請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76634完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君(I- Chun Cheng) | |
| dc.contributor.author | MOHANA SRUTHI MALLELA | en |
| dc.contributor.author | 莫函娜 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:34:14Z | - |
| dc.date.available | 2021-07-10T21:34:14Z | - |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-20 | |
| dc.identifier.citation | [1] L. Fuqiang Zhang, 'Review and outlook of world energy development,' (in English), Non-Fossil Energy Development in China, pp. 1-36, 3rd December 2018. [2] M. Li, 'World energy 2017-2050: Annual report,' Department of Economics, University of Utah, 2017. [3] R. H. Montgomery and J. Budnick, 'The solar decision book,' 1978. [4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, 'Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,' Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009, doi: 10.1021/ja809598r. [5] W. S. Yang et al., 'Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,' Science, vol. 356, no. 6345, pp. 1376-1379, 2017, doi: 10.1126/science.aan2301. [6] N. NREL, 'Best Research-Cell Efficiency Chart,' ed: US Department of Energy, 2019. [7] J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, and S. H. Im, 'Highly efficient low temperature solution processable planar type CH 3 NH 3 PbI 3 perovskite flexible solar cells,' Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1572-1578, 2016, doi: 10.1039/C5TA09520D. [8] H. Chen et al., 'A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules,' Nature, vol. 550, no. 7674, pp. 92-95, 2017, doi: 10.1038/nature23877. [9] J.-H. Tsai, I.-C. Cheng, C.-C. Hsu, and J.-Z. Chen, 'Low-Temperature (< 40° C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n Structure Perovskite Solar Cells,' ACS omega, vol. 5, no. 11, pp. 6082-6089, 2020, doi: 10.1021/acsomega.0c00067. [10] F. Massines and G. Gouda, 'A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure,' Journal of Physics D: Applied Physics, vol. 31, no. 24, p. 3411, 1998, doi: 10.1557/jmr.2018.218. [11] H. Luo, Z. Liang, X. Wang, Z. Guan, and L. Wang, 'Effect of gas flow in dielectric barrier discharge of atmospheric helium,' Journal of Physics D: Applied Physics, vol. 41, no. 20, p. 205205, 2008, doi: 10.1088/0022-3727/41/20/205205 [12] M. Teli, K. K. Samanta, P. Pandit, S. Basak, and S. Chattopadhyay, 'Low-temperature dyeing of silk fabric using atmospheric pressure helium/nitrogen plasma,' Fibers and Polymers, vol. 16, no. 11, pp. 2375-2383, 2015, doi: 10.1007/s12221-015-5166-4. [13] H.-h. Lin, '以基質輔助脈衝雷射蒸鍍法製備聚 3-己基噻酚/(6, 6)-苯基-C61-丁酸甲酯有機太陽能電池,' National Central University, 2015. [14] 'Photovoltaic Lighting.' NLPIP. https://www.lrc.rpi.edu/programs/nlpip/lightinganswers/photovoltaic/04-photovoltaic-panels-work.asp (accessed July 2006. [15] W. contributors. 'Theory of solar cells.' Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Theory_of_solar_cells oldid=944258832 (accessed. [16] B. Schweber, 'Solar cells and power, Part 2–power extraction,' Power Electronic Tips, 2017, doi: 10.18297/etd/3247. [17] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, 'Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,' Journal of the American Chemical Society, vol. 128, no. 25, pp. 8108-8109, 2006, doi: 10.1021/ja061655o. [18] J. Liu, Y. Shi, and Y. Yang, 'Solvation‐induced morphology effects on the performance of polymer‐based photovoltaic devices,' Advanced Functional Materials, vol. 11, no. 6, pp. 420-424, 2001, doi: 10.1002/1616-3028(200112)11:6<420::AID-ADFM420>3.0.CO;2-K. [19] 鈣鈦礦太陽能電池. 2016/10/01. [20] H. Kim, K.-G. Lim, and T.-W. Lee, 'Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,' Energy Environmental Science, vol. 9, no. 1, pp. 12-30, 2016, doi: 10.1039/C5EE02194D. [21] J. Li and P. Rinke, 'Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction,' Physical Review B, vol. 94, no. 4, p. 045201, 2016, doi: 10.1103/PhysRevB.94.045201. [22] A. R. Chakhmouradian and P. M. Woodward, 'Celebrating 175 years of perovskite research: a tribute to Roger H. Mitchell,' ed: Springer, 2014. [23] A. Chynoweth, 'Pyroelectricity, internal domains, and interface charges in triglycine sulfate,' Physical Review, vol. 117, no. 5, p. 1235, 1960, doi: 10.11648/j.ajset.20200502.17. [24] D. Cao, C. Wang, F. Zheng, W. Dong, L. Fang, and M. Shen, 'High-efficiency ferroelectric-film solar cells with an n-type Cu2O cathode buffer layer,' Nano letters, vol. 12, no. 6, pp. 2803-2809, 2012, doi: 10.1021/nl300009z. [25] A. Salau, 'Fundamental absorption edge in PbI2: KI alloys,' Solar Energy Materials, vol. 2, no. 3, pp. 327-332, 1980. [26] M. Schoijet, 'Possibilities of new materials for solar photovoltaic cells,' Solar Energy Materials, vol. 1, no. 1-2, pp. 43-57, 1979, doi: 10.1016/0165-1633(79)90055-8. [27] T. Baikie et al., 'Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications,' Journal of Materials Chemistry A, vol. 1, no. 18, pp. 5628-5641, 2013, doi: 10.1039/C3TA10518K. [28] C. S. Ponseca Jr et al., 'Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,' Journal of the American Chemical Society, vol. 136, no. 14, pp. 5189-5192, 2014, doi: 10.1021/ja412583t. [29] S. D. Stranks et al., 'Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,' Science, vol. 342, no. 6156, pp. 341-344, 2013, doi: 10.1126/science.1243982. [30] F. L. Matthews and R. D. Rawlings, Composite materials: engineering and science. CRC press, 1999. [31] V. D’innocenzo et al., 'Excitons versus free charges in organo-lead tri-halide perovskites,' Nature communications, vol. 5, no. 1, pp. 1-6, 2014, doi: 10.1038/ncomms4586. [32] A. Marchioro et al., 'Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells,' Nature photonics, vol. 8, no. 3, pp. 250-255, 2014, doi: 10.1038/nphoton.2013.374. [33] G. Niu, X. Guo, and L. Wang, 'Review of recent progress in chemical stability of perovskite solar cells,' Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8970-8980, 2015, doi: 10.1039/C4TA04994B. [34] I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin, 'Functional materials, device architecture, and flexibility of perovskite solar cell,' Emergent Materials, vol. 1, no. 3-4, pp. 133-154, 2018, doi: 10.1007/s42247-018-0013-1. [35] H.-S. Kim et al., 'Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,' Scientific reports, vol. 2, no. 1, pp. 1-7, 2012, doi: 10.1038/srep00591. [36] H. Zhou et al., 'Interface engineering of highly efficient perovskite solar cells,' Science, vol. 345, no. 6196, pp. 542-546, 2014, doi: 10.1126/science.1254050. [37] Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, 'Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications,' Journal of Photonics for Energy, vol. 6, no. 2, p. 022001, 2016, doi: 10.1117/1.JPE.6.022001. [38] H.-S. Kim and N.-G. Park, 'Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer,' The journal of physical chemistry letters, vol. 5, no. 17, pp. 2927-2934, 2014, doi: 10.1021/jz501392m. [39] J. Wei et al., 'Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells,' The journal of physical chemistry letters, vol. 5, no. 21, pp. 3937-3945, 2014, doi: 10.1021/jz502111u. [40] Z. Shi and A. H. Jayatissa, 'Perovskites-based solar cells: A review of recent progress, materials and processing methods,' Materials, vol. 11, no. 5, p. 729, 2018, doi: 10.3390/ma11050729. [41] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, 'Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,' Nature communications, vol. 4, no. 1, pp. 1-6, 2013, doi: 10.1038/ncomms3761. [42] K. Wang et al., 'Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3− xClx layer,' Organic Electronics, vol. 21, pp. 19-26, 2015, doi: 10.1021/ja411509g. [43] E. J. Juarez-Perez et al., 'Role of the selective contacts in the performance of lead halide perovskite solar cells,' The journal of physical chemistry letters, vol. 5, no. 4, pp. 680-685, 2014, doi: 10.1021/jz500059v. [44] 王國欽 et al., 'P 型多孔氧化鎳/有機金屬鈣鈦礦異質太陽能電池,' Scientific Reports, vol. 4, no. 4756, 2014. [45] S. S. Shin et al., 'High-performance flexible perovskite solar cells exploiting Zn 2 SnO 4 prepared in solution below 100 C,' Nature communications, vol. 6, no. 1, pp. 1-8, 2015, doi: 10.1038/ncomms8410. [46] M. Habibi, F. Zabihi, M. R. Ahmadian-Yazdi, and M. Eslamian, 'Progress in emerging solution-processed thin film solar cells–Part II: Perovskite solar cells,' Renewable and Sustainable Energy Reviews, vol. 62, pp. 1012-1031, 2016, doi: 10.1016/j.rser.2016.05.042. [47] L. Huang et al., 'Toward revealing the critical role of perovskite coverage in highly efficient electron-transport layer-free perovskite solar cells: an energy band and equivalent circuit model perspective,' ACS Applied Materials Interfaces, vol. 8, no. 15, pp. 9811-9820, 2016, doi: 10.1021/acsami.6b00544. [48] Q. Hu et al., 'Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%,' ACS nano, vol. 8, no. 10, pp. 10161-10167, 2014, doi: 10.1021/jz500059v. [49] W. Ke et al., 'Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells,' Nature communications, vol. 6, no. 1, pp. 1-7, 2015, doi: 10.1038/s41467-018-05760-x. [50] D. Liu, J. Yang, and T. L. Kelly, 'Compact layer free perovskite solar cells with 13.5% efficiency,' Journal of the American Chemical Society, vol. 136, no. 49, pp. 17116-17122, 2014, doi: 10.1021/ja508758k. [51] Z. Chen et al., 'Thin single crystal perovskite solar cells to harvest below-bandgap light absorption,' Nature communications, vol. 8, no. 1, pp. 1-7, 2017, doi: 10.1038/s41467-017-02039-5. [52] D. Prochowicz et al., 'Mechanosynthesis of pure phase mixed-cation MA x FA 1− x PbI 3 hybrid perovskites: photovoltaic performance and electrochemical properties,' Sustainable Energy Fuels, vol. 1, no. 4, pp. 689-693, 2017, doi: 10.1039/C7SE00094D. [53] Z. Shariatinia, 'Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review,' Renewable and Sustainable Energy Reviews, vol. 119, p. 109608, 2020, doi: 10.1002/admi.201800882. [54] D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. Johansson, 'Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,' The journal of physical chemistry letters, vol. 4, no. 9, pp. 1532-1536, 2013, doi: 10.1021/jz400638x. [55] L. Yang et al., 'Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,' Physical chemistry chemical physics, vol. 14, no. 2, pp. 779-789, 2012, doi: 10.1039/C1CP23031J [56] T. Chao, Introduction to semiconductor manufacturing technology. SPIE PRESS, 2001. [57] D. P. Subedi, U. M. Joshi, and C. San Wong, 'Dielectric barrier discharge (DBD) plasmas and their applications,' in Plasma Science and Technology for Emerging Economies: Springer, 2017, pp. 693-737. [58] G. Selwyn, H. Herrmann, J. Park, and I. Henins, 'Materials Processing Using an Atmospheric Pressure, RF‐Generated Plasma Source,' Contributions to Plasma Physics, vol. 41, no. 6, pp. 610-619, 2001, doi: 10.1002/1521-3986(200111)41:6<610::AID-CTPP610>3.0.CO;2-L. [59] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,' IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998, doi: 10.1109/27.747887. [60] T. Yuji and Y.-M. Sung, 'Surface Treatment of TiO2 Films by 4kHz Pulse Plasma for Dye-Sensized Solar Cells Applications,' in 2006 International Symposium on Discharges and Electrical Insulation in Vacuum, 2006, vol. 2: IEEE, pp. 801-804, doi: 10.1109/DEIV.2006.357424. [61] S. Zen, Y. Teramoto, R. Ono, and T. Oda, 'Development of low-temperature sintering technique for dye-sensitized solar cells combined with dielectric barrier discharge treatment,' Japanese Journal of Applied Physics, vol. 51, no. 5R, p. 056201, 2012, doi: 10.1143/JJAP.51.056201. [62] K. Wang et al., 'CO2 Plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells,' ACS applied materials interfaces, vol. 9, no. 39, pp. 33989-33996, 2017, doi: 10.1021/acsami.7b11329. [63] Z.-C. Chen et al., 'In-situ atmospheric-pressure dielectric barrier discharge plasma treated CH3NH3PbI3 for perovskite solar cells in regular architecture,' Applied Surface Science, vol. 473, pp. 468-475, 2019, doi: 10.1016/j.apsusc.2018.12.118. [64] J.-H. Tsai, I.-C. Cheng, C.-C. Hsu, C.-C. Chueh, and J.-Z. Chen, 'Feasibility study of atmospheric-pressure dielectric barrier discharge treatment on CH3NH3PbI3 films for inverted planar perovskite solar cells,' Electrochimica Acta, vol. 293, pp. 1-7, 2019, doi: 10.1016/j.electacta.2018.09.203. [65] mBRAUN. 'Glovebox workstations.' https://www.mbraun.com/en/products/glovebox-workstations.html (accessed. [66] L. s. M. WS-650MZ-23NPP. 'spin coater.' http://www.yeadagroup.com.hk/en/list-2-37.html (accessed. [67] E. Moreau, 'Airflow control by non-thermal plasma actuators,' Journal of physics D: applied physics, vol. 40, no. 3, p. 605, 2007, doi: 10.1088/0022-3727/40/3/S01. [68] B. Eliasson and M. Hiru, 'Kogelschatzu, l,' Modelind and applications of silent discharge plasmas, pp. 309-323, 1991, doi: 10.1109/27.106829. [69] A. MATERIALS. 'The path length, in units of Air Mass, changes with the zenith angle.' https://www.azom.com/article.aspx?ArticleID=10817 (accessed. [70] CSSNT-UPB. 'Solar simulator.' https://cssnt-upb.ro/laboratories/solar-cells-mems-and-chip-evaluation-and-testing/solar-simulator/?lang=en (accessed. [71] N. s. intruments. 'SEM.' https://www.nanoscience.com/techniques/scanning-electron-microscopy/#:~:text=A%20scanning%20electron%20microscope%20(SEM,the%20surface%20topography%20and%20composition. text=Why%20use%20electrons%20instead%20of%20light%20in%20a%20microscope%3F (accessed. [72] n. surf. 'AFM schematic.' https://www.nanosurf.com/en/support/afm-operating-principle#:~:text=AFM%20Working%20Principle,referred%20to%20as%20the%20probe. text=The%20up%2Fdown%20and%20side,beam%20reflected%20off%20the%20cantilever. (accessed. [73] 'Practical Surface analysis (2nd edition) volume 1.' WILEY. https://www.lanl.gov/orgs/nmt/nmtdo/AQarchive/04summer/XPS.html (accessed. [74] A. Paar. ' Schematic representation of the bragg equation.' https://wiki.anton-paar.com/en/x-ray-diffraction-xrd/ (accessed. [75] V. Gonzalez-Pedro et al., 'General working principles of CH3NH3PbX3 perovskite solar cells,' Nano letters, vol. 14, no. 2, pp. 888-893, 2014, doi: 10.1021/nl404252e. [76] J. A. Christians, P. A. Miranda Herrera, and P. V. Kamat, 'Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air,' Journal of the American Chemical Society, vol. 137, no. 4, pp. 1530-1538, 2015, doi: 10.1021/ja511132a. [77] J. You et al., 'Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,' Nature nanotechnology, vol. 11, no. 1, pp. 75-81, 2016, doi: 10.1038/nnano.2015.230. [78] Y. Cheng, 'All solution processed perovskite solar cells with silver nanowire top electrodes,' Master, Graduate Institute of photonics and optoelectrnics, National Taiwan University, Taiwan, 2018. [79] S. Wang, W. Yuan, and Y. S. Meng, 'Spectrum-dependent spiro-OMeTAD oxidization mechanism in perovskite solar cells,' ACS applied materials interfaces, vol. 7, no. 44, pp. 24791-24798, 2015, doi: 10.1021/acsami.5b07703. [80] T. Thirugnanasambandan and A. Marimuthu, 'Titanium dioxide (TiO 2) Nanoparticles-XRD Analyses–An Insight,' Chemical Physics Journal Citation, 2013, doi: arXiv:1307.1091 [81] M. Al Qibtiya, E. C. Prima, and B. Yuliarto, 'pH Influences on optical absorption of Anthocyanin from Black Rice as Sensitizer for Dye Sensitized Solar Cell TiO2 Nanoparticles,' in Materials Science Forum, 2016, vol. 864: Trans Tech Publ, pp. 154-158, doi: 10.4028/www.scientific.net/MSF.864.154. [82] M. Thirumoorthi and J. Thomas Joseph Prakash, 'Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique,' Journal of Asian Ceramic Societies, vol. 4, no. 1, pp. 124-132, 2016, doi: 10.1016/j.jascer.2016.01.001. [83] V. Bolis et al., 'Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system,' Journal of colloid and interface science, vol. 369, no. 1, pp. 28-39, 2012, doi: 10.1016/j.jcis.2011.11.058. [84] R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, 'Electronic structure of anatase TiO2 oxide,' Journal of Applied Physics, vol. 75, no. 6, pp. 2945-2951, 1994, doi: 10.1063/1.356190. [85] F.-H. Kuok et al., 'Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors,' Applied Surface Science, vol. 425, pp. 321-328, 2017, doi: 10.1016/j.apsusc.2017.06.286. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76634 | - |
| dc.description.abstract | The development of solar cells has emerged to be the best solution for the ongoing shortage of energy worldwide today. Among various solar cells, perovskite solar cells have achieved significant progress in the short duration when compared to other solar cells. Perovskite not only exploits the potential of large-area cells but also opens up the field of flexible substrates. Thus, in this research study, we focused on the development of glass perovskite solar cells and flexible perovskite solar cells by various techniques which improved the power conversion efficiency of the device. We even used the effective process like solution process to deposit the electron- transport layer (ETL), light-absorbing layer, and hole-transport layer (HTL) which effectively produces the high-quality film, and we used a low-temperature process technique for the TiO2 (ETL) deposition to reduce the energy consumption during the production. We post treated the TiO2 layer (ETL) with a low temperature (<40°C) dielectric barrier discharge (DBD) jet using the Helium gas, and mixture gas with He – 95%, and O2 -5% as the carrier gases. We treated both the glass and flexible perovskite solar cells with the DBD-jet. We varied the scan parameters such as scan speed from 1 cm/s – 3 cm/s, and by scanning from 5 – 15 times, maintained at a scan height of 1.5 cm, and determined the device performance for the perovskite solar cells. Whereas, we varied the scan height from 4 cm – 6 cm, and scan speed from 1 cm/s – 3 cm/s, and by scanning 5 – 15 times and determined the device performance for the flexible perovskite solar cells. We considered the optimum scan parameters and found that the device performance has been improved when compared to that of the device without the DBD-jet treatment for both the glass and flexible perovskite solar cells using the two carrier gases. By using He-DBDjet to treat the ETL, the glass perovskite solar cells exhibited improvement in its power conversion efficiency (PCE) from 13.91% to 14.43%, whereas the flexible perovskite solar cells exhibited improvement in its power conversion efficiency from 12.3% to 13.6%. When the mixture gas (He + O2) DBD-jet is used to treat the ETL, then the glass perovskite solar cells improved its power conversion efficiency (PCE) from 13.91% to 14.3%, whereas the flexible perovskite solar cells improved its power conversion efficiency from 12.3% to 13.37%. Several material analyses such as EIS, XPS, XRD, water contact angle determination, SEM, and AFM are conducted to confirm the results. | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:34:14Z (GMT). No. of bitstreams: 1 U0001-2008202010090400.pdf: 3899756 bytes, checksum: a8907533eeca86c64dc9dbe48612699a (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Acknowledgment ii Abstract iii Table of Contents v List of Figures ix List of Tables xiv Chapter 1: Introduction 1 1.1 Background of the study 1 1.1.1 World energy development 1 1.1.2 History of solar cell development 2 1.2 Research motivation 4 1.3 Thesis structure 5 Chapter 2: Literature review 7 2.1 Solar cells 7 2.1.1 Principle and structure of solar cells 7 2.1.2 Basic characteristics of solar cells 8 2.2 Perovskite solar cells 11 2.2.1 Perovskite materials 11 2.2.2 Working principle of perovskite solar cells 12 2.2.3 Architecture of perovskite solar cells 15 2.2.4 Materials for perovskite solar cell 17 2.3 Plasma system 20 2.3.1 Introduction to plasma 20 2.3.2 Working principle of DBD 23 2.3.3 Application in perovskite solar cells 23 Chapter 3: Research Methods 25 3.1 Process Equipments 25 3.1.1 Nitrogen Glove Box 25 3.1.2 Rotary coating system 26 3.1.3 Helium Dielectric barrier discharge jet (DBD) system 28 3.1.4 Ultraviolet ozone (UVO) system 30 3.2 Measurement analysis 31 3.2.1 Solar simulator 31 3.2.2 Scanning electron microscope 33 3.2.3 Atomic force microscope 34 3.2.4 X-ray photoelectron spectrometer 36 3.2.5 X-ray diffraction 37 3.2.6 Electrochemical Impedance Spectroscopy 38 3.3 Experimental materials list 39 3.4 Fabrication process 40 3.4.1 Substrate cleaning 41 3.4.2 Electron-transport layer deposition 42 3.4.3 DBD-jet post-treatment 42 3.4.4 Light-absorption layer deposition 43 3.4.5 Hole-transport layer deposition 44 3.4.6 Contact electrode deposition 45 Chapter 4: Results and Discussion 46 4.1 The effect of different substrates on the performance of perovskite solar cells 46 4.1.1 Substrate comparision 46 4.1.3 The effect of different substrates on the characteristic parameters of the perovskite solar cells 46 4.1.2 The effect on different substrates by using low-temperature TiO2 as electron transport layer (ETL) 49 4.2 The effect of dielectric-barrier discharge jet (DBD) for devices on-glass substrates 52 4.2.1 The effect of scanning speed of DBD jet for on-glass devices 52 4.2.2 The effect of number of scans of DBD jet for on-glass devices 54 4.2.3 The effect of carrier gases of DBD jet for on-glass devices 56 4.2.4 SEM analysis of the plasma-treated TiO2 ETL on glass substrate 59 4.2.5 AFM analysis of the plasma-treated TiO2 ETL on glass substrate 60 4.2.6 XRD analysis of the plasma-treated TiO2 ETL on glass substrate 61 4.2.7 Water contact angle of the plasma-treated TiO2 ETL on glass substrate 63 4.2.8 XPS analysis of the plasma-treated TiO2 ETL on glass substrate 64 4.2.9 EIS analysis of plasma-treated TiO2 ETL for on-glass devices 66 4.3 The effect of dielectric-barrier discharge jet (DBD) for devices on-flexible substrates 68 4.3.1 The effect of scanning height of DBD jet for on-flexible devices 69 4.3.2 The effect of scanning speed of DBD jet for on-flexible devices 72 4.3.3 The effect of number of scans of DBD jet for on-flexible devices 74 4.3.4 The effect of carrier gases of DBD jet for on-flexible devices 75 4.3.5 SEM analysis of the plasma-treated TiO2 ETL on flexible substrate 78 4.3.6 AFM analysis of the plasma-treated TiO2 ETL on flexible substrate 79 4.3.7 XRD analysis of the plasma-treated TiO2 ETL on flexible substrate 81 4.3.8 Water contact angle of the plasma-treated TiO2 ETL on flexible substrate 82 4.3.9 XPS analysis of the plasma-treated TiO2 ETL on flexible substrate 83 4.3.10 EIS analysis of plasma-treated TiO2 ETL for on-flexible devices 85 Chapter 5: Conclusions 88 Appendix A: The Effect of UV ozone treatment for the perovskite solar cells 89 A.1 The effect of perovskite solar cells without the UV ozone treatment 89 A.2 Experimental statistics 91 A.2.1 The effect of scanning heights of DBD jet for-on flexible devices 91 A.2.2 J-V curves 95 A.2.3 Effect of forward scan 101 References 104 | |
| dc.language.iso | en | |
| dc.subject | Electron transport layer (ETL) | zh_TW |
| dc.subject | n-i-p perovskite solar cell | zh_TW |
| dc.subject | Scan parameters | zh_TW |
| dc.subject | Dielectric barrier discharge (DBD) jet | zh_TW |
| dc.subject | Flexible perovskite solar cell | zh_TW |
| dc.title | 常壓介電質放電噴射電漿改質二氧化鈦於可撓性nip鈣鈦礦太陽能電池之應用 | zh_TW |
| dc.title | Dielectric Barrier Discharge Jet (DBD) Processed TiO2 Layer for Flexible Perovskite Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建兆(Jian-Zhang Chen),吳育任(Yuh-Renn Wu),徐振哲(Cheng-Che Hsu) | |
| dc.subject.keyword | n-i-p perovskite solar cell,Flexible perovskite solar cell,Dielectric barrier discharge (DBD) jet,Scan parameters,Electron transport layer (ETL), | zh_TW |
| dc.relation.page | 110 | |
| dc.identifier.doi | 10.6342/NTU202004126 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2008202010090400.pdf 未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
