Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76817
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳沛隆(Pei-Lung Chen)
dc.contributor.authorYu-Chun Linen
dc.contributor.author林郁鈞zh_TW
dc.date.accessioned2021-07-10T21:37:42Z-
dc.date.available2021-07-10T21:37:42Z-
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1.Garg, S., et al., Efficient chromosome-scale haplotype-resolved assembly of human genomes. bioRxiv, 2019: p. 810341.
2.Natarajan, K., et al., MHC class I molecules, structure and function. Rev Immunogenet, 1999. 1(1): p. 32-46.
3.Trowsdale, J., Genomic structure and function in the MHC. Trends Genet, 1993. 9(4): p. 117-22.
4.Relle, M. and A. Schwarting, Role of MHC-linked susceptibility genes in the pathogenesis of human and murine lupus. Clin Dev Immunol, 2012. 2012: p. 584374.
5.Shiina, T., et al., Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology, 2017. 150(2): p. 127-138. Hanna, S. and A. Etzioni, MHC class I and II deficiencies. J Allergy Clin Immunol, 2014. 134(2): p. 269-75.
6.Hanna, S. and A. Etzioni, MHC class I and II deficiencies. J Allergy Clin Immunol, 2014. 134(2): p. 269-75.
7.Shi, C., et al., Beta2-microglobulin: emerging as a promising cancer therapeutic target. Drug Discov Today, 2009. 14(1-2): p. 25-30.
8.Li, L., M. Dong, and X.G. Wang, The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator. Chin Med J (Engl), 2016. 129(4): p. 448-55.
9. Daniels, M.A., et al., CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity, 2001. 15(6): p. 1051-61.
10. Garcia, K.C., et al., CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature, 1996. 384(6609): p. 577-81.
11. Zamoyska, R., The CD8 coreceptor revisited: one chain good, two chains better.Immunity, 1994. 1(4): p. 243-6.
12. Li, Y., Y. Yin, and R.A. Mariuzza, Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol, 2013. 4: p. 206.
13. Bodis, G., V. Toth, and A. Schwarting, Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases. Rheumatol Ther, 2018. 5(1): p. 5-20.
14. Chung, W.H., et al., Medical genetics: a marker for Stevens-Johnson syndrome.Nature, 2004. 428(6982): p. 486.
15. Chen, P.L., et al., Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. Nat Commun, 2015. 6: p. 7633.
16. Schloss, J., et al., HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression. J Immunol, 2018. 200(10): p. 3353-3363.
17. Cardone, M., et al., A transgenic mouse model for HLA-B*57:01-linked abacavir drug tolerance and reactivity. J Clin Invest, 2018. 128(7): p. 2819-2832.
18. Alexander, J., et al., Derivation of HLA-B*0702 transgenic mice: functional CTL repertoire and recognition of human B*0702-restricted CTL epitopes. Hum Immunol, 2003. 64(2): p. 211-23.
19. Koller, B.H., et al., Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science, 1990. 248(4960): p. 1227-30.
20. Maeda, M., et al., CD1d-independent NKT cells in beta 2-microglobulin-deficient mice have hybrid phenotype and function of NK and T cells. J Immunol, 2004. 172(10): p. 6115-22.
21. Zhang, P., et al., Mouse model to study human A beta2M amyloidosis: generation of a transgenic mouse with excessive expression of human beta2-microglobulin. Amyloid, 2010. 17(2): p. 50-62.
22. Gorevic, P.D., et al., Beta-2 microglobulin is an amyloidogenic protein in man. J Clin Invest, 1985. 76(6): p. 2425-9.
23. Pascolo, S., et al., HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med, 1997. 185(12): p. 2043-51.
24. Harada, N., et al., Generation of a Novel HLA Class I Transgenic Mouse Model Carrying a Knock-in Mutation at the β2-Microglobulin Locus. J Immunol, 2017. 198(1): p. 516-527.
25. LaFace, D.M., et al., Human CD8 transgene regulation of HLA recognition by murine T cells. J Exp Med, 1995. 182(5): p. 1315-25.
26. Tishon, A., et al., Transgenic mice expressing human HLA and CD8 molecules generate HLA-restricted measles virus cytotoxic T lymphocytes of the same specificity as humans with natural measles virus infection. Virology, 2000. 275(2):p. 286-93.
27. Chen, P.L., et al., Comprehensive genotyping in two homogeneous Graves' disease samples reveals major and novel HLA association alleles. PLoS One, 2011. 6(1): p. e16635.
28. Yuan, L.W. and R.L. Keil, Distance-independence of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. Genetics, 1990. 124(2): p. 263-73.
29. Database resources of the National Center for Biotechnology Information.Nucleic Acids Res, 2018. 46(D1): p. D8-d13.
30. Ohtsuka, M., et al., Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression. Nucleic Acids Res, 2010. 38(22): p. e198.
31. Babinet, C. and M. Cohen-Tannoudji, Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. An Acad Bras Cienc, 2001. 73(3): p. 365-83.
32. Wang, R., K. Natarajan, and D.H. Margulies, Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J Immunol, 2009. 183(4): p. 2554-64.
33. Quiniou, S.M., et al., Channel catfish CD8α and CD8β co-receptors:characterization, expression and polymorphism. Fish Shellfish Immunol, 2011. 30(3): p. 894-901.
34. Robinson, P.J., L. Graf, and K. Sege, Two allelic forms of mouse beta 2microglobulin. Proc Natl Acad Sci U S A, 1981. 78(2): p. 1167-70.
35. Schmidt, W., et al., Interspecies exchange of beta 2-microglobulin and associated MHC and differentiation antigens. Immunogenetics, 1981. 13(6): p. 483-91.
36. Shields, M.J., et al., Characterization of the interactions between MHC class I subunits: a systematic approach for the engineering of higher affinity variants of beta 2-microglobulin. J Immunol, 1998. 160(5): p. 2297-307.
37. Shields, M.J., L.E. Moffat, and R.K. Ribaudo, Functional comparison of bovine, murine, and human beta2-microglobulin: interactions with murine MHC I molecules. Mol Immunol, 1998. 35(14-15): p. 919-28.
38. Hebert, A.M., et al., Kinetics and thermodynamics of beta 2-microglobulin binding to the alpha 3 domain of major histocompatibility complex class I heavy chain. Biochemistry, 2001. 40(17): p. 5233-42.
39. Pedersen, L.O., et al., The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m. Eur J Immunol, 1995. 25(6):p. 1609-16.
40. Zuñiga-Pflucker, J.C., D.L. Longo, and A.M. Kruisbeek, Positive selection of CD4CD8+ T cells in the thymus of normal mice. Nature, 1989. 338(6210): p. 76-8.
41. Maruŝić-Galesić, S., et al., Development of CD4-CD8+ cytotoxic T cells requires interactions with class I MHC determinants. Nature, 1988. 333(6169): p. 180-3.
42. Roebroek, A.J., P.L. Gordts, and S. Reekmans, Knock-in approaches. Methods Mol Biol, 2011. 693: p. 257-75.
43. Rappaport, A. and L. Johnson, Genetically engineered knock-in and conditional knock-in mouse models of cancer. Cold Spring Harb Protoc, 2014. 2014(9): p. 897-911.
44. Liu, X. and J. Wu, History, applications, and challenges of immune repertoire research. Cell Biol Toxicol, 2018. 34(6): p. 441-457.
45. Nielsen, S.C.A. and S.D. Boyd, Human adaptive immune receptor repertoire analysis-Past, present, and future. Immunol Rev, 2018. 284(1): p. 9-23.
46. Roth, D.B., V(D)J Recombination: Mechanism, Errors, and Fidelity. Microbiol Spectr, 2014. 2(6).
47. Minervina, A., M. Pogorelyy, and I. Mamedov, T-cell receptor and B-cell receptor repertoire profiling in adaptive immunity. Transpl Int, 2019. 32(11): p. 1111-1123.
48. Gebert, C., et al., Chromosome choice for initiation of V-(D)-J recombination is not governed by genomic imprinting. Immunol Cell Biol, 2017. 95(5): p. 473-477.
49. Aouinti, S., et al., IMGT/HighV-QUEST Statistical Significance of IMGT Clonotype (AA) Diversity per Gene for Standardized Comparisons of Next Generation Sequencing Immunoprofiles of Immunoglobulins and T Cell Receptors. PLoS One, 2015. 10(11): p. e0142353.
50. Rosati, E., et al., Overview of methodologies for T-cell receptor repertoire analysis.BMC Biotechnol, 2017. 17(1): p. 61.
51. Ye, J., et al., IgBLAST: an immunoglobulin variable domain sequence analysis tool.Nucleic Acids Res, 2013. 41(Web Server issue): p. W34-40.
52. Gadala-Maria, D., et al., Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles. Proc Natl Acad Sci U S A, 2015. 112(8): p. E862-70.
53. Corcoran, M.M., et al., Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity. Nat Commun, 2016. 7: p. 13642.
54. Ralph, D.K. and F.A.t. Matsen, Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation. PLoS Comput Biol, 2016. 12(1): p. e1004409.
55. Zhang, W., et al., IMPre: An Accurate and Efficient Software for Prediction of Tand B-Cell Receptor Germline Genes and Alleles from Rearranged Repertoire Data. Front Immunol, 2016. 7: p. 457.
56. Sui, W., et al., Composition and variation analysis of the TCR β-chain CDR3 repertoire in systemic lupus erythematosus using high-throughput sequencing. Mol Immunol, 2015. 67(2 Pt B): p. 455-64.
57. Zook, J.M., et al., Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data, 2016. 3: p. 160025.
58. Giudicelli, V., D. Chaume, and M.P. Lefranc, IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res, 2005. 33(Database issue): p. D256-61.
59. Tan, K.T., et al., Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines. BMC Cancer, 2018. 18(1): p. 940.
60. Shih, S.Y., et al., Applications of Probe Capture Enrichment Next Generation Sequencing for Whole Mitochondrial Genome and 426 Nuclear SNPs for Forensically Challenging Samples. Genes (Basel), 2018. 9(1).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76817-
dc.description.abstract許多例子表明,HLA-B 基因的種系變異可能會影響個體的免疫反應和疾病發 生。據此,許多相關的基因轉殖鼠模型已被建立以研究相應的疾病。然而,大多數 小鼠模型都屬於“基因轉殖鼠”,它們將所需基因“隨機插入”到宿主基因組中, 並可能引起一些非預期的副作用。此外,目前為止還沒有 Graves’disease 的相關 HLA-B 小鼠模型。因此,本研究旨在建立具有重組酶介導的盒式交換(RMCE)系 統的 hHLA-B 外顯子 4 KI (knock-in)H-2D1 小鼠,它能方便地根據所需產生不同 的 HLA-B 等位基因。建立此小鼠後,我們將在小鼠中插入 Graves’disease 的風險 等位基因 HLA-B*46:01,並將其發展為 Graves’disease 小鼠模型。另外,我們還在 本研究中建立了人源化的β2 微球蛋白(hB2M)和 CD8 敲入小鼠,它們在抗原呈 現過程中均扮演重要角色。我們採用了 CRISPR-Cas9 或 ES 細胞靶向策略,將目標 基因插入小鼠體內,藉此將特定的突變精確地引入內源基因中,並建立小鼠品系。 我們的最終目標是配種這三種小鼠,以獲得具有三重敲入基因型小鼠。
目前我們只握有 hB2M KI 小鼠,其純系個體中 DNA、mRNA 和蛋白質的表現 已得到驗證。此外,我們發現 hB2M KI 小鼠無法表達 H-2K b 分子,但可以正常表達 H-2Db ,這足以滿足 CD4- CD8 + T 細胞的發育,但是這些細胞的功能需要進一步的實 驗來評估。總體而言,該小鼠品系似乎沒有任何異常或過早死亡的跡象,將有助於 研究免疫相關問題。
B 細胞受體(BCR)和 T 細胞受體(TCR)的集合形構了適應性免疫受體庫 (AIRR)。 BCR 和 TCR 的抗原結合位點由可變(V),多樣性(D)和連接(J) 片段組成。當發生 V(D)J 重組時,V(D)J 各自會有一個等位基因參與連接過 程,造就適應性免疫的極端多樣性。儘管已經提出了許多方法來識別免疫庫,在這 當中很少方法適合用於個人免疫受體庫的評估。在本篇研究中,我們建立了一種基 於探針捕獲的基因組 DNA(gDNA)次世代定序(NGS)方法,並結合了基於 BLASTn 的管線以辨別適應性免疫受體庫。我們根據 ImMunoGeneTics(IMGT)資料庫為 BCR 和 TCR 基因的每個已知的 V 和 J 等位基因設計了探針。 經由 Roche / NimbleGen 的客製化服務,針對每個 V 等位基因生成了三個探針、每個 J 等位基 因生成了一個探針,其中每個探針都是由連續的 60 bps 所組成。由於沒有標準可 以評估這項新提出的流程,因此我們將 IMGT 的 BCR / TCR 等位基因與 NA12878 和 NA24385 的全基因定序的 de-novo 組裝數據進行比對 [1],並將那些完全匹配 的等位基因視為標準。 我們通過測試這兩種來自 Genome In A Bottle(GIAB, https://jimb.stanford.edu/giab)的參考材料(Reference Materials, RM)來驗證我們的 方法。結果顯示,對於 TCR 基因,NA12878 的所有 160 個 V 等位基因和 83 個 J 等位基因以及 NA24385 的所有 157 個 V 等位基因和 83 個 J 等位基因可以通過這 種方法精確分析,但是當使用源自 Epstein-Barr virus 轉化細胞株的基因組 DNA 時, 該分析流程無法鑑別 BCR 的所有 V 等位基因。
綜上所述,我們開發了一種新穎可靠的方法來分析 TCR 的 V 和 J 等位基因同 時標記了 NA12878 和 NA24385 的 TCR 等位基因。基因組 DNA 具有製備方便以 及易於保存的特點,並可隨時獲得大量樣品。我們的方法將來可以應用於人群研究 或個人精準醫療。
zh_TW
dc.description.abstractNumerous examples imply that germline variations of HLA-B genes may impact individuals’ immune response and diseases. Thus, many transgenic mouse models have been established to study corresponding diseases. However, most of the mice models belong to “transgenic mice” which “randomly integrates” the desired gene into the host genome and may cause some unexpecting side-effects. Moreover, no Graves’ diseaserelated HLA-B mouse model is available until this point. Accordingly, this study aims to establish an hHLA-B exon 4 KI (knock-in) H-2D1 mouse that carries a recombinasemediated cassette exchange (RMCE) system, which will enable convenient generation of different HLA-B alleles when needed. After this mouse is established, we will insert the risk allele of Graves’ disease, that is, HLA-B*46:01, into the mouse and develop it into Graves’ disease mouse model. Besides, we also want to establish humanized beta 2 microglobulin (hB2M) and CD8 KI mice, which do play important roles in the antigenpresenting process, in this study. We adopt CRISPR-Cas9 or ES-cell targeting strategy to specifically knock our desired gene into mice, which can precisely introduce specific mutations into endogenous genes and transmit them through the mouse germline. Our final goal is to breed these three strains of mice to get a mouse with triple knock-in genotype.
We only have hB2M KI mice in hand at this moment, whose expressions of DNA, mRNA, and protein in the homozygous strain have been verified. In addition, we find that hB2M KI mice fail to express H-2K b molecule but can normally express H-2Db , which is enough for CD4- CD8 + T cells development, but the functionality of these cells requires further experiments to evaluate. Overall, this mouse strain does not appear to have any abnormalities or signs of premature death and will be helpful in studying immune-related issues.
The collection of B cell receptor (BCR) and T cell receptor (TCR) form the adaptive immune receptor repertoire (AIRR). Antigen-binding sites of BCR and TCR are composed of variable (V), diversity (D), and joining (J) segments. When V(D)J recombination occurs, each gene in genomic DNA (gDNA) will have one allele participating in the joining process, which causes the extreme diversity of the adaptive immunity. Although many approaches have been proposed to identify immune repertoires, few of them are trustworthy for personal germline evaluation. In this study, we established a probe captured-based next-generation sequencing (NGS) method for genomic DNA (gDNA) combined with the BLASTn-based pipeline to determine the AIRR profiles. We designed probes for every identified V and J allele of BCR and TCR genes based on the ImMunoGeneTics (IMGT) database. Each probe is a continuous 60 bps sequence customized from Roche/NimbleGen, and each V allele is covered by three probes, while each J allele is covered by one probe. Since there is no benchmark to evaluate the newly proposed AIRR sequencing pipeline, we aligned the BCR/TCR alleles from IMGT to the whole-genome sequencing de-novo assembly data of reference materials (RMs) NA12878 and NA24385 [1] and annotate those perfectly matched alleles as standards. We verified our approach by testing these two RMs from the Genome In A Bottle (GIAB, https://jimb.stanford.edu/giab). For TCR genes, all V alleles and J alleles of NA12878 and NA24385 can be precisely assigned through this approach. However, this pipeline cannot call all V alleles of the BCR when the gDNA is originated from Epstein-Barr virus-transformed cell lines.
To sum up, we develop a novel and reliable method to profile the V genes and J genes of TCR and annotate the TCR alleles of NA12878 and NA24385, which has not been achieved before. Genomic DNA has characteristics of handy preparation and convenient storage, with numerous samples readily available. Our approach can be applied in population studies or personal precision medicine in the future.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:37:42Z (GMT). No. of bitstreams: 1
U0001-1608202021520800.pdf: 4485876 bytes, checksum: 3e5c178c767327252a7aea5d3dcfe256 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 ................................................................................................................................... i
章節一 中文摘要 ............................................................................................................ ii
Chapter I Abstract ........................................................................................................... iii
章節二 中文摘要 .............................................................................................................v
Chapter II Abstract .......................................................................................................... vi
Contents ......................................................................................................................... viii
List of figures ................................................................................................................. xii
List of supplementary table ........................................................................................... xiv
Chapter I. Establishing a humanized MHC class I and CD8 mouse model ......................1
1. Introduction ...............................................................................................................1
1.1 Major histocompatibility complex (MHC) class I, Beta 2 microglobulin (beta
2m; β2M) and CD8 .......................................................................................................1
1.2 HLA-B related diseases and HLA-B mouse model ..........................................2
1.3 B2M and CD8 mouse model .............................................................................3
1.4 Study purpose ....................................................................................................5
2. Materials and methods ..............................................................................................6
2.1 Gibson assembly ...............................................................................................6
2.2 CRISPR/Cas9 gene knock-in targeting .............................................................7
2.3 Embryonic stem (ES) cell targeting ..................................................................7
2.4 Genotyping for hB2M-KI-mice ........................................................................7
2.5 Reverse-transcription PCR (RT-PCR) ..............................................................8
2.6 Flow cytometric analysis ...................................................................................9
3. Results .....................................................................................................................10
3.1 The design of hHLA-B exon 4 KI H-2D1 mice ..............................................10
3.2 hB2M exon 2 KI mice .....................................................................................12
3.2.1 The design of hB2M exon 2 KI mice ......................................................12
3.2.2 The expression of hB2M in gDNA, mRNA, and protein level ...............13
3.2.3
The hB2M KI mice can express normal quantity of H-2D b molecule and
CD8 + T cells but fail to express H-2K b molecule ....................................................13
3.3 The design of hCD8a KI and hCD8b KI mice ................................................14
4. Discussion ...............................................................................................................15
Chapter II. Adaptive immune receptor repertoire determination through probe capture of
genomic DNA followed by next-generation sequencing ................................................19
1. Introduction .............................................................................................................19
1.1 Adaptive immune receptor repertoire (AIRR) ................................................19
1.2 Immune repertoire sequencing ........................................................................21
1.2.1 Starting material ......................................................................................21
1.2.2 Library preparation ..................................................................................22
1.2.3 Bioinformatic analysis.............................................................................23
1.2.4 Application ..............................................................................................23
1.3 Study purpose ..................................................................................................24
2. Materials and methods ............................................................................................25
2.1 Reference materials collection ........................................................................25
2.2 DNA captured probes ......................................................................................25
2.3 Hybridization-based deep sequencing .............................................................26
2.4 BCR/TCR V and J alleles annotation of NA12878 and NA24385 .................26
2.5 The intersection between V(D)J annotation and probe captured regions .......27
2.6 V and J alleles calling by BLASTn-based pipeline.........................................27
3. Results .....................................................................................................................30
3.1 BCR/TCR V and J alleles annotation of NA12878 and NA24385 .................30
3.2 The intersection between V(D)J annotation and probe captured regions .......31
3.3 The BLASTn-based pipeline can precisely call TCR V and J alleles of
NA12878 and NA24385 with high sensitivity ............................................................31
4. Discussion ...............................................................................................................32
4.1 The BLASTn-based pipeline cannot call consistent results with annotation by
using gDNA from EBV transformed cell lines ...........................................................32
4.2 Advantages, disadvantages, and limitations ....................................................33
4.3 Future work .....................................................................................................34
4.4 Contributions ...................................................................................................35
References .......................................................................................................................36
dc.language.isoen
dc.subject擬人化小鼠模型zh_TW
dc.subject第一型主要組織相容性複合體zh_TW
dc.subject人類白細胞抗原Bzh_TW
dc.subjectBeta 2 微球蛋白zh_TW
dc.subjectCD8zh_TW
dc.subject適應性免疫受體庫zh_TW
dc.subject次世代定序zh_TW
dc.subjectAdaptive Immune Receptor Repertoire (AIRR)en
dc.subjectMajor Histocompatibility Complex Class I (MHC Class I)en
dc.subjectHumanized Mouse Modelen
dc.subjectNext-Generation Sequencing (NGS)en
dc.subjectHuman Leukocyte Antigen B (HLA-B)en
dc.subjectBeta 2 Microglobulin (B2M)en
dc.subjectCD8en
dc.title開發研究人類疾病的新免疫基因組學平台zh_TW
dc.titleDevelopment of new immunogenomic platforms to study human diseaseen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳佑宗(You-Tzung Chen),游益興(I-Shing Yu),柯泰名(Tai-Ming Ko),張偉嶠(Wei-Chiao Chang)
dc.subject.keyword第一型主要組織相容性複合體,人類白細胞抗原B,Beta 2 微球蛋白,CD8,擬人化小鼠模型,適應性免疫受體庫,次世代定序,zh_TW
dc.subject.keywordMajor Histocompatibility Complex Class I (MHC Class I),Human Leukocyte Antigen B (HLA-B),Beta 2 Microglobulin (B2M),CD8,Humanized Mouse Model,Adaptive Immune Receptor Repertoire (AIRR),Next-Generation Sequencing (NGS),en
dc.relation.page63
dc.identifier.doi10.6342/NTU202003618
dc.rights.note未授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept基因體暨蛋白體醫學研究所zh_TW
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1608202021520800.pdf
  未授權公開取用
4.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved