Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76767
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余明俊(Ming-Jiun Yu)
dc.contributor.authorChun-Chiao Yuen
dc.contributor.author游竣喬zh_TW
dc.date.accessioned2021-07-10T21:36:33Z-
dc.date.available2021-07-10T21:36:33Z-
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. WHO, Global hepatitis report 2017. 2017, Geneva: World Health Organization.
2. Brett D. Lindenbach, H.-J.r.T., Charles M. Rice. Flaviviridae :The Viruses and Their Replication. in Fields Virology. 2007. Philadelphia: Lippincott-Raven.
3. Lindenbach, B.D. and C.M. Rice, The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol, 2013. 11(10): p. 688-700.
4. Counihan, N.A., S.M. Rawlinson, and B.D. Lindenbach, Trafficking of hepatitis C virus core protein during virus particle assembly. PLoS Pathog, 2011. 7(10): p. e1002302.
5. Suzuki, T., Hepatitis C Virus Replication, in Organelle Contact Sites: From Molecular Mechanism to Disease, M. Tagaya and T. Simmen, Editors. 2017, Springer Singapore: Singapore. p. 199-209.
6. Madan, V. and R. Bartenschlager, Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses, 2015. 7(8): p. 4461-81.
7. Boson, B., et al., A concerted action of hepatitis C virus p7 and nonstructural protein 2 regulates core localization at the endoplasmic reticulum and virus assembly. PLoS Pathog, 2011. 7(7): p. e1002144.
8. Bartenschlager, R., et al., Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol, 1993. 67(7): p. 3835-44.
9. Bartenschlager, R., et al., Substrate determinants for cleavage in cis and in trans by the hepatitis C virus NS3 proteinase. J Virol, 1995. 69(1): p. 198-205.
10. Wolk, B., et al., Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol, 2000. 74(5): p. 2293-304.
11. He, Y., et al., The N-terminal helix alpha(0) of hepatitis C virus NS3 protein dictates the subcellular localization and stability of NS3/NS4A complex. Virology, 2012. 422(2): p. 214-23.
12. Paul, D. and R. Bartenschlager, Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol, 2013. 2(2): p. 32-48.
13. Romero-Brey, I., et al., Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog, 2012. 8(12): p. e1003056.
14. Gosert, R., et al., Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol, 2003. 77(9): p. 5487-92.
15. Gouttenoire, J., F. Penin, and D. Moradpour, Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol, 2010. 20(2): p. 117-29.
16. Moradpour, D., et al., Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication. J Virol, 2004. 78(23): p. 13278-84.
17. Scheel, T.K. and C.M. Rice, Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med, 2013. 19(7): p. 837-49.
18. Kaneko, T., et al., Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome. Biochem Biophys Res Commun, 1994. 205(1): p. 320-6.
19. Huang, Y., et al., Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology, 2007. 364(1): p. 1-9.
20. Tellinghuisen, T.L., K.L. Foss, and J. Treadaway, Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog, 2008. 4(3): p. e1000032.
21. Chong, W.M., et al., Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication. J Biol Chem, 2016. 291(8): p. 3918-31.
22. Ross-Thriepland, D., J. Mankouri, and M. Harris, Serine phosphorylation of the hepatitis C virus NS5A protein controls the establishment of replication complexes. J Virol, 2015. 89(6): p. 3123-35.
23. Goonawardane, N., et al., Phosphorylation of Serine 225 in Hepatitis C Virus NS5A Regulates Protein-Protein Interactions. J Virol, 2017. 91(17).
24. Hsu, S.C., et al., Sequential S232/S235/S238 Phosphorylation of the Hepatitis C Virus Nonstructural Protein 5A. J Virol, 2018. 92(20).
25. Quintavalle, M., et al., The alpha isoform of protein kinase CKI is responsible for hepatitis C virus NS5A hyperphosphorylation. J Virol, 2006. 80(22): p. 11305-12.
26. Flotow, H., et al., Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem, 1990. 265(24): p. 14264-9.
27. Tsai, C.N., et al., Serine 229 Balances the Hepatitis C Virus Nonstructural Protein NS5A between Hypo- and Hyperphosphorylated States. J Virol, 2019. 93(23).
28. Kuhlbrandt, W., Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol, 2004. 5(4): p. 282-95.
29. Nes, I.F., O. Johnsborg, and D.B. Diep, 5.11 - Signal Transduction in Gram-Positive Bacteria by Bacterial Peptides, in Comprehensive Natural Products II, H.-W. Liu and L. Mander, Editors. 2010, Elsevier: Oxford. p. 305-321.
30. de Kievit, T., 1.41 - Biofilms, in Comprehensive Biotechnology (Second Edition), M. Moo-Young, Editor. 2011, Academic Press: Burlington. p. 547-558.
31. Neddermann, P., A. Clementi, and R. De Francesco, Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J Virol, 1999. 73(12): p. 9984-91.
32. 林佩箴, C型肝炎病毒非結構性蛋白質5A高度磷酸化需要非結構性蛋白質3解旋酶三磷酸腺苷結合之能力, in 生物化學暨分子生物學研究所. 2019, 國立臺灣大學. p. 1-41.
33. 賴彥伶, C型肝炎病毒非結構蛋白質5A高度磷酸化需要非結構蛋白質3的自我切割以及與三磷酸腺苷結合之能力, in 生物化學暨分子生物學研究所. 2016, 國立臺灣大學. p. 1-47.
34. Kim, J.L., et al., Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure, 1998. 6(1): p. 89-100.
35. Subramanya, H.S., et al., Crystal structure of a DExx box DNA helicase. Nature, 1996. 384(6607): p. 379-83.
36. Tai, C.-L., et al., Structure-based mutational analysis of the hepatitis C virus NS3 helicase. Journal of virology, 2001. 75(17): p. 8289-8297.
37. Appleby, T.C., et al., Visualizing ATP-dependent RNA translocation by the NS3 helicase from HCV. J Mol Biol, 2011. 405(5): p. 1139-53.
38. Yao, N., et al., Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure, 1999. 7(11): p. 1353-63.
39. Lee, K.Y., et al., Phosphorylation of Serine 235 of the Hepatitis C Virus Non-Structural Protein NS5A by Multiple Kinases. PLoS One, 2016. 11(11): p. e0166763.
40. 蔡佳倪, 絲氨酸229磷酸化的動態循環對於C型肝炎病毒非結構性蛋白質5A的連續磷酸化以及病毒複製極為重要, in 生物化學暨分子生物學研究所. 2018, 國立臺灣大學. p. 1-53.
41. Hsu, S.C., et al., Serine 235 Is the Primary NS5A Hyperphosphorylation Site Responsible for Hepatitis C Virus Replication. J Virol, 2017. 91(14).
42. Masaki, T., et al., Involvement of hepatitis C virus NS5A hyperphosphorylation mediated by casein kinase I-alpha in infectious virus production. J Virol, 2014. 88(13): p. 7541-55.
43. Ross-Thriepland, D. and M. Harris, Insights into the complexity and functionality of hepatitis C virus NS5A phosphorylation. J Virol, 2014. 88(3): p. 1421-32.
44. Zhou, T., et al., NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA. J Virol, 2018. 92(1).
45. FLORES, I.R.I., et al., The amazing role of the group III of histidine kinases in plant pathogenic fungi, an insight to fungicide resistance. Asian Journal of Biochemistry, 2011. 6: p. 1-14.
46. Tai, C.L., et al., Structure-based mutational analysis of the hepatitis C virus NS3 helicase. J Virol, 2001. 75(17): p. 8289-97.
47. Suskiewicz, M.J., et al., Structure of McsB, a protein kinase for regulated arginine phosphorylation. Nat Chem Biol, 2019. 15(5): p. 510-518.
48. Wong, A.W., et al., Chemically reprogramming the phospho-transfer reaction to crosslink protein kinases to their substrates. Protein Sci, 2019. 28(3): p. 654-662.
49. Simon, A.K., et al., The iron-sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation. Life Sci Alliance, 2020. 3(3).
50. Awate, S. and R.M. Brosh, Jr., Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism. Int J Mol Sci, 2017. 18(6).
51. Dutta, A. and B. Stillman, cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J, 1992. 11(6): p. 2189-99.
52. Byrne, B.M. and G.G. Oakley, Replication protein A, the laxative that keeps DNA regular: The importance of RPA phosphorylation in maintaining genome stability. Semin Cell Dev Biol, 2019. 86: p. 112-120.
53. Chiang, C.-H., et al., Sequential phosphorylation of the HCV NS5A protein depends on NS3-mediated auto-cleavage between NS3 and NS4A. Journal of Virology, 2020: p. JVI.00420-20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76767-
dc.description.abstract生物體藉由蛋白質的磷酸化來調控相當多細胞中的訊息傳遞路徑。以丙型肝炎病毒(Hepatitis C virus)為例,非結構蛋白5A (non-structural protein 5A)的磷酸化就參與在病毒基因複製的調控路徑當中。我們團隊先前發現,非結構蛋白5A從低度磷酸化態轉換成高度磷酸化態,需要非結構蛋白5A上高度保留的絲氨酸位點(即S225、S232、S235和 S238)進行連續地序列性磷酸化。然而作為起始訊號的S225磷酸化是如何發生的目前仍未知。蛋白質激酶常被視為進行磷酸化蛋白質的必要酵素。但是在生物體中,已有相當多不需要蛋白質激酶就能完成蛋白質磷酸化的例子。例如:P型三磷酸腺苷酶(P-type ATPases)及雙分子磷酸化訊息傳遞系統(two-component phosphorylation relay system)。過去已有報導指出非結構蛋白5A的高度磷酸化,需要非結構蛋白3 (non-structural protein 3) 與其轉譯在同一條多蛋白質上才會發生,而我們先前的研究也發現除此之外,非結構蛋白3解旋酶具有三磷酸腺苷酶的結合能力也會影響非結構蛋白5A的高度磷酸化。在本篇的研究當中,我們發現如果突變負責非結構蛋白3結合三磷酸腺苷酶能力的位點(K210N、D290N、E291Q和H293A) 或是突變負責非結構蛋白3水解三磷酸腺苷酶的能力的位點(Q460A、R464A 和 R467),都會大幅降低非結構蛋白5A上絲氨酸位點(S225、S232、S235和S238)的磷酸化,相反地,如果是突變在非結構蛋白3上負責結合核糖核酸的位點(W501A),則不會影響非結構蛋白5A的磷酸化。上述的實驗結果顯示:非結構蛋白3結合及水解三磷酸腺苷酶的能力對於這些絲氨酸的磷酸化(S225、S232、S235和S238)相當重要。接著我們在這些絲氨酸位點中(S225、S229、S232和S235)任取三個做丙氨酸突變(SAAA、 ASAA、AASA和AAAS),結果顯示只有S225可以在其他絲氨酸位點無法被磷酸化的情況下(SAAA),可以被磷酸化,上述的結果與S225的磷酸化是開啟後續序列磷酸化訊號的論點一致。體外激酶試驗顯示非結構蛋白3可以直接磷酸化S225,但無法磷酸化S229、S232和S235。只有加入第一型酪蛋白激酶(casein kinase I isoform alpha, CKI alpha)在含有非結構蛋白3的體外激酶試驗中才能看到S229、S232和S235的磷酸化。我們由上述實驗結果得知非結構蛋白3解旋酶可以磷酸化S225,並藉此開啟下游由第一型酪蛋白激酶催化的一連串序列性磷酸化。zh_TW
dc.description.abstractProtein phosphorylation regulates many biological processes in organisms. In the case of the hepatitis C virus (HCV), phosphorylation of its non-structural protein 5A (NS5A) mediated viral genome replication. Our group previously showed that NS5A transits from the so-called hypo-phosphorylated to hyper-phosphorylated state via phosphorylation in a cluster of highly conserved serine sites S225, S232, S235 and S238 in a sequential manner. However, how the initiating phosphorylation event on S225 occurs remained unknown. Protein kinases have been the conventional enzymes responsible for protein phosphorylation; however, there are examples in biology where protein phosphorylation does not require a protein kinase such as the P-type ATPases and the so-called two-component phosphorylation relay system. It has been reported that NS5A hyper-phosphorylation requires NS3 encoded on the same NS3-NS5A poly-protein molecule. Our previously data showed that NS3 ATP-binding activity was required for NS5A hyper-phosphorylation. In the present study, I found that both mutations (K210N, D290N, E291Q, H293A) that disrupt ATP-binding and mutations (Q460A, R464A and R467) that disrupt ATP hydrolysis activity reduced NS5A hyper-phosphorylation at serine sites S225, S232, S235, and S238 in NS3-5B transfected T7-huh7 cells. In contrast, mutation in W501A that destroyed RNA-binding activity did not affect NS5A phosphorylation. The above results are consistent with a role of NS3 ATP-binding and hydrolysis activity in S225 phosphorylation that fires sequential S232/S235/S238 phosphorylation. Alanine mutation (SAAA, ASAA, AASA, AAAS) among any three of the four serine residues (S225, S229, S232, and S235) showed that only S225 could be phosphorylated when other serine residues could not be phosphorylated, in line with S225 phosphorylation as the initiation signal for sequential phosphorylation. In vitro kinase assay showed that purified NS3 directly phosphorylated S225 but not S229, S232, and S235. Phosphorylation at the other serine residues was detected only when casein kinase I alpha (CKI alpha) was included in the in vitro NS3 activity assay. We concluded that the NS3 helicase could phosphorylate NS5A in vitro at S225, which then primes sequential phosphorylation at S232/S235/S238 by CKI alpha.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:36:33Z (GMT). No. of bitstreams: 1
U0001-1808202015312700.pdf: 3280375 bytes, checksum: 916a278331324db3cb0e718f21e2899d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 I
ABSTRACT III
KEY WORDS: NS3 HELICASE, PROTEIN KINASE, NS5A, HYPER-PHOSPHORYLATION IV
CONTENTS V
INTRODUCTION 1
MATERIALS METHODS 7
RESULTS 11
NS3 ATPASE ACTIVITY IS REQUIRED FOR NS5A HYPER-PHOSPHORYLATION AT S225, S232, S235, AND S238 11
S225 PHOSPHORYLATION INITIATES NS5A SEQUENTIAL PHOSPHORYLATION 12
NS3 PROTEIN EXPRESSION AND PURIFICATION 13
NS3 ATPASE PHOSPHORYLATED NS5A AT SERINE 225 14
DISCUSSION 15
FIGURES 20
REFERENCES 32
dc.language.isoen
dc.subject非結構蛋白5Azh_TW
dc.subject非結構蛋白3解琁酶zh_TW
dc.subject蛋白激脢zh_TW
dc.subject高度磷酸化zh_TW
dc.subjectNS5Aen
dc.subjectNS3 helicaseen
dc.subjecthyper-phosphorylationen
dc.subjectprotein kinaseen
dc.titleC型肝炎病毒非結構蛋白質3解旋酶具有蛋白激脢之功能zh_TW
dc.titleThe Hepatitis C Virus NS3 Helicase with a Protein Kinase Functionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹迺立(Nei-Li Chan),林敬哲(Jing-Jer Lin),劉旻禕(Min-yi Liu)
dc.subject.keyword非結構蛋白3解琁酶,蛋白激脢,非結構蛋白5A,高度磷酸化,zh_TW
dc.subject.keywordNS3 helicase,protein kinase,NS5A,hyper-phosphorylation,en
dc.relation.page35
dc.identifier.doi10.6342/NTU202003985
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202015312700.pdf
  未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved