Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7669
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林頌然(Sung-Jan Lin)
dc.contributor.authorMing-Sin Huangen
dc.contributor.author黃銘新zh_TW
dc.date.accessioned2021-05-19T17:49:37Z-
dc.date.available2022-08-25
dc.date.available2021-05-19T17:49:37Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation1. Janetta B. & Philippa B., Aromadermatology: Aromatherapy in Treatment and Care of Common Skin Conditions. Radcliffe Publishing 1-11(2006)
2. Manolis Pasparakis, Ingo Haase & Frank O. Nestle, Mechanisms regulating skin immunity and inflammation. Nature Reviews Immunology 14, 289–301 (2014)
3. R. Randall Wickett & Maert O. Visscher, Structure and function of the epidermal barrier. AJIC34, S98-S110(2006)
4. Maolis P., Ingo H. & Frank O.N., Mechanisms regulating skin immunity and inflammation. Nature Immunology 14, 289-301(2014)
5. Luke C.D. et al., Tissue-resident macrophages. Nature Immunology 14, 986-995(2013)
6. Babak M.D. et al., Macrophages in skin injury and repair. Immunobiology 216, 753-762(2011)
7. Shao-wei Lu et al., Clodronate liposomes reduce excessive scar formation in a mouse model of burn injury by reducing collagen deposition and TGF-b1 expression. Mol. Biol. Rep. 41, 2143-2149(2014)
8. Chih-Chiang Chen et al., The Modulatable Stem Cell Niche: Tissue Interaction during and Feather Follicle Regeneration. J. Mol. Biol. 428, 1423-1440(2016)
9. Marlon R.S., Ruth S. & Ralf P., The Hair Follicle as a Dynamic Miniorgan. Current Biology 19, R132-R142(2009)
10. Sven M. et al., A comprehensive Guide for the Acurrate Classification of Murine Hair Follicles in Distinct Hair Cylcle Stages. J. Invest. Dermatol. 117, 3-15(2001)
11. K,S, Stenn & Ralf Paus, Controls of Hair Follicle Cycling. Physiol Rev. 81, 449-494(2001)
12. Wen-Hui Lien, Lisa Polak, et al., In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nature Cell Biology 16, 179–190 (2014)
13. Uddhav A. Patil & Lakshyajit D. Dhami, Overview of lasers. Indian J Plast Surg. S101–S113(2008)
14. Wikramanayake, Rodriguez et al., Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata. Lasers Med Sci. 27, 431–436(2012)
15. Eells J.T. et al., Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4, 559-567(2004)
16. Chung H et al., The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 40, 516-533(2012)
17. Ibrahimi, Avram et al., Laser hair removal. Dermatol Ther. 24, 94-107(2011)
18. Shellheyer K., Mechanisms of laser hair removal: could persistent photoepilation induce vitiligo or defects in wound repair?. Dermatol Surg. 33, 1055-1065(2007)
19. Moreno-Arias, Castelo-Branco et al., Paradoxical effect after IPL photoepilation. Dermatol Surg. 28, 1013-1016(2002)
20. Desai, Mahmound et al., Paradoxical hypertrichosis after laser therapy: a review. Dermatol Surg 36, 291-298(2010)
21. Kontoes, Vlachos et al., Hair induction after laser-assisted hair removal and its treatment. J Am Acad Dermatol 54, 64-67(2006)
22. Avram Leonard et al., The currenr role of laser/light sources in the treatment of male and female pattern hair loss. J Cosmet Laser Ther. 9, 27-28(2007)
23. Peplow Chung et al., Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg. 28, 291-325(2010)
24. Brian Wong. Laser in Surgery and Medicine(2009)
25. Michael H. Gold, MD et al., Update on Fractional Laser Technology. J Clin Aesthet Dermatol 3, 42–50(2010)
26. Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR, Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 34, 426-38(2004)
27. Bass L.S., Rejuvenation of the aging face using Fraxel laser treatment. Aesthet Surg J. 25, 307-309(2005)
28. Walgrave, Zelickson et al., Pilot investigation of the correlation between histological and clinical effects of infared fractional resurfacing lasers. Dermatol Surg. 34, 1443-1453(2008)
29. Freedman, Greene et al., Histologic effects of resurfacing lasers. Facial Plast Surg. 30, 40-48(2014)
30. Kim, Lee et al., Fractional photothermolysis laser treatment of male pattern hair loss. Dermatol Surg. 37, 41-51(2011)
31. Brown and McDowell, Epithelial Healing and the Transplantation of Skin. Ann Surg. 112, 1166-1181(1942)
32. V.Martinot, Mitchell et al., Comparative study of split thickness skin grafts taken from the scalp and thigh in children. Burns 20, 146-150(1994)
33. Ito M. et al., Wnt dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316-320(2007)
34. Levy, Lindon et al., Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21, 1358-1366(2007)
35. Langton, Herrick et al., An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol 128, 1311-1318(2008)
36. Kikgman A.M. & Strauss J.S., The formation of vellus hair follicles from human adult epidermis. J. Invest Dematol 27, 19-23(1956)
37. Billingham R.E. & Russel P.S., Incomplete wound contracture and the phenolon of hair neogenesis in rabbit's skin. Nature 177, 791-792(1956)
38. Breedies C., Regeneration of hair follicles and subaceous glands from the epithelium of scars in the rabbit. Cancer Research 12, 575-579(1954)
39. Ito M. te al., Stem cells in the hail follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine 11, 1351-1354(2005)
40. Cheng-Ming Chuong, Regenerative biology: New hair from healing wounds. Nature 447, 265-266(2007)
41. Nao Osaka et al., ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J. Cell Biol. 176, 903-909(2007)
42. Shu Jiang et al. Small cutaneous wounds induce telogen to anagen transition of murine hair follicle stem cell. Journal of Dermatological Science 60, 143-150(2010)
43. Adam J. Singer et al., Cutaneous wound healing. N Engl J Med. 341, 738-746(1999)
44. Gurtner et al., Wound repair and regeneration. Nature 453, 314-321(2008)
45. Guo and Dipietro, Factors affecting wound healing. J Dent Res. 89, 219-229(2010)
46. Gregory S. Schultz et al., Dynamic reciprocity in the wound microenvironment. Wound Repair Ragen. 19, 134-148(2011)
47. Mahdavian Delavary B. et al., Macrophages in skin injury and repair. Immunobiology 216, 753-762(2011)
48. Maciej Lech & Hans-Joachim Anders, Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 1832, 989-997(2013)
49. Clark, Fibronectin matrix deposition and fibronecitn receptor expression in healing and normal skin. J Invest Dermatol 94, 128S-134S(1990)
50. Grinnell, Toda et al., Activation of keratinocyte fibronectin receptor function during cutaneous wound healing. J Cell Sci Suppl. 8, 199-209(1987)
51. Moulin, Auger et al., Role of wound healing myofibroblasts on re-epithelialization of human skin. Burns 26, 3-12(2000)
52. O'Toole E.A., Extracellular matrix and keratinocyte migration. Clin Exp Dermatol 26, 525-530
53. Taylor, Lehrer et al., Involvement of folliclular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451-461(2000)
54. Watt F.M. and Jensen K.B., Epidermal stem cell diversity and quiescence. EMBO Mol Med. 1, 260-267(2009)
55. Snippert, Haegebarth et al., Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Scinece 327, 1385-1389(2010)
56. Darby I. et al., Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest. 63, 21-29(1990)
57. Hinz, Formation anf functionof the myofibroblast during tissue repair. J Invest Dermatol 127, 526-537(2007)
58. A. Desmoulière et al., Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146, 55-56(1995)
59. Gurtner et al., Wound repair and regeneration. Nature 452, 314-321(2008)
60. Castellana D., Ralf P. & Mirna P., Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells. PLoS Biol. 12, e1002002(2014)
61. Chih-Chiang Chen et al., Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Population. Cell 161, 277-290(2015)
62. Xusheng Wang et al., Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nature Communications 8, 14091(2017)
63. Risau W. Mechanism of angiogenesis. Nature 386, 671-674(1997)
64. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364(1996)
65. Shibuya M. Role of VEGF-Flt receptor system in normal and tumor angiogenesis. Adv Cancer Res. 67, 281-316(1995)
66. Leung DW, Cachianes G, Kuang W-J, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309(1989)
67. Lee S, Chen TT, Barber CL, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691-703(2007)
68. Stacker SA, The role of tumor lymphangiogenesis in metastatic spread. FASEB J. 16, 922-934(2002)
69. Eklund L. et al., Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol Oncol. 7, 259-282(2013)
70. Masabumi Shibuya, Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis. Genes Cancer 2, 1097–1105(2011)
71. Masabumi Shibuya, Tyrosine Kinase Receptor Flt/VEGFR Family. Genes Cancer 1,. 1119–1123(2010)
72. Christian Lange, Erik Storkebaum et al., Vascular endothelial growth factor a neurovascular target in neurological diseases. Nature Reviews Neurology 12, 439–454 (2016)
73. Yueh-Feng Wu, Shiou-Han Wang, Pei-Shan Wu, Sabrina Mai-Yi Fan, Hsien-Yi Chiu, Tsung-Hua Tsai, Sung-Jan Lin.Enhancing Hair Follicle Regeneration by Nonablative Fractional Laser: Assessment of Irradiation Parameters and Tissue Response. Lasers in Surgery and Medicine 47, 331–341 (2015)
74. Jean M. Daley et al. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. Journal of Leukocyte Biology 83, 64-70(2008)
75. Felix C. Weber et al., Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J. Exp. Med. 212, 15-22(2015)
76. van Rooijen N. et al., Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol. 605, 189-203(2010)
77. Nicholas Papadopoulos, Joel Martin, Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15, 171–185(2012)
78. Laura A Sullivan & Rolf A Brekken, The VEGF family in cancer and antibody-based strategies for their inhibition. MAbs 2, 165–175(2010)
79. Kuifeng He, Guangliang Li, Haohao Wang et al., The effect of anti-VEGF drugs (bevacizumab and aflibercept) on the survival of patients with metastatic colorectal cancer (mCRC). Onco Targets Ther. 5, 59–65(2012)
80. Faivre S. et al., Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 6, 734-745(2007)
81. Robert Roskoski Jr. Sunitinib: A VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochemical and Biophysical Research Communications. 356, 323-328(2007)
82. Yi Zhang, Jin Yu, Lef1 Contributes to the Differentiation of Bulge Stem Cells by Nuclear Translocation and Cross-Talk with the Notch Signaling Pathway. Int. J. Med. Sci. 10, 738-746(2013)
83. van Oijen MG et al., Positivity of the proliferation marker Ki-67 in noncycling cells. Am J Clin Pathol. 110, 24-31(1998)
84. Paus R. et al., Chronobiology of the Hair Follicle: Hunting the “Hair Cycle Clock”. J Investig Dermatol Symp Proc. 4, 338-345(1999)
85. Ralph M Trüeb., Pharmacologic interventions in aging hair. Clin Interv Aging. 1, 121–129(2006)
86. RM Trüeb., Oxidative Stress in Ageing of Hair. Int J Trichology 1, 6-14(2009)
87. Mantovani A et al., Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology 11, 519-531(2011)
88. Sebastien Jaillon et al., Neutrophils in innate and adaptive immunity. Seminars in Immnuopathology 35, 337-394(2013)
89. Sinnathamby T. et al., VEGF and angiopoietins promote inflammatory cell recruitment and mature blood vessel formation in murine sponge/Matrigel model. Journal of cellular biochemistry 116, 45-57(2015)
90. T F Deuel, R M Senior et al, Chemotaxis of monocytes and neutrophils to platelet-derived growth factor. J Clin Invest. 69, 1046–1049(1982)
91. Bobic S. et al., Placental growth factor contributes to bronchial neutrophilic inflammation and edema in allergic asthma. Am J Respir Cell Mol Biol. 46, 781-789(2012)
92. Emanuela C. & Corrado L.G., Cytokines and irritant contact dermatitis. Toxicol Lett. 102-103, 277-282(1998)
93. Haur Yueh Lee et al., Cytokines and Chemokines in Irritant Contact Dermatitis. Mediators of Inflammation 2013, 1-7(2013)
94. Kiichiro Yano et al., Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 107, 409–417(2001)
95. Mieke Dewerchin and Peter Carmeliet, PlGF: A Multitasking Cytokine with Disease-Restricted Activity. Cold Spring Harb Perspect Med. 2, a011056(2012)
96. Autiero M., Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost. 1, 1356-1370(2003)
97. Cao Y., Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. J Biol Chem. 271, 3154-3162(1996)
98. Collins T. et al., Cultured human endothelial cells express platelet-derived growth factor A chain. Am J Pathol. 126, 7-12(1987)
99. Deuel TF et al., Growth Factors and Wound Healing: Platelet-Derived Growth Factor as a Model Cytokine. Annu Rev Med. 42, 567-584(1991)
100. Heldin CH & Westermark B., Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 79, 1283-1316(1999)
101. Thomas A. Wynn1 & Kevin M. Vannella1, Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 44, 450-462(2016)
102. F.O. Martinez & S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep., 6-13(2014)
103. Bruce A. Corliss, Jenny Munson et al., Macrophages: An Inflammatory Link between Angiogenesis and Lymphangiogenesis. Microcirculation. 23, 95–121(2016)
104. Elias I. et al., New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte. 2, 109-112(2013)
105. Sato Y., VEGFR1 for Lymphangiogenesis. Arterioscler Thromb Vasc Biol. 28, 604-605(2008)
106. Claus Cursiefen, Lu Chen et al., VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest.113, 1040–1050(2004)
107. Ki-Jo Kim, Chul-Soo Cho, Role of placenta growth factor in cancer and inflammation. Exp Mol Med. 44, 10–19(2012)
108. Incio J. et al., PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity. Clin Cancer Res. 22, 2993-3004(2106)
109. Xi Li et al., Placental growth Factor contributes to liver inflammation, angiogenesis, Fibrosis in Mice by Promoting hepatic Macrophage recruitment and activation. Front Immunol. 8, 2017
110. Mieke Dewerchin and Peter Carmeliet, PlGF induces the secretion of VEGF and proinflammatory cytokines from mononuclear cell. Cold Spring Harb Perspect Med. 2, a011056(2012)
111. J. Arnout, ‎M. Hoylaerts et al., Thrombosis: Fundamental and Clinical Aspects. Leuven University Press, 253(2003)
112. Ki-Jo Kim, Chul-Soo Cho et al., Role of placenta growth factor in cancer and inflammation. Exp Mol Med. 44, 10–19(2012)
113. Man XY. et al., Expression and localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 in human epidermal appendages: a comparison study by immunofluorescence. Clin Exp Dermatol. 34, 396-401(2009)
114. Hui-Jun Ma, et al., Acquired Localized Hypertrichosis Induced by Internal Fixation and Plaster Cast Application. Ann Dermatol. 25, 365-367(2013)
115. MW Yuen et al., Acquired Localised Hypertrichosis in a Chinese Child After Cast Immobilisation. Hong Kong Med J. 21, 369-371(2015)
116. Moon S.H. et al., Pathological findings in cumulative irritation induced by SLS and croton oil in hairless mice. Contact Dermatitis. 44, 240-245(2001)
117. Wilgus T.A. et al., Novel function for vascular endothelial growth factor receptor-1 on epidermal keratinocytes. Am J Pathol.167, 1257-1266(2005)
118. MIHAELA ELENA MARINA et al.,VEGF involvement in psoriasis. Clujul Med. 88, 247–252(2015)
119. Li W. et al., VEGF upregulates VEGF receptor-2 on human outer root sheath cells and stimulates proliferation through ERK pathway. Mol Biol Rep. 39, 8687-8694(2012)
120. Derek C. Lacey et al., Defining GM-CSF– and Macrophage-CSF–Dependent Macrophage Responses by In Vitro Models. J Immunol. 188, 5752-5765(2012)
121. Ko J.S. et al., Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 15, 2148-2157(2009)
122. Massena S. et al., Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood. 126, 2016-2026(2015)
123. Dineen SP. et al., Vascular Endothelial Growth Factor Receptor 2 Mediates Macrophage Infiltration into Orthotopic Pancreatic Tumors in Mice. Cancer Res. 68, 4340-4346 (2008)
124. Luttun A. et al., Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann N Y Acad Sci. 979, 80-93(2002)
125. Hira Lal Goel and Mercurio A.M., VEGF targets the tumour cell. Nat Rev Cancer. 13, 871–882(2013)
126. Favier B et al., Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood. 108, 1243-1250(2006)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7669-
dc.description.abstract毛囊具有替人體屏障外界傷害與保溫保濕等複雜且多樣化的功能,是為人體中重最重要的器官之一。它是一個擁有高度自我調控能力的
微小器官,具有毛囊幹細胞與自己的生長週期,其形態也會隨著生長周期而有所變化。因此毛囊本身的生理調控與受刺激後產生的後續反應和修復機制、和環境間的溝通,都已成為再生醫學研究探討重要領域。毛囊在休止期時會受到許多不同的引發因子激發,從而進入生長期,例如傷口、化學物質、光照,等等。熟悉這些因子也被視為能夠掌握促進毛髮生長的關鍵鑰匙。本研究的目標希冀能探索毛囊感受到外界的微小刺激後活化、從休止期提前進入生長狀態的生長期之背後機轉。
我們先前的研究已指出第二代飛梭雷射 Fraxel SR1500 造成的刺激能引誘毛囊提前進入生長期。本研究遂以此作皮膚刺激物,調整能量後,以不會在皮膚留下疤痕的能量,引發接觸性刺激性皮膚炎,刺激毛囊進入生長期。本研究發現,經過刺激之後將引發 TNF-α、IL1 等發炎因子與 VEGF 家族、PDGF 等生長因子表現,並引起嗜中性白血球與巨噬細胞等免疫細胞大量進浸潤囊周圍的區域,同時促使巨噬細胞活化為 M1 與 M2 型。
在經由TNFα 基因剔除鼠、注射 Avastin 與 Zaltrap 抑制 VEGFs、施打 Ly6G 抗體耗竭嗜中性球以及皮下注射 Clodrosme 使巨噬細胞凋亡後,發現 VEGFA、巨噬細胞和其高度分泌的 PlGF 在本雷射刺激誘發毛囊提前進入生長期的實驗中具有促進生長期的效果,也在毛囊上看到這些因子的受器有高表現。
簡言之,本研究確立了一個小鼠皮膚在接受飛梭雷射以一定能量刺激後,能不導致疤痕且促進 VEGFA 提高、巨噬細胞分泌 PlGF,進而使 VEGFA 與 PlGF 協同作用使休止期毛囊進入生長期的實驗模型。
zh_TW
dc.description.abstractHair follicle, one of the most important organ in human, is able to keep us warm, moisture and from external injury, which is a miniorgan with high self-regulation ability, an unique lifecycle and fueled by its resident stem cells. Their structure also vary with hair cycle. Thus, the issue about how hair follicle does self-regulation, reacts and repairs itself after injury for physiological growth, communicates with niche microenvironment are worth exploring in regenerative medicine feilds. Follicle will activated by several different initiators in telogen and then enter anagen phase, including chemicals, light, and wound, and these factors are thought to be the key to promote hair growth. This study is aimed at exploring how microenvironment transformed after miniwound, how follicle stem cells reacted to this change and activated, and finally regenerated from telogen to anagen.We used Fraxel SR1500 as irritant to induce irritant contact dermatitis without scarring during telogen phase afetr ajusting energy settings. We found that inflammatory or growth factors like TNF-α, IL1, VEGF family, and PDGF incresed after injury, as well as numerous immune cells infiltrated to the injured area, including neutrophils and macropages activated to M1 or M2 type. We then found that VEGFA, macrophages and PlGF secreted mainly from macropahges may promote early anagen entry by laser according to experiment results depleting TNF-α by transgenic mice, VEGF family by Avastin and Zaltrap, neutrophils by Ly6G antibody, and macrophages by Clodrosome. Our findings indicated that VEGFA increased after Fraxel laser injury and macrophages recuited to wound area followed by secreting PlGF to co-work with VEGFA to incude early anagen entry via VEGFR2 on follicle.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:49:37Z (GMT). No. of bitstreams: 1
ntu-106-R04548002-1.pdf: 6442982 bytes, checksum: 5927f38b30e84584f1639e12baec4690 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
圖目錄 ix
表目錄 xii
第一章、緒論 1
1.1 皮膚結構概述 1
1.2 毛囊結構與毛囊生長週期概述 4
1.3 雷射在皮膚科相關應用 7
1.3.1 雷射治療原理與治療落髮 7
1.3.2 皮膚治療常用之雷射療法 9
1.3.3 飛梭雷射 11
1.3.4 1550奈米點陣鉺玻璃雷射 13
1.4 傷口癒合與毛囊新生 14
1.4.1 傷口 14
1.4.2 傷口癒合過程 15
1.4.3 免疫細胞 16
1.4.4 血管內皮生長因子 17
1.5 飛梭雷射誘導毛囊提前由休止期進入生長期 18
1.6 研究動機與目標 20

第二章、實驗材料與方法 21
2.1 建立雷射微傷口刺激皮膚炎之實驗動物模型 21
2.1.1 實驗動物 21
2.1.2 飛梭雷射. 21
2.1.3 實驗設計概念. 23
2.2 採樣方式 23
2.3 蘇木精 & 伊紅染色 24
2.4 免疫螢光染色 25
2.5 RNA萃取 與 cDNA 合成 28
2.6 聚合酶連鎖反應 30
2.7 即時定量聚合酶連鎖反應 31
2.8 免疫細胞耗竭與細胞激素抑制劑 32
2.8.1 嗜中性白血球耗竭. 32
2.8.2 TNFα 表現抑制. 32
2.8.3 巨噬細胞耗竭. 33
2.8.4 血管内皮生長因子(VEGF)抑制. 34
2.8.5 受體酪氨酸激酶(RTKs)路徑抑制. 34
2.9 細胞分選 35

第三章、實驗結果 36
3.1 確立雷射傷口促進毛囊再生之 C57BL/6 小鼠實驗模型 36
3.2 探討雷射微傷口對皮膚組織結構之影響 37
3.2.1 皮膚變化 38
3.2.2 毛囊變化 38
3.3 探討雷射微傷口對毛囊幹細胞之影響 40
3.3.1 雷射刺激誘導毛囊幹細胞增生 41
3.3.2 雷射刺激誘導次級毛胚增生 43
3.3.3 雷射刺激誘導毛囊由休止期進入生長期 44
3.3.4 雷射刺激對皮膚細胞之細胞週期影響差異 45
3.4 外因性與內因性控制因素 47
3.5 探討雷射刺激誘發發炎與免疫浸潤之情形 49
3.5.1 發炎與免疫浸潤現象 49
3.5.2 腫瘤壞死因子-α表現狀況 50
3.5.3 白血球介素 1 族表現狀況 52
3.5.4 血管內皮生長因子家族表現狀況 54
3.5.5 血小板衍生生長因子表現狀況 56
3.5.6 嗜中性球表現狀況 57
3.5.7 巨噬細胞表現狀況 59
3.6 探討發炎相關因子與細胞抑制對雷射刺激促使毛囊生長之影響 61
3.6.1 腫瘤壞死因子-α 抑制對雷射促毛髮生長反應之影響 61
3.6.2 VEGF抑制對雷射促毛髮生長反應之影響 64
3.6.3 噬中性白血球耗竭對雷射促毛髮生長反應之影響 67
3.6.4 巨噬細胞耗竭對雷射促毛髮生長反應之影響 70
3.6.5 巨噬細胞抑制對毛囊幹細胞動態之影響 73
3.7 探討巨噬細胞在微傷口促進毛囊再生現象中扮演之角色 75
3.7.1 巨噬細胞活化類型 75
3.7.2 巨噬細胞與發炎、生長相關因子之聯繫 77
3.8 探討發炎與生長相關因子對毛囊之影響 82

第四章、討論 85

第五章、結論 96

第六章、參考文獻 98
dc.language.isozh-TW
dc.title探討飛梭雷射誘導毛囊再生之機轉zh_TW
dc.titleThe Key Mechanism of Early Anagen Entry Induced by Farxel Laseren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林水龍(Shuei-Liong Lin),陳志強(Chih-Chiang Chen)
dc.subject.keyword毛囊幹細胞,飛梭雷射,刺激性接觸性皮膚炎,巨噬細胞,VEGF,PlGF,VEGFR,Avastin,Zaltrap,Clodrosome,zh_TW
dc.subject.keywordHair follicle stem cells,Fraxel laser,Irritant contact dermatitis,Macrophages,VEGF,PlGF,VEGFR,Avastin,Zaltrap,Clodrosome,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201703947
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf6.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved