Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴子安(Chi-An Dai)
dc.contributor.authorCHONG-WEI XUen
dc.contributor.author許崇瑋zh_TW
dc.date.accessioned2021-07-10T21:37:29Z-
dc.date.available2021-07-10T21:37:29Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation[1] K. M. Meek, and C. Knupp, “Corneal structure and transparency,” Progress in Retinal and Eye Research, vol. 49, pp. 1-16, 2015/11/01/, 2015.
[2] C. H. Dohlman, “The function of the corneal epithelium in health and disease. The Jonas S. Friedenwald Memorial Lecture,” Investigative ophthalmology, vol. 10, no. 6, pp. 383-407, 1971.
[3] C. E. Willoughby et al., “Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function – a review,” Clinical Experimental Ophthalmology, vol. 38, no. s1, pp. 2-11, 2010.
[4] J. W. Ruberti, and J. D. Zieske, “Prelude to corneal tissue engineering – Gaining control of collagen organization,” Progress in Retinal and Eye Research, vol. 27, no. 5, pp. 549-577, 2008/09/01/, 2008.
[5] Z. Chen et al., “Biomaterials for corneal bioengineering,” Biomedical Materials, vol. 13, no. 3, pp. 032002, 2018/03/06, 2018.
[6] N. Lagali, J. Germundsson, and P. Fagerholm, “The Role of Bowman’s Layer in Corneal Regeneration after Phototherapeutic Keratectomy: A Prospective Study Using In Vivo Confocal Microscopy,” Investigative Ophthalmology Visual Science, vol. 50, no. 9, pp. 4192-4198, 2009.
[7] D. M. Maurice, “The transparency of the corneal stroma,” Vision Research, vol. 10, no. 1, pp. 107-108, 1970/01/01/, 1970.
[8] J. A. Bonanno, “Molecular mechanisms underlying the corneal endothelial pump,” Experimental Eye Research, vol. 95, no. 1, pp. 2-7, 2012/02/01/, 2012.
[9] I. Györffy, “Acrylic Corneal Implant in Keratoplasty*,” American Journal of Ophthalmology, vol. 34, no. 5, Part 1, pp. 757-758, 1951/05/01/, 1951.
[10] [W. Stone, and E. Herbert, “Experimental Study of Plastic Material as Replacement for the Cornea*: A Preliminary Report,” American Journal of Ophthalmology, vol. 36, no. 6, Part 2, pp. 168-173, 1953/06/01/, 1953.
[11] B. Zhang et al., “3D bioprinting for artificial cornea: Challenges and perspectives,” Medical Engineering Physics, vol. 71, pp. 68-78, 2019/09/01/, 2019.
[12] Avadhanam V, Smith H, Liu C. Keratoprostheses for corneal blindness: a review of contemporary devices. Clin Ophthalmol. 2015;9:697-720
[13] A. Gomaa, O. Comyn, and C. Liu, “Keratoprostheses in clinical practice – a review,” Clinical Experimental Ophthalmology, vol. 38, no. 2, pp. 211-224, 2010/03/01, 2010.
[14] B. Salvador-Culla, and P. E. Kolovou, “Keratoprosthesis: A Review of Recent Advances in the Field,” Journal of functional biomaterials, vol. 7, no. 2, pp. 13, 2016.
[15] G. J. Crawford et al., “The Chirila Keratoprosthesis: phase I human clinical trial,” Ophthalmology, vol. 109, no. 5, pp. 883-889
[16] D. F. Williams, Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3-5, 1986: Elsevier Science Limited, 1987.
[17] D. S. Kohane, and R. Langer, “Biocompatibility and drug delivery systems,” Chemical Science, vol. 1, no. 4, pp. 441-446, 2010.
[18] S. Naahidi et al., “Biocompatibility of hydrogel-based scaffolds for tissue engineering applications,” Biotechnology Advances, vol. 35, no. 5, pp. 530-544, 2017/09/01/, 2017.
[19] X. W. Tan et al., “Application of Graphene as Candidate Biomaterial for Synthetic Keratoprosthesis Skirt,” Investigative Ophthalmology Visual Science, vol. 56, no. 11, pp. 6605-6611, 2015.
[20] T. H. van Essen et al., “Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity,” Biomaterials, vol. 81, pp. 36-45, 2016/03/01/, 2016.
[21] Ballesteros-Cillero R, Davison-Kotler E, Kohli N, Marshall WS, García-Gareta E. Biomimetic In Vitro Model of Cell Infiltration into Skin Scaffolds for Pre-Screening and Testing of Biomaterial-Based Therapies. Cells. 2019;8(8):917. Published 2019 Aug 17.
[22] E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” Journal of Advanced Research, vol. 6, no. 2, pp. 105-121, 2015/03/01/, 2015.
[23] E. A. Kamoun, E.-R. S. Kenawy, and X. Chen, “A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings,” Journal of Advanced Research, vol. 8, no. 3, pp. 217-233, 2017/05/01/, 2017.
[24] A. S. Hoffman, “Hydrogels for biomedical applications,” Advanced Drug Delivery Reviews, vol. 64, pp. 18-23, 2012/12/01/, 2012.
[25] J. Zhu, and R. E. Marchant, “Design properties of hydrogel tissue-engineering scaffolds,” Expert Review of Medical Devices, vol. 8, no. 5, pp. 607-626, 2011/09/01, 2011.
[26] Jaya Maitra, Vivek Kumar Shukla, Cross-linking in Hydrogels - A Review, American Journal of Polymer Science, Vol. 4 No. 2, 2014, pp. 25-31.
[27] E. J. Ricci et al., “Sustained release of lidocaine from Poloxamer 407 gels,” International Journal of Pharmaceutics, vol. 288, no. 2, pp. 235-244, 2005/01/20/, 2005.
[28] M. Guzálin et al., “Gelatine Gels and Polyoxyethylene-Polyoxypropylene Gels: Comparative Study of Their Properties,” Drug Development and Industrial Pharmacy, vol. 20, no. 12, pp. 2041-2048, 1994/01/01, 1994.
[29] Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9(3):339-358
[30] Y. Lee et al., “Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction,” Soft Matter, vol. 6, no. 5, pp. 977-983, 2010.
[31] Gelatin Manufacturers Institute of America, “Gelatin handbook”,2019
[32] Djagny VB, Wang Z, Xu S. Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr. 2001;41(6):481-492.
[33] Y. Tabata, and Y. Ikada, “Protein release from gelatin matrices,” Advanced Drug Delivery Reviews, vol. 31, no. 3, pp. 287-301, 1998/05/04/, 1998.
[34] S. Young et al., “Gelatin as a delivery vehicle for the controlled release of bioactive molecules,” Journal of Controlled Release, vol. 109, no. 1, pp. 256-274, 2005/12/05/, 2005.
[35] E. Khor, “Methods for the treatment of collagenous tissues for bioprostheses,” Biomaterials, vol. 18, no. 2, pp. 95-105, 1997/01/01/, 1997.
[36] A. Bigi et al., “Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking,” Biomaterials, vol. 22, no. 8, pp. 763-768, 2001/04/01/, 2001.
[37] D. P. Speer et al., “Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials,” Journal of Biomedical Materials Research, vol. 14, no. 6, pp. 753-764, 1980/11/01, 1980.
[38] H.-C. Liang et al., “Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide,” Journal of Applied Polymer Science, vol. 91, no. 6, pp. 4017-4026, 2004/03/15, 2004.
[39] J. Bart et al., “Room-temperature intermediate layer bonding for microfluidic devices,” Lab on a Chip, vol. 9, no. 24, pp. 3481-3488, 2009.
[40] D. Myung et al., “Progress in the development of interpenetrating polymer network hydrogels,” Polymers for advanced technologies, vol. 19, no. 6, pp. 647-657, 2008.
[41] S. E. Bakarich et al., “Extrusion printing of ionic–covalent entanglement hydrogels with high toughness,” Journal of Materials Chemistry B, vol. 1, no. 38, pp. 4939-4946, 2013.
[42] S. Hong et al., “3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures,” Advanced Materials, vol. 27, no. 27, pp. 4035-4040, 2015/07/01, 2015.
[43] C. L. Ventola, “Medical Applications for 3D Printing: Current and Projected Uses,” P T : a peer-reviewed journal for formulary management, vol. 39, no. 10, pp. 704-711, 2014.
[44] W. Zhong et al., “Short fiber reinforced composites for fused deposition modeling,” Materials Science and Engineering: A, vol. 301, no. 2, pp. 125-130, 2001/03/31/, 2001.
[45] A. Konta, M. García, and D. Serrano, “Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?,” Bioengineering, vol. 4, pp. 1-16, 2017.
[46] F. Fina et al., “Selective laser sintering (SLS) 3D printing of medicines,” International Journal of Pharmaceutics, vol. 529, no. 1, pp. 285-293, 2017/08/30/, 2017.
[47] H. Sohrabpoor, S. Negi, H. Shaiesteh, I. Ahad, D.J.O. Brabazon, 174 (2018) 185-194.
[48] Z. Weng et al., “Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer,” Composites Part A: Applied Science and Manufacturing, vol. 88, pp. 234-242, 2016/09/01/, 2016.
[49] F. Cellesi, N. Tirelli, and J. A. Hubbell, “Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking,” Macromolecular Chemistry and Physics, vol. 203, no. 10‐11, pp. 1466-1472, 2002/07/01, 2002.
[50] T. J. T. P. Van Den Berg, and K. E. W. P. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Research, vol. 34, no. 11, pp. 1453-1456, 1994/06/01/, 1994.
[51] N. Peppas, A. Mikos, Hydrogels in medicine and pharmacy 1 (1986) 1-27
[52] M. Rafat et al., “PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering,” Biomaterials, vol. 29, no. 29, pp. 3960-3972, 2008/10/01/, 2008.
[53] W. Liu et al., “Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes,” Biomaterials, vol. 30, no. 8, pp. 1551-1559, 2009/03/01/, 2009.
[54] K. E. Hamilton, and D. C. Pye, “Young’s Modulus in Normal Corneas and the Effect on Applanation Tonometry,” Optometry and Vision Science, vol. 85, no. 6, 2008.
[55] K. Garala et al., “Formulation and evaluation of periodontal in situ gel,” International journal of pharmaceutical investigation, vol. 3, no. 1, pp. 29-41, 2013.
[56] P. Almeida et al., “FTIR characterization of gelatin from chicken feet,” J. Chem. Chem. Eng., vol. 6, pp. 1029-1032, 2012.
[57] Ferrari, M.; Cirisano, F.; Morán, M.C. Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids Interfaces 2019, 3, 48.
[58] S. L. Bellis, “Advantages of RGD peptides for directing cell association with biomaterials,” Biomaterials, vol. 32, no. 18, pp. 4205-4210, 2011.
[59] L. Chen, C. Yan, and Z. Zheng, “Functional polymer surfaces for controlling cell behaviors,” Materials Today, vol. 21, no. 1, pp. 38-59, 2018/01/01/, 2018.
[60] ABP Biosciences,2020,Cell Viability based on Metabolic Activity.Retrieved from http://www.abpbio.com/product/cell-viability-assay-based-on-metabolic-activity/
[61] Thermofisher,Invitrogen, U.S. Patent No. 5,501,959 (1995)
[62] D.-J. Li et al., “Thickness of fibrous capsule after implantation of hydroxyapatite in subcutaneous tissue in rats,” Journal of Biomedical Materials Research, vol. 45, no. 4, pp. 322-326, 1999/06/15, 1999.
[63] C. A. de Souza Costa et al., “Biocompatibility of Two Current Adhesive Resins,” Journal of Endodontics, vol. 26, no. 9, pp. 512-516, 2000/09/01/, 2000.
[64] L. T. A. Cintra et al., “Evaluation of the Cytotoxicity and Biocompatibility of New Resin Epoxy–based Endodontic Sealer Containing Calcium Hydroxide,” Journal of Endodontics, vol. 43, no. 12, pp. 2088-2092, 2017/12/01/, 2017.
[65] J. Ratanavaraporn et al., “Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats,” International journal of biological macromolecules, vol. 47, pp. 431-8, 2010.
[66] F. Cellesi, N. Tirelli, and J. A. Hubbell, “Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking,” Macromolecular Chemistry and Physics, vol. 203, no. 10‐11, pp. 1466-1472, 2002/07/01, 2002.
