請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7677
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周美吟(Mei-Yin Chou) | |
dc.contributor.author | Ho-Chun Lin | en |
dc.contributor.author | 林合俊 | zh_TW |
dc.date.accessioned | 2021-05-19T17:49:51Z | - |
dc.date.available | 2022-08-28 | |
dc.date.available | 2021-05-19T17:49:51Z | - |
dc.date.copyright | 2017-08-28 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-18 | |
dc.identifier.citation | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696):666–669, October 2004.
[2] Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 354(6348):56–58, November 1991. [3] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 7(11):699–712, November 2012. [4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81(1):109–162, January 2009. [5] R. Saito, M. Fujita, G. Dresselhaus, and M. S Dresselhaus. Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 60(18):2204–2206, May 1992. [6] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64(4):1045–1097, October 1992. [7] J. Ihm, A. Zunger, and M. L. Cohen. Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Phys., 12(21):4409, 1979. [8] G. Makov and M. C. Payne. Periodic boundary conditions in ab initio calculations. Phys. Rev. B, 51(7):4014–4022, February 1995.[9] Carlo A. Rozzi, Daniele Varsano, Andrea Marini, Eberhard K. U. Gross, and Angel Rubio. Exact Coulomb cutoff technique for supercell calculations. Phys. Rev. B, 73(20):205119, May 2006. [9] Carlo A. Rozzi, Daniele Varsano, Andrea Marini, Eberhard K. U. Gross, and Angel Rubio. Exact Coulomb cutoff technique for supercell calculations. Phys. Rev. B, 73(20):205119, May 2006. [10] Sohrab Ismail-Beigi. Truncation of periodic image interactions for confined systems. Phys. Rev. B, 73(23):233103, June 2006. [11] Mehmet Topsakal, Hikmet Hakan Gürel, and Salim Ciraci. Effects of Charging and Electric Field on Graphene Oxide. J. Phys. Chem. C, 117(11):5943–5952, March 2013. [12] P. M. Echenique and J. B. Pendry. The existence and detection of Rydberg states at surfaces. J. Phys. C: Solid State Phys., 11(10):2065, 1978. [13] Daniel Niesner and Thomas Fauster. Image-potential states and work function of graphene. J. Phys.: Condens. Matter, 26(39):393001, 2014. [14] M. Zamkov, N. Woody, S. Bing, H. S. Chakraborty, Z. Chang, U. Thumm, and P. Richard. Time-Resolved Photoimaging of Image-Potential States in Carbon Nanotubes. Phys. Rev. Lett., 93(15):156803, October 2004. [15] A. K. Geim and I. V. Grigorieva. Van der Waals heterostructures. Nature, 499(7459):419–425, July 2013. [16] A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and Franco Nori. Electronic properties of graphene-based bilayer systems. Physics Reports, 648:1–104, August 2016. [17] Guohong Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro Neto, A. Reina, J. Kong, and E. Y. Andrei. Observation of Van Hove singularities in twisted graphene layers. Nat Phys, 6(2):109–113, February 2010. [18] Wei Yan, Mengxi Liu, Rui-Fen Dou, Lan Meng, Lei Feng, Zhao-Dong Chu, Yanfeng Zhang, Zhongfan Liu, Jia-Cai Nie, and Lin He. Angle-Dependent van Hove Singu-larities in a Slightly Twisted Graphene Bilayer. Phys. Rev. Lett., 109(12):126801, September 2012. [19] I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, M. M. Ugeda, L. Magaud, J. M. Gómez-Rodríguez, F. Ynduráin, and J.-Y. Veuillen. Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis. Phys. Rev. Lett., 109(19):196802, November 2012. [20] A. Luican, Guohong Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei. Single-Layer Behavior and Its Breakdown in Twisted Graphene Layers. Phys. Rev. Lett., 106(12):126802, March 2011. [21] Long-Jing Yin, Jia-Bin Qiao, Wei-Jie Zuo, Wen-Tian Li, and Lin He. Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers. Phys. Rev. B, 92(8):081406, August 2015. [22] Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero. Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene. Phys. Rev. Lett., 117(11):116804, September 2016. [23] Kyounghwan Kim, Ashley DaSilva, Shengqiang Huang, Babak Fallahazad, Stefano Larentis, Takashi Taniguchi, Kenji Watanabe, Brian J. LeRoy, Allan H. MacDonald, and Emanuel Tutuc. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. PNAS, 114(13):3364–3369, March 2017. [24] Kazuyuki Uchida, Shinnosuke Furuya, Jun-Ichi Iwata, and Atsushi Oshiyama. Atomic corrugation and electron localization due to Moir’e patterns in twisted bilayer graphenes. Phys. Rev. B, 90(15):155451, October 2014. [25] Rafi Bistritzer and Allan H. MacDonald. Moiré bands in twisted double-layer graphene. PNAS, 108(30):12233–12237, July 2011. [26] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto. Graphene Bilayer with a Twist: Electronic Structure. Phys. Rev. Lett., 99(25):256802, December 2007. [27] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto. Continuum model of the twisted graphene bilayer. Phys. Rev. B, 86(15):155449, October 2012. [28] S. Shallcross, S. Sharma, and O. Pankratov. Emergent momentum scale, localization, and van Hove singularities in the graphene twist bilayer. Phys. Rev. B, 87(24):245403, June 2013. [29] D. Weckbecker, S. Shallcross, M. Fleischmann, N. Ray, S. Sharma, and O. Pankratov. Low-energy theory for the graphene twist bilayer. Phys. Rev. B, 93(3):035452, January 2016. [30] Nicola Marzari and David Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B, 56(20):12847–12865, November 1997. [31] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys., 84(4):1419–1475, October 2012. [32] G. Trambly de Laissardière, D. Mayou, and L. Magaud. Localization of Dirac Electrons in Rotated Graphene Bilayers. Nano Lett., 10(3):804–808, March 2010. [33] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys. Rev. B, 82(12):121407, September 2010. [34] Z. F. Wang, Feng Liu, and M. Y. Chou. Fractal Landau-Level Spectra in Twisted Bilayer Graphene. Nano Lett., 12(7):3833–3838, July 2012. [35] Pilkyung Moon and Mikito Koshino. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B, 85(19):195458, May 2012. [36] G. Trambly de Laissardière, D. Mayou, and L. Magaud. Numerical studies of confined states in rotated bilayers of graphene. Phys. Rev. B, 86(12):125413, September 2012. [37] Shiang Fang and Efthimios Kaxiras. Electronic structure theory of weakly interacting bilayers. Phys. Rev. B, 93(23):235153, June 2016. [38] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140(4A):A1133–A1138, November 1965. [39] M. P. Anantram and F. Léonard. Physics of carbon nanotube electronic devices. Rep. Prog. Phys., 69(3):507, 2006. [40] T. Belin and F. Epron. Characterization methods of carbon nanotubes: a review. Materials Science and Engineering: B, 119(2):105–118, May 2005. [41] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 136(3B):B864–B871, November 1964. [42] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16):11169–11186, October 1996. [43] Y. Bar-Yam and J. D. Joannopoulos. Electronic structure and total-energy migration barriers of silicon self-interstitials. Phys. Rev. B, 30(4):1844–1852, August 1984. [44] Hendrik J. Monkhorst and James D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 13(12):5188–5192, June 1976. [45] David Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41(11):7892–7895, April 1990. [46] J. P. Perdew and Alex Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23(10):5048–5079, May 1981. [47] E. R. Margine and Vincent H. Crespi. Universal Behavior of Nearly Free Electron States in Carbon Nanotubes. Phys. Rev. Lett., 96(19):196803, May 2006. [48] Guangfu Luo, Jiaxin Zheng, Jing Lu, Wai-Ning Mei, Lu Wang, Lin Lai, Jing Zhou, Rui Qin, Hong Li, and Zhengxiang Gao. Optical Absorption Spectra of Charge-Doped Single-Walled Carbon Nanotubes from First-Principles Calculations. J. Phys. Chem. C, 113(17):7058–7064, April 2009. [49] Dan Wang, Dong Han, Xian-Bin Li, Sheng-Yi Xie, Nian-Ke Chen, Wei Quan Tian, Damien West, Hong-Bo Sun, and S. B. Zhang. Determination of Formation and Ionization Energies of Charged Defects in Two-Dimensional Materials. Phys. Rev. Lett., 114(19):196801, May 2015. [50] Mohammad Khazaei, Ahmad Ranjbar, Mahdi Ghorbani-Asl, Masao Arai, Taizo Sasaki, Yunye Liang, and Seiji Yunoki. Nearly free electron states in MXenes. Phys. Rev. B, 93(20):205125, May 2016. [51] E. Kogan and V. U. Nazarov. Symmetry classification of energy bands in graphene. Phys. Rev. B, 85(11):115418, March 2012. [52] V. M. Silkin, J. Zhao, F. Guinea, E. V. Chulkov, P. M. Echenique, and H. Petek. Image potential states in graphene. Phys. Rev. B, 80(12):121408, September 2009. [53] M. Topsakal and S. Ciraci. Static charging of graphene and graphite slabs. Appl. Phys. Lett., 98(13):131908, March 2011. [54] José M. Soler, Emilio Artacho, Julian D. Gale, Alberto García, Javier Junquera, Pablo Ordejón, and Daniel Sánchez-Portal. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter, 14(11):2745, 2002. [55] N. Troullier and José Luís Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43(3):1993–2006, January 1991. [56] Tetik. The electronic properties of doped single walled carbon nanotubes and carbon nanotube sensors. Condensed Matter Physics, 17(4):43301, December 2014. [57] Susumu Okada, Atsushi Oshiyama, and Susumu Saito. Nearly free electron states in carbon nanotube bundles. Phys. Rev. B, 62(11):7634–7638, September 2000. [58] Noriaki Hamada, Shin-ichi Sawada, and Atsushi Oshiyama. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 68(10):1579–1581, March 1992. [59] Jin Zhao, Qijing Zheng, Hrvoje Petek, and Jinlong Yang. Nonnuclear Nearly Free Electron Conduction Channels Induced by Doping Charge in Nanotube–Molecular Sheet Composites. J. Phys. Chem. A, 118(35):7255–7260, September 2014. [60] Gregory H. Wannier. The Structure of Electronic Excitation Levels in Insulating Crystals. Phys. Rev., 52(3):191–197, August 1937. [61] Ivo Souza, Nicola Marzari, and David Vanderbilt. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B, 65(3):035109, December 2001. [62] E. I. Blount. Formalisms of Band Theory. Solid State Physics, 13:305–373, January 1962. [63] John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh, and Carlos Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46(11):6671–6687, September 1992. [64] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David Vanderbilt, and Nicola Marzari. wannier90: A tool for obtaining maximally-localised Wannier functions. Computer Physics Communications, 178(9):685–699, May 2008. [65] P. San-Jose, J. González, and F. Guinea. Non-Abelian Gauge Potentials in Graphene Bilayers. Phys. Rev. Lett., 108(21):216802, May 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7677 | - |
dc.description.abstract | 我們利用第一原理和緊束縛模型的計算去研究低維度材料的電子性質。首先,我們處理兩個負電荷低維度系統:單層奈米碳管以及單層石墨烯,經由計算不同超晶胞下的能帶和電荷密度,我們結果指出了在負電荷系統下有些類自由電子態是假的態。我們同樣地發現了儘管在此系統下有兩種態都像是類自由電子態,但它們的根源和性質是完全不一樣的。我們的研究指出了在負電荷低維度的系統下第一原理計算需更仔細地進行。然後,我們關注另一個有趣的材料:雙層旋轉石墨烯。我們建構了最局域瓦尼爾函數在雙層旋轉石墨烯旋轉角度5.08◦下。接著利用緊束縛模型去分析雙層旋轉石墨烯的兩個有趣的特性:費米速度的重整化以及電荷密度的局域性。相較於之前文獻研究,我們發現在普遍來說電荷密度並不會單純地局域在AA 區域。另外儘管費米速度以及電荷密度局域都會隨著旋轉角度而變動,但這兩種讓人驚豔的特性並不完全相關。這指出了這兩種形質源自於不同的物理機制。 | zh_TW |
dc.description.abstract | We carry out first-principles and tight-binding calculations to study the electronic properties of low-dimensional materials. First, we have two negatively charged low-dimensional systems, single-walled carbon nanotubes and monolayer graphene. Through calculating the band structure and the charge density with different supercells, we show that some nearly free electron states are artificial states in negatively charged systems. Furthermore, we also reveal that although there are two types of states both looking like nearly free electron states, their origin and properties are totally different. Our results suggest that in first-principles more careful calculations should be implemented in negatively charged low-dimensional systems. Then, we focus on another interesting material, twisted bilayer graphene. We construct maximally-localized Wannier functions for a twist angle 5.08◦ twisted bilayer graphene. By applying tight-binding scheme, we further study two intriguing properties of twisted bilayer graphene: renormalization Fermi velocity and charge density localization. In contrast to previous studies, we show that the charge density localization of twisted bilayer graphene is not in the AA region in general. Furthermore, even though both the Fermi velocity and charge density localization fluctuate with respect with different twist angles, these two fascinating properties are not correlated. This suggests that these two phenomena are originated from different mechanisms. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:49:51Z (GMT). No. of bitstreams: 1 ntu-106-R04222037-1.pdf: 9227147 bytes, checksum: 1a82438cbf6f10a8586b326cd533cf43 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Analysis of Electron-Doped Single-Walled Carbon Nanotubes and Graphene with Plane Wave Basis 3 2.1 Periodic Boundary Condition and Supercell Method . . . . . . . . . . . . 3 2.2 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Carbon Nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Single-Walled Carbon Nanotubes with Plane Wave Basis . . . . . . . . . 8 2.6 Graphene with Plane Wave Basis . . . . . . . . . . . . . . . . . . . . . . 15 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Analysis of Electron-Doped Single-Walled Carbon Nanotubes and Graphene with Atomic Orbitals 18 3.1 Atomic orbital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Single-Walled Carbon Nanotubes and Graphene with Atomic Orbitals . . 19 3.4 Graphene with Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Maximally Localized Wannier Functions and Tight-Binding Calculations of Twisted Bilayer Graphene 25 4.1 Maximally Localized Wannier Functions . . . . . . . . . . . . . . . . . . 25 4.2 Structure of Twisted Bilayer Graphene . . . . . . . . . . . . . . . . . . . 30 4.3 Tight-Binding Calcalations of Twisted Bilayer Graphene . . . . . . . . . 30 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 The Renormalization of Fermi Velocity and Charge Density Localization in Twisted Bilayer Graphene 33 5.1 Maximally Localized Wannier Functions in Twisted Bilayer Graphene . . 33 5.2 Consistency in Density Functional Theory and Tight-Binding Calculations 34 5.3 The Renormalization of Fermi Velocity and Charge Density Localization in Twisted Bilayer Graphene . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 Conclusion 42 Bibliography 43 | |
dc.language.iso | en | |
dc.title | 低維材料的電子性質題材研究 | zh_TW |
dc.title | Topics in the Electronic Properties of Low-dimensional Materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 魏金明(Ching-Ming Wei),江台章(Tai-Chang Chiang) | |
dc.subject.keyword | 低維度材料,石墨烯,奈米碳管,週期性邊界條件,雙層旋轉石墨烯,第一原理, | zh_TW |
dc.subject.keyword | low-dimensional materials,graphene,carbon nanotubes,periodic boundary condition,twisted bilayer graphene,first-principles, | en |
dc.relation.page | 49 | |
dc.identifier.doi | 10.6342/NTU201703810 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 9.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。