Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高淑芬(Shur-Fen Gau)
dc.contributor.authorGuan-Jye Sengen
dc.contributor.author諶冠潔zh_TW
dc.date.accessioned2021-07-10T21:37:49Z-
dc.date.available2021-07-10T21:37:49Z-
dc.date.copyright2020-09-07
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationAmaral, D. G., Schumann, C. M., Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137-145.
Ameis, S., Szatmari, P. (2012). Imaging-Genetics in Autism Spectrum Disorder: Advances, Translational Impact, and Future Directions. Front Psychiatry, 3(46). doi:10.3389/fpsyt.2012.00046
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (5th ed ed.). Arlinton, VA: American Psychiatric Association.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95-113.
Baggetta, P., Alexander, P. A. (2016). Conceptualization and operationalization of executive function. Mind, Brain, and Education, 10(1), 10-33.
Barendse, E. M., Hendriks, M. P. H., Jansen, J. F. A., Backes, W. H., Hofman, P. A. M., Thoonen, G., . . . Aldenkamp, A. P. (2013). Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. Journal of Neurodevelopmental Disorders, 5(1), 14. doi:10.1186/1866-1955-5-14
Baron-Cohen, S., Swettenham, J. (1997). Theory of mind in autism: Its relationship to executive function and central coherence. Handbook of autism and pervasive developmental disorders, 880-893.
Bishop, S. L., Hus, V., Duncan, A., Huerta, M., Gotham, K., Pickles, A., . . . Lord, C. (2013). Subcategories of restricted and repetitive behaviors in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(6), 1287-1297.
Bishop, S. L., Richler, J., Lord, C. (2006). Association Between Restricted and Repetitive Behaviors and Nonverbal IQ in Children with Autism Spectrum Disorders. Child Neuropsychology, 12(4-5), 247-267. doi:10.1080/09297040600630288
Cannon, D. S., Miller, J. S., Robison, R. J., Villalobos, M. E., Wahmhoff, N. K., Allen-Brady, K., . . . Coon, H. (2010). Genome-wide linkage analyses of two repetitive behavior phenotypes in Utah pedigrees with autism spectrum disorders. Molecular Autism, 1(1), 3. doi:10.1186/2040-2392-1-3
Caron, M. J., Mottron, L., Rainville, C., Chouinard, S. (2004). Do high functioning persons with autism present superior spatial abilities? Neuropsychologia, 42(4), 467-481. doi:https://doi.org/10.1016/j.neuropsychologia.2003.08.015
Carper, R. A., Moses, P., Tigue, Z. D., Courchesne, E. (2002). Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage, 16(4), 1038-1051. doi:10.1006/nimg.2002.1099
Chen, Y. L., Shen, L. J., Gau, S. S. (2017). The Mandarin version of the Kiddie-Schedule for Affective Disorders and Schizophrenia-Epidemiological version for DSM-5 - A psychometric study. Journal of the Formosan Medical Association, 116(9), 671-678. doi:10.1016/j.jfma.2017.06.013
Chien, Y. L., Gau, S. S. F., Shang, C. Y., Chiu, Y. N., Tsai, W. C., Wu, Y. Y. (2015). Visual memory and sustained attention impairment in youths with autism spectrum disorders. Psychological medicine, 45(11), 2263-2273. doi:10.1017/S0033291714003201
Christensen, D. L., Bilder, D. A., Zahorodny, W., Pettygrove, S., Durkin, M. S., Fitzgerald, R. T., . . . Yeargin-Allsopp, M. (2016). Prevalence and characteristics of autism spectrum disorder among 4-year-old children in the autism and developmental disabilities monitoring network. Journal of Developmental and Behavioral Pediatrics, 37(1), 1-8.
Chumbley, J. R., Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage, 44(1), 62-70. doi:10.1016/j.neuroimage.2008.05.021
Clarkson, M. J., Cardoso, M. J., Ridgway, G. R., Modat, M., Leung, K. K., Rohrer, J. D., . . . Ourselin, S. (2011). A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage, 57(3), 856-865.
Corbett, B. A., Constantine, L. J., Hendren, R., Rocke, D., Ozonoff, S. (2009). Examining executive functioning in children with autism spectrum disorder, attention deficit hyperactivity disorder and typical development. Psychiatry Research, 166(2), 210-222.
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., . . . Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57(2), 245-254. doi:10.1212/wnl.57.2.245
Cuccaro, M. L., Shao, Y., Grubber, J., Slifer, M., Wolpert, C. M., Donnelly, S. L., . . . DeLong, G. R. (2003). Factor analysis of restricted and repetitive behaviors in autism using the Autism Diagnostic Interview-R. Child psychiatry and human development, 34(1), 3-17.
D'Mello, A. M., Crocetti, D., Mostofsky, S. H., Stoodley, C. J. (2015). Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage: Clinical, 7, 631-639. doi:https://doi.org/10.1016/j.nicl.2015.02.007
De Bartolo, P., Mandolesi, L., Federico, F., Foti, F., Cutuli, D., Gelfo, F., Petrosini, L. (2009). Cerebellar involvement in cognitive flexibility. Neurobiology of Learning and Memory, 92(3), 310-317.
Demetriou, E. A., DeMayo, M. M., Guastella, A. J. (2019). Executive function in Autism Spectrum Disorder: History, theoretical models, empirical findings and potential as an endophenotype. Front Psychiatry, 10, 753.
Demetriou, E. A., Lampit, A., Quintana, D. S., Naismith, S. L., Song, Y. J. C., Pye, J. E., . . . Guastella, A. J. (2018). Autism spectrum disorders: a meta-analysis of executive function. Molecular Psychiatry, 23(5), 1198-1204. doi:10.1038/mp.2017.75
Dickson, P. E., Cairns, J., Goldowitz, D., Mittleman, G. (2017). Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice. Neuroscience, 345, 99-109. doi:https://doi.org/10.1016/j.neuroscience.2016.03.040
Dimond, D., Perry, R., Iaria, G., Bray, S. (2019). Visuospatial short-term memory and dorsal visual gray matter volume. Cortex, 113, 184-190. doi:https://doi.org/10.1016/j.cortex.2018.12.007
Ecker, C., Suckling, J., Deoni, S. C., Lombardo, M. V., Bullmore, E. T., Baron-Cohen, S., . . . MRC AIMS Consortium, f. t. (2012). Brain Anatomy and Its Relationship to Behavior in Adults With Autism Spectrum Disorder: A Multicenter Magnetic Resonance Imaging Study. JAMA Psychiatry, 69(2), 195-209. doi:10.1001/archgenpsychiatry.2011.1251
Eisenberg, I. W., Wallace, G. L., Kenworthy, L., Gotts, S. J., Martin, A. (2015). Insistence on sameness relates to increased covariance of gray matter structure in autism spectrum disorder. Molecular Autism, 6(1), 54. doi:10.1186/s13229-015-0047-7
Falconer, D. W., Cleland, J., Fielding, S., Reid, I. C. (2009). Using the Cambridge Neuropsychological Test Automated Battery (CANTAB) to assess the cognitive impact of electroconvulsive therapy on visual and visuospatial memory. Psychological medicine, 40(6), 1017-1025. doi:10.1017/S0033291709991243
Frith, U. (1970). Studies in pattern detection in normal and autistic children: II. Reproduction and production of color sequences. Journal of Experimental Child Psychology, 10(1), 120-135.
Gau, S. S.-F., Chou, M.-C., Lee, J.-C., Wong, C.-C., Chou, W.-J., Chen, M.-F., . . . Wu, Y.-Y. (2010). Behavioral problems and parenting style among Taiwanese children with autism and their siblings. Psychiatry and Clinical Neurosciences, 64(1), 70-78. doi:10.1111/j.1440-1819.2009.02034.x
Gau, S. S.-F., Liu, L.-T., Wu, Y.-Y., Chiu, Y.-N., Tsai, W.-C. (2013). Psychometric properties of the Chinese version of the social responsiveness scale. Research in Autism Spectrum Disorders, 7(2), 349-360.
Gau, S. S., Chong, M. Y., Chen, T. H., Cheng, A. T. (2005). A 3-year panel study of mental disorders among adolescents in Taiwan. Am J Psychiatry, 162(7), 1344-1350. doi:162/7/1344 [pii]
10.1176/appi.ajp.162.7.1344
Geurts, H. M., Corbett, B., Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 74-82.
Goldberg, M. C., Mostofsky, S. H., Cutting, L. E., Mahone, E. M., Astor, B. C., Denckla, M. B., Landa, R. J. (2005). Subtle Executive Impairment in Children with Autism and Children with ADHD. Journal of Autism and Developmental Disorders, 35(3), 279-293. doi:10.1007/s10803-005-3291-4
Gotham, K., Bishop, S. L., Hus, V., Huerta, M., Lund, S., Buja, A., . . . Lord, C. (2013). Exploring the relationship between anxiety and insistence on sameness in autism spectrum disorders. Autism Res, 6(1), 33-41. doi:10.1002/aur.1263
Habib, A., Harris, L., Pollick, F., Melville, C. (2019). A meta-analysis of working memory in individuals with autism spectrum disorders. PloS One, 14(4), e0216198.
Happé, F., Booth, R., Charlton, R., Hughes, C. (2006). Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: examining profiles across domains and ages. Brain and cognition, 61(1), 25-39.
Haxby, J. V., Petit, L., Ungerleider, L. G., Courtney, S. M. (2000). Distinguishing the Functional Roles of Multiple Regions in Distributed Neural Systems for Visual Working Memory. Neuroimage, 11(5), 380-391. doi:https://doi.org/10.1006/nimg.2000.0592
Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24(2), 189-233.
Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8(1), 26-32.
Hollander, E., Anagnostou, E., Chaplin, W., Esposito, K., Haznedar, M. M., Licalzi, E., . . . Buchsbaum, M. (2005). Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biological psychiatry, 58(3), 226-232.
Hus, V., Pickles, A., Cook Jr, E. H., Risi, S., Lord, C. (2007). Using the autism diagnostic interview—revised to increase phenotypic homogeneity in genetic studies of autism. Biological psychiatry, 61(4), 438-448.
Jung, K.-I., Park, M.-H., Park, B., Kim, S.-Y., Kim, Y. O., Kim, B.-N., . . . Song, C.-H. (2019). Cerebellar Gray Matter Volume, Executive Function, and Insomnia: Gender Differences in Adolescents. Scientific Reports, 9(1), 855. doi:10.1038/s41598-018-37154-w
Kellermann, T., Regenbogen, C., De Vos, M., Mößnang, C., Finkelmeyer, A., Habel, U. (2012). Effective Connectivity of the Human Cerebellum during Visual Attention. The Journal of Neuroscience, 32(33), 11453-11460. doi:10.1523/jneurosci.0678-12.2012
Kercood, S., Grskovic, J. A., Banda, D., Begeske, J. (2014). Working memory and autism: A review of literature. Research in Autism Spectrum Disorders, 8(10), 1316-1332.
King, M., Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. International Journal of Epidemiology, 38(5), 1224-1234.
Koziol, L. F., Budding, D. E., Chidekel, D. (2012). From Movement to Thought: Executive Function, Embodied Cognition, and the Cerebellum. The Cerebellum, 11(2), 505-525. doi:10.1007/s12311-011-0321-y
Lai, C. L. E., Lau, Z., Lui, S. S. Y., Lok, E., Tam, V., Chan, Q., . . . Cheung, E. F. C. (2017). Meta-analysis of neuropsychological measures of executive functioning in children and adolescents with high-functioning autism spectrum disorder. Autism Research, 10(5), 911-939. doi:10.1002/aur.1723
Lai, D.-C., Tseng, Y.-C., Hou, Y.-M., Guo, H.-R. (2012). Gender and geographic differences in the prevalence of autism spectrum disorders in children: Analysis of data from the national disability registry of Taiwan. Research in Developmental Disabilities, 33(3), 909-915.
Lam, K. S., Bodfish, J. W., Piven, J. (2008). Evidence for three subtypes of repetitive behavior in autism that differ in familiality and association with other symptoms. Journal of Child Psychology and Psychiatry, 49(11), 1193-1200.
Landry, O., Al-Taie, S. (2016). A Meta-analysis of the Wisconsin Card Sort Task in Autism. Journal of Autism and Developmental Disorders, 46(4), 1220-1235. doi:10.1007/s10803-015-2659-3
Langen, M., Bos, D., Noordermeer, S. D., Nederveen, H., van Engeland, H., Durston, S. (2014). Changes in the development of striatum are involved in repetitive behavior in autism. Biological Psychiatry, 76(5), 405-411. doi:10.1016/j.biopsych.2013.08.013
Langen, M., Durston, S., Staal, W. G., Palmen, S. J., van Engeland, H. (2007). Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biological Psychiatry, 62(3), 262-266. doi:10.1016/j.biopsych.2006.09.040
Langen, M., Schnack, H. G., Nederveen, H., Bos, D., Lahuis, B. E., de Jonge, M. V., . . . Durston, S. (2009). Changes in the Developmental Trajectories of Striatum in Autism. Biological psychiatry, 66(4), 327-333. doi:https://doi.org/10.1016/j.biopsych.2009.03.017
Le Couteur, A., Rutter, M., Lord, C., Rios, P., Robertson, S., Holdgrafer, M., McLennan, J. (1989). Autism diagnostic interview: a standardized investigator-based instrument. Journal of Autism and Developmental Disorders, 19(3), 363-387.
Leung, R. C., Vogan, V. M., Powell, T. L., Anagnostou, E., Taylor, M. J. (2016). The role of executive functions in social impairment in Autism Spectrum Disorder. Child Neuropsychology, 22(3), 336-344. doi:10.1080/09297049.2015.1005066
Lin, H.-Y., Ni, H.-C., Lai, M.-C., Tseng, W.-Y. I., Gau, S. S.-F. (2015). Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Molecular Autism, 6(1), 29.
Linden, D. E. J., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Goebel, R., . . . Munk, M. H. J. (2003). Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage, 20(3), 1518-1530. doi:https://doi.org/10.1016/j.neuroimage.2003.07.021
Lopez, B. R., Lincoln, A. J., Ozonoff, S., Lai, Z. (2005). Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder. Journal of Autism and Developmental Disorders, 35(4), 445-460.
Lord, C., Rutter, M., Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659-685. doi:10.1007/bf02172145
Luciana, M. (2003). Practitioner Review: Computerized assessment of neuropsychological function in children: clinical and research applications of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). Journal of Child Psychology and Psychiatry, 44(5), 649-663. doi:10.1111/1469-7610.00152
Luciana, M., Nelson, C. A. (2002). Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4-to 12-year-old children. Developmental Neuropsychology, 22(3), 595-624.
Müller, R.-A., Fishman, I. (2018). Brain connectivity and neuroimaging of social networks in autism. Trends in Cognitive Sciences, 22(12), 1103-1116.
Mandy, W., Gilmour, J., Kamboj, S., Skuse, D. (2008). What is the relationship between cognitive flexibility and insistence on sameness behaviour in autism?
Matson, J. L., Kozlowski, A. M. (2011). The increasing prevalence of autism spectrum disorders. Research in Autism Spectrum Disorders, 5(1), 418-425.
Meadan, H., Ostrosky, M. M., Triplett, B., Michna, A., Fettig, A. (2011). Using Visual Supports with Young Children with Autism Spectrum Disorder. TEACHING Exceptional Children, 43(6), 28-35. doi:10.1177/004005991104300603
Middleton, F. A., Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458-461.
Miller, H. L., Ragozzino, M. E., Cook, E. H., Sweeney, J. A., Mosconi, M. W. (2015). Cognitive Set Shifting Deficits and Their Relationship to Repetitive Behaviors in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 45(3), 805-815. doi:10.1007/s10803-014-2244-1
Mosconi, M. W., Kay, M., D'Cruz, A. M., Seidenfeld, A., Guter, S., Stanford, L. D., Sweeney, J. A. (2009). Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychological medicine, 39(9), 1559-1566. doi:10.1017/S0033291708004984
Munk, M. H. J., Linden, D. E. J., Muckli, L., Lanfermann, H., Zanella, F. E., Singer, W., Goebel, R. (2002). Distributed Cortical Systems in Visual Short-term Memory Revealed by Event-related Functional Magnetic Resonance Imaging. Cerebral Cortex, 12(8), 866-876. doi:10.1093/cercor/12.8.866
O'Hearn, K., Asato, M., Ordaz, S., Luna, B. (2008). Neurodevelopment and executive function in autism. Development and psychopathology, 20(4), 1103-1132.
Olde Dubbelink, L. M. E., Geurts, H. M. (2017). Planning Skills in Autism Spectrum Disorder Across the Lifespan: A Meta-analysis and Meta-regression. Journal of Autism and Developmental Disorders, 47(4), 1148-1165. doi:10.1007/s10803-016-3013-0
Ozonoff, S., Cook, I., Coon, H., Dawson, G., Joseph, R. M., Klin, A., . . . Wrathall, D. (2004). Performance on Cambridge Neuropsychological Test Automated Battery subtests sensitive to frontal lobe function in people with autistic disorder: evidence from the Collaborative Programs of Excellence in Autism network. Journal of Autism and Developmental Disorders, 34(2), 139-150.
Panichello, M. F., DePasquale, B., Pillow, J. W., Buschman, T. J. (2019). Error-correcting dynamics in visual working memory. Nature Communications, 10(1), 3366. doi:10.1038/s41467-019-11298-3
Pellicano, E. (2007). Links between theory of mind and executive function in young children with autism: clues to developmental primacy. Developmental Psychology, 43(4), 974-990. doi:10.1037/0012-1649.43.4.974
Peterburs, J., Desmond, J. E. (2016). The role of the human cerebellum in performance monitoring. Current Opinion in Neurobiology, 40, 38-44.
Peterburs, J., Thürling, M., Rustemeier, M., Göricke, S., Suchan, B., Timmann, D., Bellebaum, C. (2015). A cerebellar role in performance monitoring–Evidence from EEG and voxel-based morphometry in patients with cerebellar degenerative disease. Neuropsychologia, 68, 139-147.
Ridley, N. J., Homewood, J., Walters, J. (2011). Cerebellar dysfunction, cognitive flexibility and autistic traits in a non-clinical sample. Autism, 15(6), 728-745. doi:10.1177/1362361310395956
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., McInnes, L., RABBITT, P. M. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society, 4(5), 474-490.
Robinson, S., Goddard, L., Dritschel, B., Wisley, M., Howlin, P. (2009). Executive functions in children with autism spectrum disorders. Brain and Cognition, 71(3), 362-368.
Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., Tregellas, J. R. (2006). Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry, 6(1), 56. doi:10.1186/1471-244X-6-56
Sahakian, B. J., Morris, R. G., Evenden, J. L., Heald, A., Levy, R., Philpot, M., Robbins, T. W. (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain, 111 ( Pt 3), 695-718. doi:10.1093/brain/111.3.695
Salmanian, M., Tehrani-Doost, M., Ghanbari-Motlagh, M., Shahrivar, Z. (2012). Visual memory of meaningless shapes in children and adolescents with autism spectrum disorders. Iran J Psychiatry, 7(3), 104-108.
Sanders, J., Johnson, K. A., Garavan, H., Gill, M., Gallagher, L. (2008). A review of neuropsychological and neuroimaging research in autistic spectrum disorders: Attention, inhibition and cognitive flexibility. Research in Autism Spectrum Disorders, 2(1), 1-16. doi:https://doi.org/10.1016/j.rasd.2007.03.005
Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., Murphy, D. G. M. (2006). Neural Correlates of Executive Function in Autistic Spectrum Disorders. Biological psychiatry, 59(1), 7-16. doi:https://doi.org/10.1016/j.biopsych.2005.06.007
Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., Piven, J. (1999). An MRI study of the basal ganglia in autism. Progress in neuro-psychopharmacology biological psychiatry.
Shafritz, K. M., Dichter, G. S., Baranek, G. T., Belger, A. (2008). The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biological psychiatry, 63(10), 974-980.
Shao, Y., Cuccaro, M. L., Hauser, E. R., Raiford, K. L., Menold, M. M., Wolpert, C. M., . . . Pericak-Vance, M. A. (2003). Fine Mapping of Autistic Disorder to Chromosome 15q11-q13 by Use of Phenotypic Subtypes. The American Journal of Human Genetics, 72(3), 539-548. doi:https://doi.org/10.1086/367846
Sinzig, J., Morsch, D., Bruning, N., Schmidt, M. H., Lehmkuhl, G. (2008). Inhibition, flexibility, working memory and planning in autism spectrum disorders with and without comorbid ADHD-symptoms. Child and Adolescent Psychiatry and Mental Health, 2, 4. doi:10.1186/1753-2000-2-4
Smith, A. B., Taylor, E., Brammer, M., Rubia, K. (2004). Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Human Brain Mapping, 21(4), 247-256. doi:10.1002/hbm.20007
South, M., Ozonoff, S., Mcmahon, W. M. (2007). The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum. Autism, 11(5), 437-451. doi:10.1177/1362361307079606
Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 8(92). doi:10.3389/fnsys.2014.00092
Stoodley, C. J., Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831-844. doi:10.1016/j.cortex.2009.11.008
Sun, X., Allison, C. (2010). A review of the prevalence of autism spectrum disorder in Asia. Research in Autism Spectrum Disorders, 4(2), 156-167.
Szatmari, P., Georgiades, S., Bryson, S., Zwaigenbaum, L., Roberts, W., Mahoney, W., . . . Tuff, L. (2006). Investigating the structure of the restricted, repetitive behaviours and interests domain of autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47(6), 582-590. doi:10.1111/j.1469-7610.2005.01537.x
Turner, M. (1997). Towards an executive dysfunction account of repetitive behaviour in autism. In Autism as an executive disorder. (pp. 57-100). New York, NY, US: Oxford University Press.
Van Eylen, L., Boets, B., Steyaert, J., Wagemans, J., Noens, I. (2015). Executive functioning in autism spectrum disorders: influence of task and sample characteristics and relation to symptom severity. European Child and Adolescent Psychiatry, 24(11), 1399-1417. doi:10.1007/s00787-015-0689-1
Vogan, V. M., Morgan, B. R., Lee, W., Powell, T. L., Smith, M. L., Taylor, M. J. (2014). The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load. Journal of Neurodevelopmental Disorders, 6(1), 19. doi:10.1186/1866-1955-6-19
von der Gablentz, J., Tempelmann, C., Münte, T. F., Heldmann, M. (2015). Performance monitoring and behavioral adaptation during task switching: An fMRI study. Neuroscience, 285, 227-235. doi:https://doi.org/10.1016/j.neuroscience.2014.11.024
Wang, Y., Zhang, Y. B., Liu, L. L., Cui, J. F., Wang, J., Shum, D. H., . . . Chan, R. C. (2017). A Meta-Analysis of Working Memory Impairments in Autism Spectrum Disorders. Neuropsychology Review, 27(1), 46-61. doi:10.1007/s11065-016-9336-y
Wilkes, B. J., Lewis, M. H. (2018). The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. Neuroscience Biobehavioral Reviews, 92, 152-171. doi:https://doi.org/10.1016/j.neubiorev.2018.05.022
Wimmer, K., Nykamp, D. Q., Constantinidis, C., Compte, A. (2014). Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nature neuroscience, 17(3), 431-439. doi:10.1038/nn.3645
Yeargin-Allsopp, M., Rice, C., Karapurkar, T., Doernberg, N., Boyle, C., Murphy, C. (2003). Prevalence of autism in a US metropolitan area. JAMA, 289(1), 49-55.
Yerys, B. E., Wallace, G. L., Harrison, B., Celano, M. J., Giedd, J. N., Kenworthy, L. E. (2009). Set-shifting in children with autism spectrum disorders: reversal shifting deficits on the Intradimensional/Extradimensional Shift Test correlate with repetitive behaviors. Autism, 13(5), 523-538.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76822-
dc.description.abstract背景
重複侷限行為是自閉症類群障礙主要的症狀之一,並且導致功能上的缺損。重複侷限行為可分為低階行為(重複性感覺動作行為)以及高階行為(固執行為)。過去研究發現高階重複侷限行為是自閉症類群障礙獨立於年齡、性別、智力及其他症狀的特定特徵,且可作為亞型分組的變項。認知彈性及視覺記憶可能與這些行為相關,然而,固執行為的結構性神經基礎及其相關的認知功能目前仍不清楚。
方法
本研究招募140位自閉症青年及124位一般發展之控制組(平均年齡15.8歲),自閉症青年組依照三題ADI-R中的固執行為項目總分,分別以3分及中位數分為高固執行為(HIS)組及低固執行為(LIS)組。本研究使用劍橋神經心理測驗作為認知彈性及視覺記憶之測驗。在結構核磁掃瞄後,使用體素的形態分析法,以全腦無假設之設計,找出三組之灰質體積差異,之後將提取出有差異之區域灰質體積與認知功能分數進行相關性分析。
結果
以3分為切分點分組,94位自閉症青年屬於高固執行為組,46位自閉症青年屬於低固執行為組。以中位數為切分點,66位自閉症青年屬於高固執行為組,74位為自閉症青年屬於低固執行為組。自閉症青年相較於控制組表現出較差的認知彈性和視覺記憶,不論切分點,高固執行為組相較控制組表現出較差的視覺記憶。以3分的切分點分組,高固執行為組相較於低固執行為組,有較小的左側緣上回(supramarginal gyrus)及左側顳上極(superior temporal pole),以及較大的左側小腦第八小葉(cerebellar lobule VIII),與控制組相比則有較大的右側顳中回(middle temporal gyrus)及雙側的小腦第八小葉(cerebellar lobule VIII),低固執行為組相較於控制組,則有較大的左側顳上極(superior temporal pole)。高固執行為組中之左側顳上極( superior temporal pole)及左側小腦第八小葉(cerebellar lobule VIII)及低固執行為組中之左側緣上回(supramarginal gyrus)、左側顳上極(superior temporal pole)及左側小腦第八小葉(cerebellar lobule VIII)與認知彈性錯誤呈負相關,高固執行為組中之雙側小腦第八小葉(cerebellar lobule VIII) 與較佳的視覺記憶呈正相關。以中位數為切點,高固執行為組相較於低固執行為組有較小的右側顳上極(superior temporal pole),相較於控制組則有較大的右側枕下回(inferior occipital gyrus)、小腦蚓部第九小葉(vermis IX)以及左側小腦小葉crus II (cerebellar crus II)。其中,高固執行為組的右側顳上極(superior temporal pole)及左側小腦小葉crus II (cerebellar crus II)與認知彈性錯誤呈負相關。
結論
擁有較嚴重固執行為的自閉症青年在頂葉、顳葉以及小腦有灰質體積之變化,其中顳葉及後側小腦區域的變化特別與認知彈性,並且可能是一種代償性的體積增大。結果支持,固執行為可能為自閉症類群障礙之重複侷限行為中的一特殊特徵,並具有潛力能夠作為自閉症亞型分組的變項。
zh_TW
dc.description.abstractBackground.
Restricted and repetitive behaviors (RRBs) as a hallmark symptom in autism spectrum disorder (ASD) leading to functional impairments had been conceptually classified as lower-order (repetitive sensory-motor behaviors, RSMB) and higher-order behaviors (insistence on sameness, IS). Previous studies had suggested that higher-order RRBs may be a more specific characteristic in ASD and a promising grouping variable as it may be an independent dimension from age, sex, IQ, and other symptom domains. Cognitive flexibility and visual memory may serve as the cognitive underpinnings of these behaviors. However, the neuroanatomical correlates of IS and the related underlying cognitive functions remain unclear.
Methods.
We recruited 140 youth with ASD and 124 typically developing (TD) controls (mean age=15.8 yrs). Youth with ASD were stratified into two groups- the higher score of insistence on sameness (HIS) and the lower score of insistence on sameness (LIS) by 3 IS items in the Autism Diagnostic Interview-Revised. Two cutting points were used: sum score of IS of 3 and the median. The differences in cognitive flexibility and visual memory among the three groups were assessed by the Cambridge Neuropsychological Test Automated Battery (CANTAB). T1-weighted images were acquired and analyzed using Statistical Parametric Mapping version 12 and voxel-based morphometry (VBM) methods to identify differences in gray matter (GM) volume among three groups with a whole-brain hypothesis-free approach. The correlation analyses were performed between the identified regions and the cognitive functions.
Results.
There were 94 or 74 participants in the HIS group and 46 or 66 participants in the LIS group stratified by the sum score of IS of 3 or by the median, respectively. The ASD group showed poorer cognitive flexibility and visual memory compared to TD controls, especially consistent poorer visual memory in the HIS group across different stratifications. Stratified by the sum score of IS of 3, the HIS group showed decreased GM volumes in the left supramarginal gyrus and left superior temporal pole and increased GM volumes in the left cerebellar lobule VIII compared to the LIS group. Compared to TD controls, the HIS group showed increased GM volumes in the right middle temporal gyrus, and bilateral cerebellar lobule VIII and the LIS group showed increased GM volumes in the left superior temporal pole. Left superior temporal pole and left cerebellar lobule VIII in the HIS group and left supramarginal gyrus, left superior temporal pole and left cerebellar VIII in the LIS were negatively correlated with errors in cognitive flexibility. Bilateral cerebellar lobule VIII volumes were positively correlated with better visual memory in the HIS group. Stratified by the median, the HIS group showed decreased GM volumes in the right superior temporal pole compared to the LIS group and increased GM volumes in right inferior occipital gyrus, vermis IX and left cerebellar crus II compared to TD controls. The right superior temporal pole and left cerebellar crus II were negatively correlated with errors in cognitive flexibility in the HIS group.
Conclusions.
Our findings demonstrated altered GM volumes in the parietal, temporal, and posterior regions of the cerebellum in youth with ASD with more severe IS. The alterations, especially in the superior temporal pole and posterior regions of the cerebellum, were correlated with cognitive flexibility, implying a compensatory enlargement. This work provides evidence to suggest that the IS may be a unique feature from the RRBs domain in ASD and would be a potential stratification variable.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:37:49Z (GMT). No. of bitstreams: 1
U0001-1508202023452500.pdf: 4192770 bytes, checksum: 9937a738f6afea37c6fe15f3e29dcdcb (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書.......................................................................i
致謝...............................................................................ii
中文摘要..........................................................................iii
英文摘要...........................................................................vi
1. Introduction ....................................................................1
1.1 Prevalence and Diagnosis of Autism Spectrum Disorder (ASD)......................1
1.2 Executive Dysfunction Theory in ASD.............................................2
1.3 Neuroanatomical Alterations of ASD..............................................4
1.4 Insistence on Sameness in ASD...................................................6
1.5 Cognitive Flexibility, Visual Memory and Insistence on Sameness in ASD..........7
1.6 Neural Bases of Cognitive Flexibility, Visual Memory and Insistence on Sameness ....................................................................................9
1.7 Rationales, Aims and Hypothesis for this study.................................12
2. Methods ........................................................................12
2.1 Participants and Procedure ...................................................................................12
2.2 ASD Diagnosis and Insistence on Sameness Assessments ..........................13
2.3 Clinical Outcome Measures .....................................................15
2.4 Cognitive Function Measures ...................................................16
2.5 Structural MRI Acquisition and Preprocessing ..................................18
2.6 Statistical Analysis...........................................................19
3. Results.........................................................................21
3.1 Demographic Characteristics and Clinical Features..............................21
3.2 Differences of Cognitive Functions ............................................22
3.3 Correlations between IS, Clinical Features and Cognitive Functions in ASD .....23
3.4 Regional Neuroanatomical Differences...........................................23
3.5 Correlations between the Volume of Specific Brain Region and Cognitive Functions..........................................................................25
4. Discussion .....................................................................26
4.1 Main Findings .................................................................26
4.2 Differences of Cognitive Functions between LIS, HIS and TD controls............27
4.3 Volumetric Differences between LIS, HIS and TD controls and its Related Cognitive Functions .........................................................................28
4.4 No Volumetric Differences in the Striatum......................................32
4.5 Methodological Consideration and Future Directions.............................33
4.6 Conclusions ...................................................................34
References.........................................................................35
Table 1A. .........................................................................46
Table 1B. .........................................................................47
Table 1C. .........................................................................49
Table 2A. .........................................................................51
Table 2B. .........................................................................52
Table 2C. .........................................................................53
Table 3A. .........................................................................54
Table 3B. .........................................................................55
Table 3C. .........................................................................56
Figure 1. .........................................................................57
Figure 2. .........................................................................58
Figure 3. .........................................................................59
Figure 4A. ........................................................................60
Figure 4B. ........................................................................61
Figure 5. .........................................................................62

dc.language.isoen
dc.subject認知彈性zh_TW
dc.subject自閉症zh_TW
dc.subject固執行為zh_TW
dc.subject視覺記憶zh_TW
dc.subjectInsistence on Samenessen
dc.subjectAutism Spectrum Disorderen
dc.subjectVisual Memoryen
dc.subjectCognitive Flexibilityen
dc.title高階重複侷限行為於自閉症患者之灰質變化分析zh_TW
dc.titleAlterations of Gray Matter Volume of Higher-Order Restricted and Repetitive Behaviors in Autism Spectrum Disorderen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳恩賜(Joshua Goh),吳文超(Wen-Chau Wu),賴孟泉(Meng-Chuan Lai)
dc.subject.keyword自閉症,固執行為,認知彈性,視覺記憶,zh_TW
dc.subject.keywordAutism Spectrum Disorder,Insistence on Sameness,Cognitive Flexibility,Visual Memory,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202003545
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1508202023452500.pdf
  未授權公開取用
4.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved