. Lee. 2019. Inhibitory effect of broccoli leaf extract on PGE2 production by NF-κB inhibition. Kor. J. Herbology. 34:117-124.
98. Patras, A., N. Brunton, S.D. Pieve, F. Butler, and G. Downey. 2009. Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innov. Food Sci. Emerg. Technol. 10:16-22.
99. Podsędek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT Food Sci. Technol. 40:1-11.
100. Prasad, K.N., B. Yang, M. Zhao, N. Ruenroengklin, and Y. Jiang. 2009. Application of ultrasonication or high-pressure extraction of flavonoids from litchi fruit pericarp. J. Food Process Eng. 32:828-843.
101. Prasad, K.N., E. Yang, C. Yi, M. Zhao, and Y. Jiang. 2009. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov. Food Sci. Emerg. Technol. 10:155-159.
102. Rafi, M.M., P.N. Yadav, and M. Reyes. 2007. Lycopene inhibits LPS‐induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. J. Food Sci. 72:69-74.
103. Raghubeer, E.V., B.N. Phan, E. Onuoha, S. Diggins, V. Aguilar, S. Swanson, and A. Lee. 2020. The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. Int. J. Food Microbiol. 331:1-11.
104. Reyes, L.F. and L.C. Zevallos. 2003. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J. Agric. Food Chem. 51:5296-5300.
105. Rhee, S.H. 2014. Lipopolysaccharide: Basic Biochemistry, Intracellular Signaling, and Physiological Impacts in the Gut. Intestinal Res. 12:90-95.
106. Rodríguez-Roque, M.J., B. Ancos, C. Sánchez-Moreno, M.P. Cano, P. Elez-Martínez, and O. Martín-Belloso. 2015. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J. Funct. Foods. 14:33-43.
107. Roldán-Marín, E., C. Sánchez-Moreno, R. Lloría, B. D. Ancos, and M.P. Cano. 2009. Onion high-pressure processing: Flavonol content and antioxidant activity. LWT Food Sci. Technol. 42:835-841.
108. Rungapamestry, V., A.J. Duncan, Z. Fuller, and B. Ratcliffe. 2007. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc. Nutr. Soc. 66:69-81.
109. Sautebin, L. 2000. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia. 71:48-57.
110. Sawle, P., R. Foresti, B.E. Mann, T.R. Johnson, C.J. Green, and R. Motterlini. 2009. Carbon monoxide-releasing molecules (CO-RMs) attenuate theinflammatory response elicited by lipopolysaccharide in RAW264.7murine macrophages. Br. J. Pharmacol. 145:800-810.
111. Shirakawa, M., H. Ueda, T. Shimada, and I. Hara-Nishimura. 2016. Myrosin cells are differentiated directly from ground meristem cells and are developmentally independent of the vasculature in Arabidopsis leaves. Plant Signaling Behav. 11:1-5.
112. Smith, C.J., Y. Zhang, C.M. Koboldt, J. Muhammad, B.S. Zweifel, A. Shaffer, J.J. Talley, J.L. Masferrer, K. Seibert, and P.C. Isakson. 1998. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc. Natl. Acad. Sci. 95:13313-13318.
113. Soltés, L. and G. Kogan. 2014. Hyaluronan: An information rich messenger reporting on the physiological and pathophysiological status of synovial joints, p. 1-26. In: G.E. Zaikov, G. Nyszko, L.P. Krylova, and S.D. Varfolomeev (eds.). News in chemistry, biochemistry and biotechnology. Nova Science Publishers, Inc. New York, USA.
114. Sønderby, I.E., F. Geu-Flores, and B.A. Halkier. 2010. Biosynthesis of glucosinolates- gene discovery and beyond. Trends Plant Sci. 15:283-290.
115. Subedi, L., J.H. Lee, S. Yumnam, E. Ji, and S.Y. Kim. 2019. Anti-inflammatory effect of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 activation. Cell. 8:1-17.
116. Subedi, L., R. Venkatesan, and S.Y. Kim. 2017. Neuroprotective and anti-inflammatory activities of allyl isothiocyanate through attenuation of JNK/NF-κB/TNF-α signaling. Int. J. Mol. Sci. 18:1-16.
117. Surjadinata, B.B. and L.C. Zevallos. 2012. Biosynthesis of phenolic antioxidants in carrot tissue increases with wounding intensity. Food Chem. 134:615-624.
118. Tangwongchai, R., D.A. Ledward, and J.M. Ames. 2000. Effect of High-Pressure Treatment on the Texture of Cherry Tomato. J. Agric. Food Chem. 48:1434-1441.
119. Terefe, N.S., R. Buckow, and C. Versteeg. 2014. Quality-related enzymes in fruit and vegetable products: Effects of novel food processing technologies, part 1: high-pressure processing. Crit. Rev. Food Sci. Nutr. 54:24-63.
120. Thornalley, P. J. 2002. Isothiocyanates: mechanism of cancer chemopreventive action. Anti-cancer drugs. 13:31-338.
121. Tola, Y.B. and H.S. Ramaswamy. 2015. Temperature and high pressure stability of lycopene and vitamin C of watermelon juice. Afr. J. Food Sci. 9:351-358.
122. Traka, M. and R. Mithen. 2008. Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 8:269-282.
123. Tsatsanis, C., A. Androulidaki, E. Dermitzaki, A. Gravanis, and A.N. Margioris. 2006. Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti‐inflammatory effect during the early phase of inflammation suppressing LPS‐induced TNF‐α release from macrophages via induction of COX‐2 and PGE2. J. Cell. Physiol. 210:774-783.
124. Velázquez, D.A.J. and L.C. Zevallos. 2012. An alternative use of horticultural crops: Stressed plants as biofactories of bioactive phenolic compounds. Agriculture. 2:259-271.
125. Vickers, C.E., J. Gershenzon, M.T. Lerdau, and F. Loreto. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5:283-291.
126. Viljanen, K., M. Lille, R.L. Heiniö, and J. Buchert. 2011. Effect of high-pressure processing on volatile composition and odour of cherry tomato purée. Food Chem. 129:1759-1765.
127. Wang, J., F.J. Barba, H.B. Frandsen, S. Sørensen, K. Olsen, J.C. Sørensen, and V. Orlien. 2016. The impact of high pressure on glucosinolate profile and myrosinase activity in seedlings from Brussels sprouts. Innov. Food Sci. Emerg. Technol. 38:342-348.
128. Westphal, A., K.M. Riedl, J.L. Cooperstone, S. Kamat, V.M. Balasubramaniam, S.J. Schwartz, and V. Böhm. 2017. High-pressure processing of broccoli sprouts: influence on bioactivation of glucosinolates to isothiocyanates. J. Agric. Food. Chem. 65:8578-8585.
129. Wilkinson, A.P., M.J.C. Rhodes, and R.G. Fenwick. 1984. Myrosinase activity of cruciferous vegetables. J. Sci. Food Agric. 35:543-552.
130. Woo, K.J. and T.K. Kwon. 2007. Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int. Immunopharmacol. 7:1776-1783.
131. Yehuda, H., Y. Soroka, M.Z. Frušić, A. Gilhar, Y. Milner, and S. Tamir. 2012. Isothiocyanates inhibit psoriasis-related proinflammatory factors in human skin. Inflamm. Res. 61:735-742.
132. Yordanov, D.G. and G.V. Angelova. 2010. High Pressure Processing for Foods Preserving. Biotechnol. Biotec. Eq. 24:1940-1945.
133. You, Y., Y. Wu, J. Mao, L. Zou, and S. Liu. 2008. Screening of Chinese brassica species for anti-cancer sulforaphane and erucin. Afr. J. Biotechnol. 7:147-152.
134. Yu, G., J. Bei, J. Zhao, Q. Li, and C. Cheng. 2018. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem. 257:333-340.
135. Zabetakis, I., D. Leclerc, and P. Kajda. 2000. The Effect of High Hydrostatic Pressure on the Strawberry Anthocyanins. J. Agric. Food Chem. 48:2749-2754.
136. Zevallos, L.C. 2006. The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding‐value of fresh fruits and vegetables. J. Food Sci. 68:1560-1565.
137. Zhang ,Y., T.W. Kensler, C.G. Cho, G.H. Posner, and P. Talalay. 1994. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Nati. Acad. Sci. 91:3147-3150.
138. Zhang, Y. 2004. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat. Res. 555:173-190.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76846-
dc.description.abstract異硫氰酸鹽 (isothiocyanate, ITCs) 普遍存於十字花科作物中,主要透過黑芥子酶水解芥子油苷所產生,其中蘿蔔硫素 (sulforaphane, SFN) 為青花菜主要的異硫氰酸鹽,其次為芥酸 (erucin, ERN)。異硫氰酸鹽具有多種功效,不僅可刺激II型酶活性,提升人體抗癌能力,亦具有抑制發炎相關因子生成、延緩發炎反應、降低氧化應激等作用。然而,多篇文獻指出,異硫氰酸鹽不耐高溫,於烹煮的過程中會隨之流失,且其生成系統中的黑芥子酶在溫度超過60℃的環境時,活性便會受到影響。因此,本研究以青花菜42號品種作為實驗對象,探討高靜水壓與截切處理對異硫氰酸鹽含量、黑芥子酶活性及其他機能性成分之影響,並且藉由細胞試驗分別評估其抗發炎與抗氧化功效。
本實驗以80%甲醇萃取青花菜,經由回收率與精密度試驗搭配HPLC分析後,可穩定且有效的萃取與分離SFN與ERN。青花菜經過高壓處理後,SFN與ERN含量顯著提升,其中以400 MPa處理15分鐘之條件可生成最多的異硫氰酸鹽,含量分別為154.79±7.64 mg‧100 g-1及109.86±7.45 mg·100 g-1,遠高於控制組。在不同截切形式部分,由於截切過程中易導致氧化或成分流失,故於不截切狀態下,更能保留其異硫氰酸鹽含量。於同樣處理時間下,探討不同加壓次數對青花菜之影響,結果顯示,相較於多次處理,單次高壓處理可產生較多的異硫氰酸鹽。綜合以上結果,最終以400 MPa單次處理15分鐘之條件作為最適加工條件。
青花菜中含有豐富的機能性成分,其經過高壓加工後,類黃酮與維生素C不受加工影響,總酚含量則顯著增加。在黑芥子酶 (myrosinase, MYR) 活性方面,經過殺菁處理後,活性顯著降低;而在高壓處理下,MYR活性明顯提升,並且趨勢與異硫氰酸鹽相同,顯示異硫氰酸鹽生成量深受黑芥子酶活性變化所影響。
在抗發炎方面,高壓處理後的青花菜可於不影響細胞活性之狀態下,抑制NO生成,並降低iNOS與COX-2表現量,且不論是先以LPS誘導或後處理,皆是SFN濃度為60 mg·mL-1時,效果更為顯著;然而PGE2含量沒有受到SFN濃度的提升所影響,變化趨勢也與COX-2不同,推測PGE2除了受COX-2調控外,亦被COX-1所調節。總結而言,高壓加工可提升青花菜中異硫氰酸鹽含量,於細胞評估上,亦有抗發炎之效果,更具有作為保健食品原料或添加物之潛力。
zh_TW
dc.description.abstractIsothiocyanate is commonly found in Cruciferae crops and is mainly produced by the hydrolysis of glucosinolates by myrosinase. In broccoli, the main isothiocyanate is sulforaphane (SFN), followed by erucin (ERN). Isothiocyanate has many benefits, such as stimulating type II enzyme activity, enhancing the anti-cancer ability of humans, inhibiting the production of inflammation-related factors, delay inflammation, and reducing oxidative stress. However, isothiocyanate is not resistant to high temperature and is lost during cooking. Thus, the activity of myrosinase in the isothiocyanate-synthetic production system could be affected when the temperature exceeds 60°C. This study investigates the changes in isothiocyanate content, myrosinase activity and other functional components in response to high hydrostatic pressure in broccoli No. 42. The anti-inflammatory and anti-oxidative effects were also evaluated with in vitro cell experiments.
In this experiment, 80% of methanol was used to extract SFN and ERN from broccoli. Through recovery and precision tests combined with HPLC analysis, SFN and ERN could be effectively extracted and separated. After the high-pressure treatment of the broccoli '42', the contents of SFN and ERN increased significantly. Among all processing conditions, the treatment with 400 MPa for 15 min generated the highest SFN and ERN contents, which were 154.79±7.64 mg·100 g-1 and 51.39±1.62 mg·100 g-1, respectively. Due to the oxidation or component loss during the cutting processes, the isothiocyanate contents were retained better without cutting. Under the same treatment duration, the frequency of high-pressure processing was divided into one to three times, and the results showed that a single high-pressure treatment could produce more isothiocyanate contents. We found that a single treatment at 400 MPa for 15 minutes was the optimal condition.
After high-pressure processing, the total phenol content in broccoli increased significantly, with unchanged levels of flavonoids and vitamin C. We also analyzed the activity of myrosinase (MYR) in broccoli were analyzed. After blanching, the activity of myrosinase was significantly reduced. High-pressure treatment increased the activity of MYR, and its trend was the same as that of isothiocyanate. This showed that the content of isothiocyanate was deeply affected by changes in myrosinase activity.
High-pressure treatments could inhibit nitric oxide (NO) production and reduce the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) without affecting cell activity. Whether it was pre- or post-treated with lipopolysaccharides (LPS), the inhibitory effects of iNOS and COX-2 of 60 mg·mL-1 SFN were more significant than other treatments. However, the prostaglandin E2 (PGE2) content was not affected by an increase in SFN concentration, and the changes were also different from those of COX-2. In summary, high-pressure processing can increase the content of isothiocyanate in broccoli. The broccoli after high-pressure processing exhibits good anti-inflammatory effect in cell experiments, and has the potential to be used as a material or additive in functional foods.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:38:26Z (GMT). No. of bitstreams: 1
U0001-1308202021284300.pdf: 3711525 bytes, checksum: b4528e5fe49fb60f1a2f25857bb3dab8 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 II
中文摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 前言 1
第二章 前人研究 2
第一節 青花菜 2
1. 青花菜介紹 2
2. 營養成分與價值 5
3. 產業情況 7
第二節 硫配糖體、黑芥子酶與異硫氰酸鹽 9
1. 硫配糖體、黑芥子酶與異硫氰酸鹽介紹與生理特性 9
2. 硫代葡萄糖苷生合成路徑 13
3. 功效評估與應用 15
第三節 非生物性逆境與創傷壓力 19
第四節 高壓加工技術 (High hydrostatic pressure, HHP) 22
1. 高壓加工技術簡介 22
2. 高壓加工技術之應用 25
3. 以高靜水壓技術提升蔬菜中異硫氰酸鹽及黑芥子酶活性效果 28
第五節 抗發炎機能性評估 30
1. 發炎反應與免疫系統 30
2. 巨噬細胞發炎機制及相關發炎因子 32
3. 脂多醣 (LPS) 及以其誘導發炎之模型 34
第三章 材料與方法 36
第一節 試驗動機與目的 36
第二節 試驗架構 37
第三節 儀器設備與試驗材料 39
第四節 高壓處理 42
第五節 HPLC分析異硫氰酸鹽方法 43
1. 異硫氰酸鹽檢測方法確立 43
2. 異硫氰酸鹽萃取方法建立 44
3. 高效能液相層析分析 45
第六節 機能性成分分析 46
1. 總酚含量分析 46
2. 類黃酮含量分析 47
3. 抗壞血酸含量分析 48
第七節 黑芥子酶活性分析 49
第八節 細胞實驗 50
1. 細胞培養 50
2. 細胞解凍活化 51
3. 細胞繼代培養 51
4. 細胞凍管 51
5. 細胞存活率分析 51
6. 一氧化氮抑制能力分析 52
7. 前列腺素E2生成量分析 52
8. iNOS與COX-2表現量分析 53
第九節 統計分析 57
第四章 結果與討論 58
第一節 異硫氰酸鹽檢測方法確立 58
1. SFN標準品之檢量線 58
2. ERN標準品之檢量線 59
第二節 異硫氰酸鹽萃取方法確立 60
1. 萃取法試驗 60
2. 萃取回收率試驗 60
3. 萃取精密度試驗 61
第三節 不同高壓條件處理下青花菜中異硫氰酸鹽含量變化 65
第四節 不同截切型態之青花菜經過高壓處理後異硫氰酸鹽含量變化 67
第五節 短時多次高壓循環處理下青花菜中SFN與ERN含量變化 70
第六節 機能性成分分析 72
第七節 高壓處理後青花菜中黑芥子酶活性之變化 74
第八節 細胞功效評估 76
1. 巨噬細胞RAW264.7存活率 76
2. 抑制一氧化氮生成 80
3. 前列腺素E2含量變化 83
4. 發炎相關因子表現量 86
第五章 結論 90
參考資料 92
dc.language.isozh-TW
dc.subject抗發炎zh_TW
dc.subject青花菜zh_TW
dc.subject高靜水壓zh_TW
dc.subject異硫氰酸鹽zh_TW
dc.subjectisothiocyanateen
dc.subjectbroccolien
dc.subjecthigh-pressure processingen
dc.subjectanti-inflammatoryen
dc.title探討高靜水壓對青花菜中異硫氰酸鹽含量變化及其功效性評估
zh_TW
dc.titleEffects of High Hydrostatic Pressure on the Content of Isothiocyanate in Broccoli and its Functional Evaluationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐源泰(Yuan-Tay Shyu),劉育姍(Yu-Shan Liu),鄭光成(Kuan-Chen Cheng),王鐘毅(Chung-Yi Wang)
dc.subject.keyword青花菜,高靜水壓,異硫氰酸鹽,抗發炎,zh_TW
dc.subject.keywordbroccoli,high-pressure processing,isothiocyanate,anti-inflammatory,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202003327
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1308202021284300.pdf
  未授權公開取用
3.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved