Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76738
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳安宇(An-Yeu Wu)
dc.contributor.authorWei-Han Huangen
dc.contributor.author黃韋翰zh_TW
dc.date.accessioned2021-07-10T21:36:01Z-
dc.date.available2021-07-10T21:36:01Z-
dc.date.copyright2016-10-14
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citation[1] Birth Injury Guide. Available:
http://www.birthinjuryguide.org/birth-injury/types/hypoxic-ischemic-encephalopathy-hie/
[2] WHO, Stroke, Cerebrovascular accident. Available: http://www.who.int/topics/cerebrovascular_accident/en/
[3] The Internet Stroke Center. Available: http://www.strokecenter.org/
[4] Stroke. Available: http://www.nhs.uk/Conditions/Stroke/Pages/Introduction.aspx
[5] L. M. Liou, C. F. Chen, Y. C. Guo, H. L. Cheng, H. L. Lee, J. S. Hsu, R. T. Lin, and H. F. Lin, “Cerebral white matter hyperintensities predict functional stroke outcome,” Cerebrovasc Dis, vol. 29, pp. 22-7, 2010.
[6] S J M Smith, “EEG in neurological conditions other than epilepsy: when does it help, what does it add?” J Neurol Neurosurg Psychiatry, 2005.
[7] N. Kannathal, Min Lim Choo, U. Rajendra Acharya, P.K. Sadasivan, “Entropies for detection of epilepsy in EEG,” Computer Methods and Programs in Biomedicine, vol. 80, pp. 187-194, 2005.
[8] Vairavan Srinivasan, Chikkannan Eswaran, Natarajan Sriraam, “Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks,” IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 11, no. 3, May 2007.
[9] Hasan Ocak, “Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy,” Expert Systems with Applications, vol. 36, pp. 2027-2036, 2009.
[10] Shen C-P, Liu S-T, Zhou W-Z, Lin F-S, Lam AY-Y, et al., “A Physiology-Based Seizure Detection System for Multichannel EEG,” PLoS ONE, vol. 8(6): e65862, June 2013.
[11] C.P. Shen, C.C. Chen, S.L. Hsieh, W.H. Chen, J.M. Chan, C.M. Chen, F. Lai, and M.J. Chiu, “High-Performance Seizure Detection System Using a Wavelet-Approximate Entropy-fSVM Cascade With Clinical Validation,” Clinical EEG and Neuroscience, vol. 44(4), pp. 247-256, Apr. 2014.
[12] Ana Catarino, Owen Churches, Simon Baron-Cohen, Alexandre Andrade, Howard Ring, “Atypical EEG complexity in autism spectrum conditions: A multiscale entropy analysis,” Clinical Neurophysiology, vol. 122, pp. 2375–2383, 2011.
[13] Tomoyuki Mizuno, Tetsuya Takahashi, Raymond Y. Cho, Mitsuru Kikuchi, Tetsuhito Murata, Koichi Takahashi, Yuji Wada, “Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy,” Clinical Neurophysiology, vol. 121, pp. 1438–1446, 2010.
[14] Finnigan S, van Putten MJAM., “EEG in ischaemic stroke: Quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management,” Clin Neurophysiol, vol. 124(1), pp. 10-19, Jan. 2012.
[15] Jennifer Diedler, Marek Sykora, Thomas Bast, Sven Poli, Roland Veltkamp, Patricio Mellado, Thorsten Steiner, Andre Rupp, “Quantitative EEG Correlates of Low Cerebral Perfusion in Severe Stroke,” Neurocrit Care, vol. 11(2), pp. 210-216, 2009.
[16] Brandon Foreman and Jan Claassen, “Quantitative EEG for the detection of brain ischemia,” Critical Care, vol. 16, pp. 216, 2012.
[17] Papadelis C, Kourtidou-Papadeli C, Bamidis PD, Maglaveras N, Pappas K, “The effect of hypobaric hypoxia on multichannel EEG signal complexity,” Clin Neurophysiol, vol. 118(1), pp. 31–52, 2007.
[18] Meng Hu, Jiaojie Li, Guang Li, Xiaowei Tang and Qiuping Ding, “Classification of Normal and Hypoxia EEG Based on Approximate Entropy and Welch Power-Spectral-Density,” International Joint Conference on Neural Networks, Vancouver, BC, pp. 3218-3222.123, 2006.
[19] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Circ Physiol, vol. 278, pp. H2039-2049, Jun 2000.
[20] M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Phys Rev Lett, vol. 89, p. 068102, Aug 5 2002.
[21] M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 71, p. 021906, Feb 2005.
[22] J. Escudero, D. Abasolo, R. Hornero, P. Espino, and M. Lopez, “Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy,” Physiol Meas, vol. 27, pp. 1091-1106, Nov 2006.
[23] C. Gomez, R. Hornero, D. Abasolo, A. Fernandez, and J. Escudero, “Analysis of MEG recordings from Alzheimer's disease patients with sample and multiscale entropies,” Conf Proc IEEE Eng Med Biol Soc, vol. 2007, pp. 6184-6187, 2007.
[24] X. Bornas, J. Llabres, M. Noguera, A. M. Lopez, J. M. Gelabert, and I. Vila, “Fear induced complexity loss in the electrocardiogram of flight phobics: a multiscale entropy analysis,” Biol Psychol, vol. 73, pp. 272-279, Oct 2006.
[25] Z. Trunkvalterova, M. Javorka, I. Tonhajzerova, J. Javorkova, Z. Lazarova, K. Javorka, and M. Baumert, “Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis,” Physiol Meas, vol. 29, pp. 817-28, Jul 2008.
[26] W. P. Riordan, Jr., P. R. Norris, J. M. Jenkins, and J. A. Morris, Jr., “Early loss of heart rate complexity predicts mortality regardless of mechanism, anatomic location, or severity of injury in 2178 trauma patients,” J Surg Res, vol. 156, pp. 283-289, Oct 2009.
[27] C. W. Lu, M. Czosnyka, J. S. Shieh, A. Smielewska, J. D. Pickard, and P. Smielewski, “Complexity of intracranial pressure correlates with outcome after traumatic brain injury,” Brain, vol. 135, pp. 2399-408, Aug 2012.
[28] The t-test. Available: http://www.socialresearchmethods.net/kb/stat_t.php
[29] Chan, P. K. and Stolfo, S. J., “Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection,” in KDD, vol. 1998, pp. 164-168, Mar. 1998.
[30] Kubat, M., Holte, R. C., and Matwin, S., “Machine learning for the detection of oil spills in satellite radar images,” in Machine learning, vol. 30, no. 2-3 , pp. 195-215, 1998.
[31] Sun, Y., Wong, A. K., and Kamel, M. S., “Classification of imbalanced data: A review,” in International Journal of Pattern Recognition and Artificial Intelligence, vol. 23, no. 4, pp. 687-719, 2009.
[32] He, H. and Garcia, E. A., “Learning from imbalanced data,” in IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263-1284, 2009.
[33] Weiss, G. M., “Mining with rarity: a unifying framework,” in ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 7-19, 2004.
[34] G. Dornhege, B. Blankertz, G. Curio, and K. R. Muller, “Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms,” IEEE Trans. Biomed. Eng. vol.51, no.6, pp.993-1002, 2004.
[35] T. N. Lal, M. Schroder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, and B. Scholkopf, “Support vector channel BCI,” IEEE Trans. Biomed. Eng. vol.51, no.6, pp.1003-1010, 2004.
[36] G. Townsend, B. Graimann, and G. Pfurtscheller, “Continuous EEG classification during motor imagery-simulation of an asynchronous BCI,” IEEE Trans. Rehab. Eng., vol. 12, no.2, pp.258-265, 2004.
[37] Y. Wang et al. “Common Spatial Pattern Method for Channel Selection in Motor Imagery Based Brain-Computer Interface,” Proc. 27th Ann. Conf. IEEE Eng. in Medicine and Biology Soc., vol. 5, 2005, pp. 5392–5395.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76738-
dc.description.abstract缺氧缺血型腦病變與中風是因為腦部血流供應受阻,氧氣與養分供給不足所造成的腦部損傷疾病。若能早期預測預後或分析嚴重度,將能幫助醫護人員提供病患適當且有效的治療。腦電圖是在人的頭皮上以非侵入的方式貼電極,量測腦部神經的放電情形,這項工具已被廣泛的使用在反映大腦的功能。然而要解讀這項生理訊號需仰賴專業護理人員的經驗與觀察,因此提供量化腦電圖指標來進行後續分析是一明確且需要的目標。但若將所有電極所蒐集到的生理訊號都做分析,不帶有損傷資訊的訊號可能會影響我們後續分析的分類正確性。此外,冗長且複雜的電極擺放前置作業除了造成病患的不適,也可能影響醫護人員在使用這項分析工具上的意願。
本論文中,我們引入一非線性方法-多尺度熵進入腦電訊號分析處理流程中。流程包含去除訊號干擾以及背景雜訊去除,可以從受雜訊干擾的原始生理訊號還原出乾淨的訊號,再從中萃取出損傷資訊。此外,為了避免多餘的通道訊號進入分析,我們根據經由傳統影像診斷工具如電腦斷層掃瞄或是核磁共振,由專業醫護人員所標記的損傷位置,提出通道選擇技術來解決此問題。此分析架構應用於加護病房中的缺氧缺血型腦病變與中風病患,其接收者操作特徵曲線下面積皆能達到0.8,意味著本論文提出的腦電訊號分析架構有潛力適用於預測缺氧缺血型腦病變之預後與急性中風病患之嚴重程度。
zh_TW
dc.description.abstractHypoxic-ischemic encephalopathy (HIE) and stroke are syndromes of brain injury resulting from critical reduction or loss of blood flow and supply of oxygen and nutrients. Early outcome prediction or progressive severity monitoring can help medical staff to offer more adequate and effective treatment. Electroencephalography (EEG) activity represents cerebral function theoretically. However, interpretation of EEG signals is limited to visual inspection by medical staff. Therefore, there is a clear and necessary need to provide quantitative EEG (qEEG) parameters for analysis. Furthermore, applying all EEG channels may takes the irrelevant or redundant channels containing no lesion information into the following analysis which may degrade the classification accuracy. Prolonged and complex preparation can cause discomfort to the patient and impact the medical stuff’s willingness to use EEG devices.
In this thesis, we introduce a nonlinear method – multiscale entropy (MSE) into our proposed EEG signal processing flow which consists of signal de-noising and de-trend. These pre-processes help us to sift clean signals from noises comprehensively so that we can extract the information of brain injury in the following analysis. Then, to avoid redundant information involved, we propose a channel selection method into the EEG analysis flow according to spatial information of lesion’s location. By using the EEG-based framework to analyze the HIE and stroke patients’ EEG signals in intensive care unit (ICU), we find that the area under receiver operating characteristic (ROC) curves > 0.8, implying that the proposed analysis framework has potential for predicting outcome of HIE and severity of stroke.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:36:01Z (GMT). No. of bitstreams: 1
ntu-105-R02943016-1.pdf: 3084425 bytes, checksum: a57d05f1bc4833da5f1273f1d3e50b2b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 v
摘要 vii
Abstract ix
List of Figures xiii
List of Tables xvii
Chapter1 Introduction 1
1.1 Overview of Hypoxic-Ischemic Encephalopathy 1
1.1.1 Symptoms and Effects of HIE 1
1.1.2 Current Diagnosis for HIE 2
1.2 Overview of Stroke 3
1.2.1 Categories and Symptoms of Stroke 3
1.2.2 Current Diagnosis for Stroke 4
1.3 Motivation and Contributions 6
1.4 Thesis Organization 8
Chapter2 Related Works 9
2.1 EEG and Neurological Disorder 9
2.1.1 Epileptic Seizure 9
2.1.2 Autism 10
2.1.3 Alzheimer's disease 12
2.2 EEG and HIE 12
2.3 EEG and Stroke 15
2.4 Multiscale Entropy 18
2.4.1 Clinical Use of MSE Analysis Method 19
2.4.2 The Algorithm of MSE Analysis Method 20
2.4.3 Simulation of MSE Analysis Method 22
2.5 Summary 23
Chapter3 Outcome Prediction of HIE Patients Based on EEG Signals 24
3.1 EEG analysis system and montage 24
3.2 HIE Outcome Prediction Framework 27
3.2.1 Data Collection 27
3.2.2 Pre-processing 28
3.2.3 Feature Extraction 30
3.2.4 Classification 37
3.2.5 Performance Evaluation 42
3.3 Summary 44
Chapter4 Enhanced EEG-Based Analysis with Channel Selection Mechanism 45
4.1 Review of Channel Selection Methods 45
4.2 Stroke Severity Analysis Framework 46
4.2.1 Data Collection and Pre-processing 47
4.2.2 Region Selection 49
4.2.3 Feature Extraction 52
4.2.4 Electrode Selection 57
4.2.5 Classification and Performance Evaluation 59
4.3 Summary 61
Chapter5 Conclusion and Future Works 62
5.1 Main Contribution 62
5.2 Future Direction 62
Reference 64
dc.language.isozh-TW
dc.subject支持向量機zh_TW
dc.subject腦電訊號zh_TW
dc.subject缺氧缺血型腦病變zh_TW
dc.subject中風zh_TW
dc.subject通道選擇zh_TW
dc.subject多尺度熵zh_TW
dc.subjectHypoxic-ischemic encephalopathy (HIE)en
dc.subjectElectroencephalography (EEG)en
dc.subjectSupport vector machine (SVM)en
dc.subjectMultiscale entropy (MSE)en
dc.subjectChannel selectionen
dc.subjectStrokeen
dc.title以腦電訊號預測腦部損傷病患之預後與通道選擇機制zh_TW
dc.titleEEG-based Outcome Prediction of Brain-Injured Patients and Enhancement with Channel Selection Mechanismen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee湯頌君(Sung-Chun Tang),賴達明(Dar-Ming Lai),闕志達(Tzi-Dar Chiueh),古博文(Bo-Wen Ku)
dc.subject.keyword腦電訊號,缺氧缺血型腦病變,中風,通道選擇,多尺度熵,支持向量機,zh_TW
dc.subject.keywordElectroencephalography (EEG),Hypoxic-ischemic encephalopathy (HIE),Stroke,Channel selection,Multiscale entropy (MSE),Support vector machine (SVM),en
dc.relation.page69
dc.identifier.doi10.6342/NTU201601392
dc.rights.note未授權
dc.date.accepted2016-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-R02943016-1.pdf
  未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved