請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙玲(Ling Chao) | |
| dc.contributor.author | Zhen-Yu Guan | en |
| dc.contributor.author | 官鎮玉 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:35:45Z | - |
| dc.date.available | 2021-07-10T21:35:45Z | - |
| dc.date.copyright | 2016-10-14 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-29 | |
| dc.identifier.citation | 1. E. T. Castellana and P. S. Cremer, Surf Sci Rep, 2006, 61, 429-444.
2. W. V. Rodrigueza, K. D. Mazany, A. D. Essenburg, M. E. Pape, T. J. Rea, C. L. Bisgaier and K. J. Williams, Arterioscl Throm Vas, 1997, 17, 2132-2139. 3. C. A. Keller, K. Glasmastar, V. P. Zhdanov and B. Kasemo, Phys Rev Lett, 2000, 84, 5443-5446. 4. R. P. Richter, R. Berat and A. R. Brisson, Langmuir, 2006, 22, 3497-3505. 5. M. Fleischmann, P. J. Hendra and A. McQuillan, Chemical Physics Letters, 1974, 26, 163-166. 6. K. Kneipp, Phys Today, 2007, 60, 40-46. 7. L. Guerrini and D. Graham, Chemical Society Reviews, 2012, 41, 7085-7107. 8. S. Schlücker, Angewandte Chemie International Edition, 2014, 53, 4756-4795. 9. A. Campion and P. Kambhampati, Chem. Soc. Rev., 1998, 27, 241-250. 10. P. L. Stiles, J. A. Dieringer, N. C. Shah and R. P. V. Duyne, Annual Review of Analytical Chemistry, 2008, 1, 601-626. 11. E. C. Le Ru, E. Blackie, M. Meyer and P. G. Etchegoin, J Phys Chem C, 2007, 111, 13794-13803. 12. B. N. J. Persson, K. Zhao and Z. Zhang, Phys Rev Lett, 2006, 96, 207401. 13. A. Otto, Journal of Raman Spectroscopy, 2005, 36, 497-509. 14. M. Moskovits, Reviews of modern physics, 1985, 57, 783. 15. S. X. Huang, X. Ling, L. B. Liang, Y. Song, W. J. Fang, J. Zhang, J. Kong, V. Meunier and M. S. Dresselhaus, Nano Lett, 2015, 15, 2892-2901. 16. Y. F. Huang, D. Y. Wu, H. P. Zhu, L. B. Zhao, G. K. Liu, B. Ren and Z. Q. Tian, Phys Chem Chem Phys, 2012, 14, 8485-8497. 17. W. D. Hoff, K. H. Jung and J. L. Spudich, Annu Rev Bioph Biom, 1997, 26, 223-258. 18. O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown and H. Kandori, Chemical reviews, 2013, 114, 126-163. 19. H. Y. Fu, H. P. Yi, Y. H. Lu and C. S. Yang, Mol Microbiol, 2013, 88, 551-561. 20. M. F. Hsu, H. Y. Fu, C. J. Cai, H. P. Yi, C. S. Yang and A. H. J. Wang, J Biol Chem, 2015, 290, 29567-29577. 21. H. Kandori, Frontiers in molecular biosciences, 2015, 2. 22. J. L. Spudich, C. S. Yang, K. H. Jung and E. N. Spudich, Annu Rev Cell Dev Bi, 2000, 16, 365-+. 23. H. Luecke, B. Schobert, H. T. Richter, J. P. Cartailler and J. K. Lanyi, J Mol Biol, 1999, 291, 899-911. 24. K. Yamazaki, S. Kunii and T. Ogino, J Phys Chem C, 2013, 117, 18913-18918. 25. M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs and A. Vijayaraghavan, Nature Communications, 2013, 4. 26. S. R. Tabaei, W. B. Ng, S. J. Cho and N. J. Cho, Acs Applied Materials & Interfaces, 2016, 8, 11875-11880. 27. L. M. Xie, X. Ling, Y. Fang, J. Zhang and Z. F. Liu, Journal of the American Chemical Society, 2009, 131, 9890-+. 28. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri and H. Altug, Science, 2015, 349, 165-168. 29. X. Ling and J. Zhang, Small, 2010, 6, 2020-2025. 30. S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong and J. M. Nam, Acs Nano, 2011, 5, 9799-9806. 31. S. J. He, K. K. Liu, S. Su, J. Yan, X. H. Mao, D. F. Wang, Y. He, L. J. Li, S. P. Song and C. H. Fan, Anal Chem, 2012, 84, 4622-4627. 32. W. G. Xu, J. Q. Xiao, Y. F. Chen, Y. B. Chen, X. Ling and J. Zhang, Adv Mater, 2013, 25, 928-933. 33. R. T. Lu, A. Konzelmann, F. Xu, Y. P. Gong, J. W. Liu, Q. F. Liu, M. Xin, R. Q. Hui and J. Z. Wu, Carbon, 2015, 86, 78-85. 34. G. J. Schutz, G. Kada, V. P. Pastushenko and H. Schindler, Embo J, 2000, 19, 892-901. 35. C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson and E. Gratton, Biophys J, 2001, 80, 1417-1428. 36. A. Nakata, T. Nomoto, T. Toyota and M. Fujinami, Anal Sci, 2013, 29, 865-869. 37. Ladbrook.Bd and D. Chapman, Chem Phys Lipids, 1969, 3, 304-&. 38. J. R. Matthews, C. M. Payne and J. H. Hafner, Langmuir, 2015, 31, 9893-9900. 39. T. G. Spiro and B. P. Gaber, Annu Rev Biochem, 1977, 46, 553-572. 40. A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk and M. Baranska, Journal of Raman Spectroscopy, 2013, 44, 1061-1076. 41. R. C. Macdonald, R. I. Macdonald, B. P. M. Menco, K. Takeshita, N. K. Subbarao and L. R. Hu, Biochimica Et Biophysica Acta, 1991, 1061, 297-303. 42. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen and G. N. Chen, Angew Chem Int Edit, 2009, 48, 4785-4787. 43. C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong and D. H. Min, Accounts Chem Res, 2013, 46, 2211-2224. 44. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys Rev Lett, 2006, 97. 45. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Nano Lett, 2010, 10, 751-758. 46. Y. Zhao, G. X. Chen, Y. X. Du, J. Xu, S. L. Wu, Y. Qu and Y. W. Zhu, Nanoscale, 2014, 6, 13754-13760. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76726 | - |
| dc.description.abstract | 膜蛋白有物質運輸以及敵我生物體辨識的功能,在生物化學、生理學上是非常重要的生物分子。其中,膜蛋白物質運輸的高效率具有被應用在細胞外物質純化的潛力;同時,膜蛋白也被認為是許多疾病致命的關鍵。因此,瞭解膜蛋白在細胞膜中的構型有其必要性。
本篇研究以支撐型磷脂雙層膜出發,建構出膜蛋白能正常發揮功能的原生環境。由於膜蛋白分布在細胞膜內外的胺基酸序列具有不對稱性,細胞膜蛋白在支撐型磷脂雙層膜中的方向性會直接影響到未來的應用。例如,膜蛋白的物質運輸具有方向性,若無法分辨膜蛋白的傳輸方向是輸出或輸往胞內,將會讓製備出來的生物膜將無法正常發揮功能。因此,我們採用能辨別化學鍵種類的拉曼散射光譜作為分析工具,嘗試辨識靠近基材之膜蛋白之胺基酸組成。 本篇研究分成兩個部份。第一部份為使用拉曼光譜分析支撐型磷脂雙層膜的組態,並輔以石墨烯或是金來增強其拉曼散射訊號。第二部份則是以自營性古細菌的一種膜蛋白—菌紫質(bacteriorhodopsin)為例,分析其在支撐型磷脂雙層膜中的方向性。 | zh_TW |
| dc.description.abstract | Lipid membrane proteins has functions of transportation and identification and are important biomolecules on biochemistry and physiology. The high efficiency of transportation function of membrane proteins is potential to apply to purify substances outside a cell. Meanwhile, membrane proteins are also key to cure diseases. As a result, studying on the structure of membrane proteins inside cell membrane is necessary.
In this study, we use supported lipid membrane to build a native surrounding for lipid membranes to function normally. Due to the asymmetry of amino acid sequence of membrane proteins across cell membrane, the direction of membrane proteins residing in the supported lipid membrane will affect the future application. For instances, the transportation of some membrane proteins has single direction. If we are unable to figure out the direction, the prepared biomembrane will function normally. Therefore, we use Raman scattering spectroscopy to analyze the amino acid sequence of the membrane protein near the substrate. The first part of this thesis is using Raman spectroscopy to analyze the configuration of supported lipid membrane with the aid of graphene or gold to enhance the Raman scattering signals. The second part is to analyze the direction of the membrane protein in the cell membrane, taking bacteriorhodopsin for example. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:35:45Z (GMT). No. of bitstreams: 1 ntu-105-R03524051-1.pdf: 3833483 bytes, checksum: b5280c668bf3cd20b0e7b0a8a0caa645 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 x 第一章 導論 1 1.1 支撐型磷脂雙層膜 1 1.1.1 囊泡沉降法製備磷脂雙層膜 1 1.2 表面增強拉曼散射 3 1.2.1 拉曼光譜 3 1.2.2 電磁增強機制 4 1.2.3 化學增強機制 5 1.3 菌紫質的結構與特性 6 1.3.1 菌紫質的立體結構與胺基酸序列 7 1.3.2 視黃醛的光化學反應 8 1.3.3 氫離子的主動運輸 9 第二章 文獻回顧 10 2.1 石墨烯增強拉曼散射 10 2.1.1 建構磷脂質膜於石墨烯表面 10 2.1.2 石墨烯增強拉曼散射 11 2.1.3 金與石墨烯複合拉曼增強基材 14 2.2 文獻中相關已知物的拉曼光譜 17 2.2.1 磷脂質的拉曼光譜 17 2.2.2 蛋白質的拉曼光譜 19 第三章 實驗材料與方法 21 3.1 實驗材料 21 3.2 實驗儀器 21 3.3 玻片的表面處理 22 3.3.1 以氬電漿清洗玻片表面 22 3.3.2 於玻片表面蒸鍍金奈米薄層 22 3.4 石墨烯前處理 23 3.4.1 石墨烯轉置於玻片或表面覆蓋金奈米薄層之玻片上 23 3.4.2 去除石墨烯表面覆蓋之聚甲基丙烯酸甲酯 24 3.5 支撐型磷脂雙層膜之鋪設與檢測 24 3.5.1 磷脂質囊泡溶液之準備 24 3.5.2 聚二甲基矽氧烷凹槽與囊泡沉降 25 3.5.3 螢光顯微鏡與螢光漂白恢復術 26 3.6 菌紫質原生質膜之來源 26 3.7 拉曼光譜儀操作 27 第四章 實驗結果 28 4.1 石墨烯上的磷脂質膜 28 4.1.1 螢光顯微鏡影像 28 4.1.2 磷脂質膜之流動性檢驗 28 4.2 石墨烯與金奈米薄層上之磷脂雙層膜的拉曼光譜 30 4.2.1 石墨烯上磷脂質膜的拉曼光譜圖 30 4.2.2 石墨烯與金奈米薄層共同增強拉曼光譜圖 34 4.3 菌紫質原生質膜的拉曼光譜圖 35 第五章 討論 40 5.1 石墨烯上磷脂質膜組態分析 40 5.2 從拉曼光譜圖中分析菌紫質在磷脂質膜中的方向 41 第六章 結論 43 參考文獻 44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 拉曼散射光譜 | zh_TW |
| dc.subject | 支撐型磷脂雙層膜 | zh_TW |
| dc.subject | 菌紫質 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | supported lipid bilayer | en |
| dc.subject | Raman scattering spectroscopy | en |
| dc.subject | bacteriorhodopsin | en |
| dc.title | 利用拉曼光譜來分析磷脂雙層膜中菌紫質的結構 | zh_TW |
| dc.title | Using Raman Spectroscopy to Analyze the Structure of
Bacteriorhodopsin inside Lipid Bilayer Membrane | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖英志(Ying-Chih Liao),林資榕(Tzy-Rong Lin) | |
| dc.subject.keyword | 支撐型磷脂雙層膜,拉曼散射光譜,石墨烯,菌紫質, | zh_TW |
| dc.subject.keyword | supported lipid bilayer,Raman scattering spectroscopy,graphene,bacteriorhodopsin, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU201600849 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-R03524051-1.pdf 未授權公開取用 | 3.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
