Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76734
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳彥榮 (Edward Chern)
dc.contributor.authorYang-Zhe Huangen
dc.contributor.author黃揚哲zh_TW
dc.date.accessioned2021-07-10T21:35:56Z-
dc.date.available2021-07-10T21:35:56Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. Heron M. Deaths: Leading Causes for 2017. June 24, 2019.
2. Hsiao AJ, Chen LH, Lu TH. Ten leading causes of death in Taiwan: A comparison of two grouping lists. J Formos Med Assoc 2015;114:679-80
3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74
4. Ruan WJ, Lai MD. Autocrine stimulation in colorectal carcinoma (CRC): positive autocrine loops in human colorectal carcinoma and applicable significance of blocking the loops. Med Oncol 2004;21:1-8
5. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004;432:332-7
6. Perona R. Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol 2006;8:77-82
7. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002;2:103-12
8. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323-31
9. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007;26:1324-37
10. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005;6:611-22
11. Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet 2000;26:447-50
12. Hoff PM, Machado KK. Role of angiogenesis in the pathogenesis of cancer. Cancer Treat Rev 2012;38:825-33
13. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression. J Mammary Gland Biol 2010;15:117-34
14. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. Ca-Cancer J Clin 2020;70:7-30
15. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70:145-64
16. O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004;96:1420-5
17. Fearon ER, Vogelstein B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990;61:759-67
18. Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018;16:9-18
19. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol 2012;44:2144-51
20. Tokar EJ, Diwan SA, Waalkes MP. Arsenic Exposure Transforms Human Epithelial Stem/Progenitor Cells into a Cancer Stem-like Phenotype. Environ Health Persp 2010;118:108-15
21. Zhao W, Li Y, Zhang X. Stemness-Related Markers in Cancer. Cancer Transl Med 2017;3:87-95
22. Ghebeh H, Sleiman GM, Manogaran PS, Al-Mazrou A, Barhoush E, Al-Mohanna FH, et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer 2013;13:289
23. Lee G, Auffinger B, Guo D, Hasan T, Deheeger M, Tobias AL, et al. Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model. Mol Cancer Ther 2016;15:3064-76
24. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15
25. Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B, Zanker KS. Recurrence cancer stem cells--made by cell fusion? Med Hypotheses 2009;73:542-7
26. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 2014;33:116-28
27. Schatton T, Frank NY, Frank MH. Identification and targeting of cancer stem cells. Bioessays 2009;31:1038-49
28. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017;23:1124-34
29. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018;25
30. Mayol JF, Loeuillet C, Herodin F, Wion D. Characterisation of normal and cancer stem cells: one experimental paradigm for two kinds of stem cells. Bioessays 2009;31:993-1001
31. Wu C, Alman BA. Side population cells in human cancers. Cancer Lett 2008;268:1-9
32. Chen SF, Chang YC, Nieh S, Liu CL, Yang CY, Lin YS. Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties. Plos One 2012;7
33. Arden KC. Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol 2006;41:709-17
34. Obsil T, Obsilova V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 2008;27:2263-75
35. Obsil T, Obsilova V. Structural basis for DNA recognition by FOXO proteins. Biochim Biophys Acta 2011;1813:1946-53
36. Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 2004;279:34741-9
37. Hosaka T, Biggs WH, Tieu D, Boyer AD, Varki NM, Cavenee WK, et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. P Natl Acad Sci USA 2004;101:2975-80
38. Matsukawa M, Sakamoto H, Kawasuji M, Furuyama T, Ogawa M. Different roles of Foxo1 and Foxo3 in the control of endothelial cell morphology. Genes Cells 2009;14:1167-81
39. Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, et al. Critical role of FOXO3a in carcinogenesis. Mol Cancer 2018;17:104
40. Sanphui P, Biswas SC. FoxO3a is activated and executes neuron death via Bim in response to beta-amyloid. Cell Death Dis 2013;4:e625
41. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-68
42. Sang T, Cao Q, Wang Y, Liu F, Chen S. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins. Plos One 2014;9:e101703
43. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ, Jr., DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002;296:530-4
44. Lim SW, Jin L, Luo K, Jin J, Shin YJ, Hong SY, et al. Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Cell Death Dis 2017;8:e2972
45. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007;6:458-71
46. van der Vos KE, Coffer PJ. The extending network of FOXO transcriptional target genes. Antioxid Redox Signal 2011;14:579-92
47. Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997;90:3714-9
48. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007;128:309-23
49. Li J, Yang R, Dong Y, Chen M, Wang Y, Wang G. Knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the beta-catenin/TCF4 pathway through SPRY2. J Exp Clin Cancer Res 2019;38:38
50. Brugge J, Hung MC, Mills GB. A new mutational AKTivation in the PI3K pathway. Cancer Cell 2007;12:104-7
51. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005;24:7410-25
52. Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 2009;284:13987-4000
53. Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA, et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 2003;278:49795-805
54. Obexer P, Hagenbuchner J, Unterkircher T, Sachsenmaier N, Seifarth C, Bock G, et al. Repression of BIRC5/survivin by FOXO3/FKHRL1 sensitizes human neuroblastoma cells to DNA damage-induced apoptosis. Mol Biol Cell 2009;20:2041-8
55. Schroeder FC, Kau TR, Silver PA, Clardy J. The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J Nat Prod 2005;68:574-6
56. Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM, et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 2003;4:463-76
57. Obrador-Hevia A, Serra-Sitjar M, Rodriguez J, Villalonga P, Fernandez de Mattos S. The tumour suppressor FOXO3 is a key regulator of mantle cell lymphoma proliferation and survival. Br J Haematol 2012;156:334-45
58. Fernandez de Mattos S, Villalonga P, Clardy J, Lam EW. FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol Cancer Ther 2008;7:3237-46
59. Hornsveld M, Dansen TB, Derksen PW, Burgering BMT. Re-evaluating the role of FOXOs in cancer. Semin Cancer Biol 2018;50:90-100
60. Gao Z, Li Z, Liu Y, Liu Z. Forkhead box O3 promotes colon cancer proliferation and drug resistance by activating MDR1 expression. Mol Genet Genomic Med 2019;7:e554
61. Hui RC, Francis RE, Guest SK, Costa JR, Gomes AR, Myatt SS, et al. Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol Cancer Ther 2008;7:670-8
62. Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell 2007;28:941-53
63. Yu S, Yu YY, Zhang W, Yuan W, Zhao NQ, Li Q, et al. FOXO3a promotes gastric cancer cell migration and invasion through the induction of cathepsin L. Oncotarget 2016;7:34773-84
64. Rehman A, Kim Y, Kim H, Sim J, Ahn H, Chung MS, et al. FOXO3a expression is associated with lymph node metastasis and poor disease-free survival in triple-negative breast cancer. J Clin Pathol 2018;71:806-13
65. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S, et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012;18:892-901
66. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007;1:101-12
67. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 2009;5:527-39
68. Gopinath SD, Webb AE, Brunet A, Rando TA. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Reports 2014;2:414-26
69. Kumazoe M, Takai M, Bae J, Hiroi S, Huang Y, Takamatsu K, et al. FOXO3 is essential for CD44 expression in pancreatic cancer cells. Oncogene 2017;36:2643-54
70. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010;463:676-80
71. Grossi V, Fasano C, Celestini V, Signorile ML, Sanese P, Simone C. Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape. Cancers 2019;11
72. Consolaro F, Ghaem-Maghami S, Bortolozzi R, Zona S, Khongkow M, Basso G, et al. FOXO3a and Posttranslational Modifications Mediate Glucocorticoid Sensitivity in B-ALL. Mol Cancer Res 2015;13:1578-90
73. Eijkelenboom A, Burgering BM. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 2013;14:83-97
74. Wang Z, Yu T, Huang P. Post-translational modifications of FOXO family proteins (Review). Mol Med Rep 2016;14:4931-41
75. Xie Q, Chen J, Yuan Z. Post-translational regulation of FOXO. Acta Biochim Biophys Sin (Shanghai) 2012;44:897-901
76. Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 2001;21:952-65
77. Zheng WH, Kar S, Quirion R. Insulin-like growth factor-1-induced phosphorylation of the forkhead family transcription factor FKHRL1 is mediated by Akt kinase in PC12 cells. J Biol Chem 2000;275:39152-8
78. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 2008;10:138-48
79. Hu MCT, Lee D-F, Xia W, Golfman LS, Ou-Yang F, Yang J-Y, et al. IκB Kinase Promotes Tumorigenesis through Inhibition of Forkhead FOXO3a. Cell 2004;117:225-37
80. Tikhanovich I, Kuravi S, Campbell RV, Kharbanda KK, Artigues A, Villar MT, et al. Regulation of FOXO3 by phosphorylation and methylation in hepatitis C virus infection and alcohol exposure. Hepatology 2014;59:58-70
81. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006;125:987-1001
82. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007;282:30107-19
83. Calnan DR, Webb AE, White JL, Stowe TR, Goswami T, Shi X, et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY) 2012;4:462-79
84. Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen H, et al. Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep 2012;13:371-7
85. Bertaggia E, Coletto L, Sandri M. Posttranslational modifications control FoxO3 activity during denervation. Am J Physiol Cell Physiol 2012;302:C587-96
86. Tsai KL, Sun YJ, Huang CY, Yang JY, Hung MC, Hsiao CD. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res 2007;35:6984-94
87. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004;116:551-63
88. Zhang L, Cai M, Gong Z, Zhang B, Li Y, Guan L, et al. Geminin facilitates FoxO3 deacetylation to promote breast cancer cell metastasis. J Clin Invest 2017;127:2159-75
89. Shiota M, Yokomizo A, Kashiwagi E, Tada Y, Inokuchi J, Tatsugami K, et al. Foxo3a expression and acetylation regulate cancer cell growth and sensitivity to cisplatin. Cancer Sci 2010;101:1177-85
90. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011-5
91. Penrose HM, Cable C, Heller S, Ungerleider N, Nakhoul H, Baddoo M, et al. Loss of Forkhead Box O3 Facilitates Inflammatory Colon Cancer: Transcriptome Profiling of the Immune Landscape and Novel Targets. Cell Mol Gastroenterol Hepatol 2019;7:391-408
92. Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 1995;80:583-92
93. Yu Y, Peng K, Li H, Zhuang R, Wang Y, Li W, et al. SP1 upregulated FoxO3a promotes tumor progression in colorectal cancer. Oncol Rep 2018;39:2235-42
94. Bullock MD, Bruce A, Sreekumar R, Curtis N, Cheung T, Reading I, et al. FOXO3 expression during colorectal cancer progression: biomarker potential reflects a tumour suppressor role. Br J Cancer 2013;109:387-94
95. Song SS, Ying JF, Zhang YN, Pan HY, He XL, Hu ZM, et al. High expression of FOXO3 is associated with poor prognosis in patients with hepatocellular carcinoma. Oncology Letters 2020;19:3181-8
96. Corrado P, Mancini M, Brusa G, Petta S, Martinelli G, Barbieri E, et al. Acetylation of FOXO3a transcription factor in response to imatinib of chronic myeloid leukemia. Leukemia 2009;23:405-6
97. Liu J, Duan Z, Guo W, Zeng L, Wu Y, Chen Y, et al. Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat Commun 2018;9:5200
98. Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 2013;63:222-34
99. Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 2012;31:1546-57
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76734-
dc.description.abstractForkhead box O3 (FOXO3) 為一轉錄因子,參與許多生理功能的調控,包含抑制細胞週期、促進細胞凋亡、參與細胞分化以及幫助細胞抵抗壓力。FOXO3 的這些生理功能使其常被認為是腫瘤抑制基因。在許多腫瘤中,FOXO3 會被過量表現或是高度活化的 Protein Kinase B (Akt) 所磷酸化並被 14-3-3 蛋白帶出細胞核,使其無法實現其轉錄因子的功能,此現象符合其作為一腫瘤抑制基因的角色。然而,也有文獻指出當 Wnt–β-catenin 訊息傳遞路徑高度活化時,累積在細胞核當中的 FOXO3 能幫助癌細胞轉移。而超過 90% 的大腸癌是因為基因突變造成異常的 Wnt–β-catenin 活化所形成的。 這些研究使 FOXO3 在大腸癌中的功能非常矛盾,而 FOXO3 的雙重功能雖然已被許多文獻報導,但對於其如何影響細胞的機制仍然不清楚。於本研究中,我利用 FOXO3 過量表現或是基因削弱的方式發現 FOXO3 會正向調控癌細胞的惡性以及癌症幹細胞特性,此發現與其作為腫瘤抑制基因的功能並不相符。由於 Tsai, K.-L. 的團隊藉由 X 射線晶體學發現 FOXO3 的乙醯化與否能改變其轉錄活性,為了釐清其在大腸癌細胞中的作用機制以及功能,我在大腸癌細胞中過量表現模擬乙醯化 FOXO3 (FOXO3-KQ) 以及去已醯化 FOXO3 (FOXO3-KR) 的點突變FOXO3,觀察此轉錄後修飾是否藉由調控 FOXO3 轉錄基因的方式而影響癌細胞的惡性以及癌症幹細胞特性。在我的結果中發現,過量表現 FOXO3-KQ 的癌細胞相較於過量表現 FOXO3-KR 的細胞具有更高的癌細胞惡性以及癌症幹細胞特性。這些結果指出,FOXO3 的乙醯化可能是調控其雙重角色的關鍵因子,提供一種新的結直腸癌的治療方式。zh_TW
dc.description.abstractForkhead box O3 (FOXO3), known as a transcription factor, plays versatile roles in regulating physiology of cells, including cell cycle arrest, differentiation, apoptosis, and stress resistance. Considering the function of FOXO3 in cells, it was widely regarded as a tumor suppressor. Indeed, FOXO3 proteins can be translocated from nucleus to cytoplasm via conjugating with 14-3-3 proteins after phosphorylated by activated Akt, which hinders the function of FOXO3. Moreover, Akt has been shown to be hyperactivated or overexpressed in various types of cancers. Considered altogether, these studies supported the role of FOXO3 as a tumor suppressor. However, the accumulation of FOXO3 in nucleus has been reported to promote metastasis when Wnt–β-catenin is concurrently hyperactivated. Coincidently, over 90% of colon cancer originated out of aberrant Wnt–β-catenin by mutations. Taken together, the role of FOXO3 seems paradoxical in colon cancer. This dual role of FOXO3 has been reported, yet little is known regarding the mechanism of how FOXO3 is modulated in nucleus. By manipulating expression of FOXO3, I found that FOXO3 is essential to the maintenance of cancer cell malignancy and stemness, which contradicts the role as tumor suppressor. To further address the enigma of FOXO3’s function, we overexpressed acetylated FOXO3 (FOXO3-KQ) or deacetylated FOXO3 (FOXO3-KR) mimics in cancer cells since Tsai, K.-L. et al. (2007) points out that acetylation of FOXO3 can regulate its transcriptional activity from the view of X-ray crystallography structure. Surprisingly, we found that cancer cells overexpressed with FOXO3-KQ did show higher malignancy and stemness properties. These results suggested that acetylation might be the key regulation of FOXO3’s dual role in colorectal cancer and provided a new therapeutic approach against colorectal cancer.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:35:56Z (GMT). No. of bitstreams: 1
U0001-1808202017541200.pdf: 5525655 bytes, checksum: 6040e1c5ea73c9e327699a81c19dd0ef (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 I
Abstract III
目錄 V
第一章 背景介紹 - 1 -
1.1 癌症 (Cancer) - 1 -
1.1.1 結直腸癌 (Colorectal cancer) - 3 -
1.1.2 癌症幹細胞 (Cancer stem cell, CSC) - 5 -
1.2 FOXO3 (Forkhead box O3) - 6 -
1.2.1 FOXO3 為抑癌基因 - 7 -
1.2.2 FOXO3促進癌症 - 9 -
1.3 FOXO3 轉錄後修飾 - 10 -
1.3.1 FOXO3 磷酸化和泛素化 - 10 -
1.3.2 FOXO3 甲基化與乙醯化 - 11 -
第二章 研究動機與目的 - 13 -
第三章 材料與方法 - 15 -
3.1 質體與質體建構 (Plasmids plasmid construction) - 15 -
3.2 細胞培養 (Cell culture) - 15 -
3.3 慢病毒生產 (Lentivirus production) - 16 -
3.4 RNA 萃取 (RNA extraction) - 17 -
3.5 反轉錄聚合酶鏈反應 (Reverse transcription PCR, RT-PCR) - 18 -
3.6 定量即時聚合酶鏈反應 (Quantitative real-time PCR, qPCR) - 18 -
3.7 細胞蛋白質抽取 (Cellular protein extraction) - 18 -
3.8 免疫沉澱 (Immunoprecipitation, IP) - 19 -
3.9 十二烷基硫酸鈉聚丙烯酰胺凝膠電泳與西方墨點法 (Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE and Western blot) - 19 -
3.10 細胞爬行試驗 (Cell migration assay) - 20 -
3.11 細胞球體形成試驗 (Sphere forming assay) - 21 -
3.12 群落形成試驗 (Colony formation assay) - 21 -
3.13 邊緣族群分析 (Side population analysis, SP) - 21 -
3.14 5-Fu 抗藥性試驗 (5-Fu drug resistance assay) - 22 -
3.15 染色質免疫沉澱和定序 (Chromatin immunoprecipitation and sequencing, ChIP and ChIP-seq) - 22 -
第四章 研究結果 - 25 -
4.1 FOXO3 於大腸癌病人以及惡性大腸癌細胞株表現量下降 - 25 -
4.2 FOXO3 於多數類大腸癌幹細胞或是惡性癌細胞表現量不變 - 25 -
4.3 外源 FOXO3 表現量與癌幹細胞特性以及惡性成正相關 - 26 -
4.4 乙醯化 FOXO3 促進 DLD1 癌症幹細胞特性及癌細胞惡性 - 27 -
第五章 討論與總結 - 31 -
第六章 附表與結果圖 - 35 -
表一 使用引子列表 - 35 -
表二 使用抗體列表 - 38 -
圖一 FOXO3 於結直腸癌中表現量 - 40 -
圖二 FOXO3 於類癌症幹細胞族群中表現量 - 42 -
圖三 改變 FOXO3 表現量對於結直腸癌 DLD1 的影響 - 46 -
圖四 過量表現模擬乙醯化/去乙醯化 FOXO3 之 DLD1 表徵 - 49 -
附圖一 FOXO3 標的基因與已知標的 FOXO3 之乙醯化相關蛋白之相關性 - 50 -
附圖二 FOXO3 ChIP-qPCR 條件測試 - 51 -
第七章 參考文獻 - 52 -
附錄 期刊格式英文稿 i
dc.language.isozh-TW
dc.subject癌細胞惡性和幹細胞特性zh_TW
dc.subject結直腸癌zh_TW
dc.subjectFOXO3 乙醯化zh_TW
dc.subjectColorectal canceren
dc.subjectFOXO3 acetylationen
dc.subjectCancer malignancy stemnessen
dc.titleFOXO3 於結直腸癌中雙面功能機制探討zh_TW
dc.titleFOXO3: A Double-Edged Sword in Colorectal Canceren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃兆祺(Eric Hwang),黃楓婷 (Feng-Ting Hwang)
dc.subject.keyword結直腸癌,FOXO3 乙醯化,癌細胞惡性和幹細胞特性,zh_TW
dc.subject.keywordColorectal cancer,FOXO3 acetylation,Cancer malignancy stemness,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202004015
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
Appears in Collections:生化科技學系

Files in This Item:
File SizeFormat 
U0001-1808202017541200.pdf
  Restricted Access
5.4 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved