請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏炳郎(Ping-Lang Yen) | |
| dc.contributor.author | Yu-Jui Chen | en |
| dc.contributor.author | 陳宥叡 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:35:41Z | - |
| dc.date.available | 2021-07-10T21:35:41Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | [1] Armstrong, B. 1988. Friction: Experimental determination, modeling and compensation. Proceedings. 1988 IEEE International Conference on Robotics and Automation: 1422-1427. [2] Davies, B. L., Harris, S. J., Lin, W. J., Hibberd, R. D., Middleton, R., Cobb, J. C. 1997. Active compliance in robotic surgery—the use of force control as a dynamic constraint. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 211(4), 285-292. [3] Guo, H., Li, J., Meng, T., and Li, Z. 2016. The research on virtual simulation of lead screw system. In 2016 IEEE International Conference on Information and Automation (ICIA): 522-527. IEEE. [4] Haidegger, T., Benyó, B., Kovács, L., Benyó, Z. 2009. Force sensing and force control for surgical robots. IFAC Proceedings Volumes, 42(12), 401-406. [5] Hu, X., Ohnmeiss, D. D., Lieberman, I. H. 2013. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. European Spine Journal, 22(3), 661-666. [6] Hu, Y., Jin, H., Zhang, L., Zhang, P., and Zhang, J. 2013. State recognition of pedicle drilling with force sensing in a robotic spinal surgical system. IEEE/ASME Transactions on Mechatronics, 19(1): 357-365. [7] Kazanzides, P., Zuhars, J. F., Mittelstadt, B. D., Taylor, R. H. 1992, May. Force sensing and control for a surgical robot. In ICRA (pp. 612-617). [8] Lee, W. Y., Shih, C. L., Lee, S. T. 2004. Force control and breakthrough detection of a bone-drilling system. IEEE/ASME Transactions on mechatronics, 9(1), 20-29. [9] Lefranc, M., Peltier, J. 2016. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert review of medical devices, 13(10), 899-906. [10] Mason, M. T. 1981. Compliance and force control for computer controlled manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 11(6), 418-432. [11] Nelson, B. J., Morrow, J. D., Khosla, P. K. 1996. Robotic manipulation using high bandwidth force and vision feedback. Mathematical and computer modelling, 24(5-6), 11-29. [12] Paul, R. P. 1976. Compliance and control. In Proc. of Joint Automat. Contr. Conf. 1976 (pp. 694-699). [13] R. Paul and B. Shimano 1976, “Compliance and control,” Proc. Joint Automatic Control Conf., San Francisco, CA, pp. 694–699, [14] Raibert, M. H., Craig, J. J. 1981. Hybrid position/force control of manipulators. [15] Richter, L., and Bruder, R. 2013. Design, implementation and evaluation of an independent real-time safety layer for medical robotic systems using a force–torque–acceleration (FTA) sensor. International journal of computer assisted radiology and surgery, 8(3), 429-436. [16] Richter, L., Bruder, R., and Schweikard, A. 2012. Calibration of force/torque and acceleration for an independent safety layer in medical robotic systems. Cureus, 4(9), e59. [17] Schrijver, E., and Van Dijk, J. 2002. Disturbance observers for rigid mechanical systems: equivalence, stability, and design. Journal of Dynamic Systems, Measurement, and Control, 124(4): 539-548. [18] Tsai, T. H., Tzou, R. D., Su, Y. F., Wu, C. H., Tsai, C. Y., and Lin, C. L. 2017. Pedicle screw placement accuracy of bone-mounted miniature robot system. Medicine, 96(3). [19] Whitney, D. E. 1969. Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on man-machine systems, 10(2), 47-53. [20] Whitney, D. E. 1977. Force feedback control of manipulator fine motions. [21] Wiles, A. D., Thompson, D. G., Frantz, D. D. 2004, May. Accuracy assessment and interpretation for optical tracking systems. In Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display (Vol. 5367, pp. 421-432). International Society for Optics and Photonics. [22] Xia, T., Baird, C., Jallo, G., Hayes, K., Nakajima, N., Hata, N., Kazanzides, P. 2008. An integrated system for planning, navigation and robotic assistance for skull base surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 4(4), 321-330. [23] Yen, P. L., Hsu, S. W., Lin, H. T., and Wang, C. H. 2012. Assistive control of a surgical robot based on bilateral interacted force analysis. 2012 12th International Conference on Control, Automation and Systems: 1469-1473. IEEE. [24] Yukawa, Y., Kato, F., Yoshihara, H., Yanase, M., Ito, K. 2006. Cervical pedicle screw fixation in 100 cases of unstable cervical injuries: pedicle axis views obtained using fluoroscopy. Journal of Neurosurgery: Spine, 5(6), 488-493. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76723 | - |
| dc.description.abstract | 本實驗室將所開發之六軸史都華平台手持機器人結合電腦輔助導引系統,用於補償椎弓釘植入手術之手術器械與病灶徒手對位時因非自主性的手部偏移與振顫所造成的對位誤差。本研究將手持機器人之影像伺服層與馬達伺服層進行控制系統改良,使馬達輸出能夠平滑化以減少回饋給操作者手部的反作用力並提升機器人追蹤性能以補償徒手對位時之誤差。首先針對底層馬達伺服控制系統重新設計,透過對六軸史都華平台進行摩擦力分析建模與補償、系統鑑別、與控制器設計,並透過電腦模擬與實驗來驗證其伺服性能。影像伺服層則針對光學量測儀量測訊號進行分析,並以非線性濾波方式減少量測雜訊之影響。最後透過安裝於機器人末端致動器上之力量感測器量測鑽頭與接觸面的力量回饋,將機器人末端致動器模擬成質量阻尼彈簧之阻抗控制系統順應外力而伸縮,使鑽頭沿著接觸面到達下鑽點與減少接觸面給予之反作用力。實驗證明機器人開啟補償功能後能夠減少約50%的誤差,其方均根誤差小於1 mm。加入力量控制後亦使鑽頭著陸時操作者手部不會因為接觸面反作用力造成機器人偏移,提升手持機器人之操作容易度與穩定度,以達到精準定位與穩定下鑽的能力。 | zh_TW |
| dc.description.abstract | A handheld Stewart platform-based surgical robotics manipulator for minimally invasive surgery (MIS) pedicle screw placement was previously developed by Robots and Medical Mechatronics Lab (RMML), National Taiwan University and combined with computer-aided surgical (CAS) system. The handheld robot is used for compensating the position error between a surgical tool and a planned path that results from the involuntary hand offset and tremor of a surgeon. In this research, the visual servo loop and motor servo loop were improved to smooth the motor outputs and reduce the reaction force fed back to operator’s hand. In this research, the motor servo system was redesigned first by friction compensation, system identification, and trajectory planning, improving the transient tracking performance and reducing the steady-state error of robotics manipulator. Second, the measurement noise of an optical tracker in the visual servo system was analyzed and was suppressed by a non-linear filter. Finally, the force feedback between the drill bit and the contact surface was measured by a force sensor installed on the end effector of the robot. The end effector of the robot was simulated as a mass-spring-damper system to reduce the contact force and kept the drill bit move along the contact surface. The experiment results show that the error between the drill bit and the path was compensated and reduced by about 50%, and the root mean square error was less than 1 mm. The robot and operator’s hand were not shifted due to the reduction of the reaction force under force control when the drill bit contacting with the surface. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:35:41Z (GMT). No. of bitstreams: 1 U0001-1808202018453100.pdf: 15322851 bytes, checksum: 2efa5a5d7b78537a06aa215283cdd85c (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xix 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 5 1.3 文獻回顧 8 1.4 研究目的與方法 10 1.5 章節瀏覽 12 第2章 手持機器人硬體與系統架構 13 2.1 手持機器人硬體架構 13 2.2 手持式機器人系統架構 16 2.3 單軸實驗平台硬體架構 17 第3章 馬達伺服控制 20 3.1 導螺桿與摩擦力數學模型 20 3.1.1 導螺桿數學模型 20 3.1.2 摩擦力數學模型 23 3.2 摩擦力鑑別與補償方法 24 3.3 系統鑑別方法 27 3.4 馬達控制系統設計 29 3.4.1 PD位置控制器 29 3.4.2 斜坡軌跡規劃與前饋控制器 30 3.4.3 干擾估測器 31 3.4.4 z轉換 33 3.5 單軸實驗平台模擬與實驗 34 3.5.1 摩擦力鑑別與補償結果 34 3.5.2 系統鑑別結果 37 3.5.3 步階響應模擬與實驗結果 39 3.6 六軸手術機器人模擬與實驗 41 3.6.1 摩擦力鑑別與補償結果 41 3.6.2 系統鑑別結果 44 3.6.3 步階響應實驗結果 47 3.6.4 模擬微小移動量實驗結果 57 第4章 影像伺服控制與手顫補償 60 4.1 影像伺服系統架構 60 4.2 光學追蹤儀量測訊號 62 4.3 量測訊號處理與固定機器人追蹤靜態路徑實驗 65 4.3.1 量測訊號經低通濾波器濾波 67 4.3.2 控制命令乘上誤差指數函數縮放 69 4.4 固定機器人追蹤動態路徑實驗 72 4.5 手持式機器人追蹤靜態路徑實驗 75 第5章 力量控制與鑽頭著陸 80 5.1 力量與力矩轉換 80 5.2 感測器校正與重力補償 82 5.3 力量控制系統設計 85 5.4 力量控制策略 86 5.5 力量控制系統模擬 88 5.6 固定機器人力量控制實驗 98 5.7 手持機器人力量控制實驗 103 5.7.1 以不鏽鋼斜面作為剛體接觸面 103 5.7.2 以塑膠人類脊椎仿體作為接觸面 113 第6章 結論與未來展望 118 6.1 結論 118 6.2 未來展望 119 參考文獻 120 | |
| dc.language.iso | zh-TW | |
| dc.subject | 力量控制 | zh_TW |
| dc.subject | 力量感測器 | zh_TW |
| dc.subject | 系統鑑別 | zh_TW |
| dc.subject | 史都華平台手持機器人 | zh_TW |
| dc.subject | 摩擦力補償 | zh_TW |
| dc.subject | 手部偏移與震顫 | zh_TW |
| dc.subject | Stewart platform-based surgical robotics manipulator | en |
| dc.subject | system identification | en |
| dc.subject | friction compensation | en |
| dc.subject | hand offset and tremor | en |
| dc.subject | disturbance observer | en |
| dc.subject | feedforward controller | en |
| dc.title | 手持式脊椎微創手術機器人結合力量感測之伺服控制 | zh_TW |
| dc.title | Force Sensing and Servo Control for a Handheld Spinal Minimally Invasive Surgical Robot | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林沛群(Pei-Chun Lin),郭重顯(Chung-Hsien Kuo),洪碩穗(Shuo-Suei Hung) | |
| dc.subject.keyword | 史都華平台手持機器人,手部偏移與震顫,摩擦力補償,系統鑑別,力量感測器,力量控制, | zh_TW |
| dc.subject.keyword | Stewart platform-based surgical robotics manipulator,hand offset and tremor,friction compensation,system identification,feedforward controller,disturbance observer, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU202004019 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202018453100.pdf 未授權公開取用 | 14.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