[67] L. Li et al., “Thermoreversible micellization and gelation of a blend of pluronic polymers,” Polymer, vol. 49, no. 7, pp. 1952-1960, 2008/04/01/, 2008.
[68] L. F. Dumée et al., “Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design,” Nanomaterials (Basel, Switzerland), vol. 5, no. 4, pp. 1766-1781, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76809-
dc.description.abstract本研究開發一種可結合積層製造法(3D列印技術)的生物相容性高分子水膠配方作為仿生人工角膜材料。透過使用泊洛沙姆高分子(Poloxamer 407或P407)做為水膠主要材料。基於泊洛沙姆高分子具有低臨界溶液溫度(lower critical solution temperature, LCST)之特性,其在低溫時能於水互溶,當溶液溫度升高超過LCST時則由液態轉換成凝膠態,故可透過改變溫度從而調整泊洛沙姆水溶液黏度使其可應用於3D列印以客製化製造仿生人工角膜。本實驗透過改質泊洛沙姆高分子使其末端接上丙烯醯基團(P407DA),讓高分子具有雙鍵,能在紫外光下激發起始劑產生自由基後進行自由基聚合反應形成一個三維的網路結構。利用小角度x光散射實驗(SAXS),我們可以了解此溶液態/凝膠態的轉化,來自於三嵌段之P407DA高分子的自組裝特性的轉化所產生。
但由於泊洛沙姆水膠的機械強度較弱,不足以達到人工角膜的需求,本實驗透過加入明膠並使其在泊洛沙姆水膠裡交聯形成明膠網路使水膠成為互穿網路(interpenetrating network)系統增加水膠的機械強度。隨後便對水膠進行透光度、含水量、機械強度進行測試,根據水膠的物理試驗之實驗結果評估是否適合作為人眼角膜。隨後利用塗佈明膠包覆水膠增加生物相容性,根據實驗結果發現此水膠具有與人眼角膜相似的物性而且生物相容性方面也有改善,為一具有潛力的仿生人工角膜材料。最後,我利用實驗室製作之3D列印機,以加熱在30°C的溫度,以擠壓之方式將泊洛沙姆水膠/明膠之互穿網路列印成具備有弧度之角膜,並利用調節溫度以減小列印之紋路,因此驗證此類水膠可做為日後利用3D列印的方式製備客製化人工角膜之水膠材料。
zh_TW
dc.description.abstractIn this study, a method to fabricate biocompatible soft artificial cornea hydrogels by using additive manufacturing method, capable of 3D printing corneas with customized biometric, was developed. In order to synergistically maintain the mechanical integrity for building dome-shaped cornea with a soft gel during layer printing and the flexibility of easy adjustment of gel solution formulation for biocompatibility, thermos-reversible hydrogels of Poloxamer triblock copolymer (P407), capable of undergoing a sol-gel transition to exhibit dramatic viscosity variation upon temperature changes, was used as the main material composition. This morphological transition, based on the self-assembling behavior of P407, was investigated by using small-angle x-ray scattering (SAXS) technique. Photosensitive P407 (P407DA) was first synthesized by modifying both of its hydroxyl chain ends with double bonds, preparing for crosslink reaction of the double bonds upon UV light exposure after 3D printing to fixate their final structure with free radical polymerization.
For the purpose of further enhancing their mechanical property, transparent corneas with interpenetrating network (IPN) structure were made by mixing various amount of gelatin into P407DA as the final ingredient for 3D printing. The formulation was optimized so that similar sol-gel transition could be preserved to facilitate 3D printing. Afterwards, the IPN hydrogel was tested for its optical transparency, water content, and mechanical strength to compare with those of human cornea. To improve its biocompatibility, the IPN hydrogel was coated on its surfaces with another thin layer of different gelatin types. It was found that the hybrid hydrogels developed in this study had the physical properties similar to those of human cornea and their biocompatibilities were also significantly improved, showing its potential to be used as a future biocompatible artificial corneas for 3D printing manufacturing.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:37:29Z (GMT). No. of bitstreams: 1
U0001-1708202016045800.pdf: 5698279 bytes, checksum: f867937b5e893dc60bb65a5459a206d1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
第二章 文獻回顧 2
2.1 人眼角膜 2
角膜上皮層(Corneal epithelium) 3
鮑曼層(Bowman’s layer) 3
角膜基質層(Corneal stroma) 4
後彈力層(Descemet’s layer) 4
角膜內皮層(Corneal endothelium) 4
2.2 人工角膜 5
2.2.1 波士頓人工角膜(Boston Keratoprosthesis) 5
2.2.2 AlphaCor人工角膜 7
2.3 生物相容性 8
2.4 水膠 9
2.4.1 泊洛沙姆407 (Poloxamer 407) 10
2.4.2 明膠(gelain) 11
2.5 互穿網路水膠(Interpenetrating polymer network hydrogel) 14
2.6 3D列印 15
2.6.1 熔融沉積(Fused Deposition Modeling, FDM) 16
2.6.2 粉末材料選擇性雷射燒結(Selective Laser Sintering, SLS) 17
2.6.3 光敏樹脂選擇性固化(Stereo Lithography Apparatus, SLA) 18
第三章 實驗方法 19
3.1  實驗藥品與儀器 19
3.1.1 實驗藥品 19
3.1.2 實驗儀器 21
3.2 藉由親核醯基取代反應合成末端雙烯化之高分子 22
3.2.1 合成末端雙烯化泊洛沙姆407(P407DA) 22
3.3 水膠製備 24
3.3.1 連續式製備泊洛沙姆/明膠之互穿網路水膠 24
3.4 互穿網路水膠表面改質 25
3.4.1 將明膠塗佈於泊洛沙姆/明膠互穿網路水膠表面 25
3.5 水膠特性測量 26
3.5.1 核磁共振光譜 26
3.5.2 水膠前置液熱流變特性測試 26
3.5.3 透光度測試 26
3.5.4 含水率測量 27
3.5.5 拉伸強度測試 27
3.5.6 掃描式電子顯微鏡 28
3.5.7 水膠細胞貼附實驗 28
3.5.8 半衰減全反射式傅立葉轉換紅外線光譜(ATR-FTIR) 31
3.5.9 水膠植入動物皮下組織實驗 32
3.6 利用3D列印機列印人工角膜 34
第四章 結果與討論 35
4.1 泊洛沙姆/明膠之互穿網路水膠 35
4.1.1核磁共振光譜分析P407之末端烯化率 35
4.1.2水膠前置液熱流變特性測試結果 38
4.1.3透光度 48
4.1.4含水率 50
4.1.5機械性質 51
4.1.6掃描式電子顯微鏡 53
4.1.7細胞貼附實驗 54
4.2 泊洛沙姆/明膠之互穿網路水膠表面改質結果 57
4.2.1 透光度 58
4.2.2 ATR圖譜結果 59
4.2.3 SEM結果 64
4.2.4 細胞貼附實驗 65
4.2.5 水膠植入動物皮下組織實驗 69
4.3積層製造泊洛沙姆/明膠之互穿網路水膠 74
第五章 結論 77
Reference 78
Appendix 84
Part I hydrogel 84
接觸角實驗 84
DSC實驗 85
海藻酸鈉-poloxamer IPN水膠-動物實驗 86
dc.language.isozh-TW
dc.subject互穿網路水膠zh_TW
dc.subject積層製造zh_TW
dc.subject3D列印zh_TW
dc.subject人工角膜zh_TW
dc.subjectinterpenetrating network hydrogelen
dc.subjectartificial corneaen
dc.subject3D printingen
dc.subjectMultilayer manufacturingen
dc.title利用積層製造法製備明膠/泊洛沙姆之互穿網路水膠應用於高生物相容性之人工角膜材料zh_TW
dc.titleGelatin/Poloxamer Interpenetrating Network Hydrogel for Biocompatible Artificial Corneas by Using Additive Manufacturing Methoden
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee芮祥鵬(Siang-Peng Ruei),楊長謀(Chang-Mou Yang),施博仁(Po-Jen Shih)
dc.subject.keyword積層製造,3D列印,互穿網路水膠,人工角膜,zh_TW
dc.subject.keywordMultilayer manufacturing,3D printing,interpenetrating network hydrogel,artificial cornea,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202003784
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1708202016045800.pdf
  未授權公開取用
5.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved