請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲 | |
| dc.contributor.author | Chih-Chieh Chang | en |
| dc.contributor.author | 張智傑 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:33:47Z | - |
| dc.date.available | 2021-07-10T21:33:47Z | - |
| dc.date.copyright | 2017-02-21 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-07 | |
| dc.identifier.citation | [1] Klaus Finkenzeller, RFID Handbook: Fundamentals and applications in contactless smart cards and identification, 2nd ed., John Wiley & Sons, Ltd., 2003.
[2] Theo Pavlidis, Jerome Swartz, and Ynjiun Wang, “Fundamentals of bar code information theory,” Symbol Technologies, pp.74-86, 1990. [3] Iuliia Tkachenko, William Puech, Christophe Destruel, Olivier Strauss, Jean-Marc Gaudin, and Christian Guichard, “Two-level QR code for private message sharing and document authentication,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 3, pp. 571-583, 2016. [4] Nahid Jilovec, EDI, UCCnet & RFID: Synchronizing the supply chain, 29th Street Press, 2004. [5] http://www.mercue.biz/ [6] Richard Austin and Robert Schultz, Guide to retroreflection safety principles and retrorereflective measurements, RoadVista, 2009. [7] Peter Boyce, Lighting for driving: roads, vehicles, signs, and signals, CRC Press, 2008. [8] Thomas Murphy, “Lunar laser ranging: the millimeter challenge,” Reports on Progress in Physics, 76, 2013. [9] Stéphane Junique, Daniel Ågren, Qin Wang, Susanne Almqvist, Bertrand Noharet, and Jan Y. Andersson, “A modulating retro-reflector for free-space optical communication,” IEEE Photonics Technology Letters, vol. 18, no. 1, 2006. [10] Sunny Kedia, Scott Samson, and Lawrence Bach, “Total internal reflection-based free space optical communication system” Journal of Microelectromechanical Systems, vol. 24, no. 5, pp. 1632-1641, 2015. [11] Yu-Fan Chen, Bing-Jun Yang, and Jui-Che Tsai, “Surface-micromachined MEMS tunable three-leaf trefoil-type corner cube retro-reflector for free-space optical applications” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 4, 2015. [12] Lixia Zhou, Joseph Kahn, and Kristofer Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” Journal of Microelectromechanical Systems, vol. 12, no. 3, pp. 233-242, 2003. [13] Ekkard Brinksmeier, Ralf Gläbe, and Christian Flucke, 'Manufacturing of molds for replication of micro cube corner retroreflectors,' Production Engineering, vol. 2, pp. 33-38, 2008. [14] Gerold Neudeck, Jan Spitz, Julie Chang, John Denton, and Neal Gallagher, “Precision crystal corner cube arrays for optical gratings formed by A100B silicon planes with selective epitaxial growth,” Applied Optics, vol. 35, no. 19, pp. 3466-3470, 1996. [15] Thomas Dillon, Anita Sure, Janusz Murakowski, and Dennis Prather, “Continuous-tone grayscale mask fabrication using high-energy-beam-sensitive glass,” Journal of Microlithography Microfabrication and Microsystems, vol. 3, no. 4, pp. 550-554, 2004. [16] Keng-Hsing Chao, Chun-Da Liao, and Jui-Che Tsai, “Array of cat’s eye retro-reflectors with modulability for an optical identification system,” in Proceeding of the IEEE International Conference on Optical MEMS and Nanophotonics (OMN 2010), Sapporo, Japan, pp. 7–8, 2010. [17] Bruce Bernacki, Norman Anheier, Kannan Krishnaswami, Bret Cannon, and K. Brent Binkley, “Design and fabrication of efficient miniature retroreflectors for the mid-and long-range infrared,” SPIE Defense and Security Symposium, vol. 6940, pp. 69400X-1-69400X-11, 2008. [18] Chih-Chieh Chang, Keng-Hsing Chao, Bing-Jun Yang, Ming-Chun Su, and Jui-Che Tsai, “Independently-addressed tunable cat’s eye retro- reflector array for an optical identification system,” in Proceeding of the IEEE International Conference on Optical MEMS and Nanophotonics (OMN 2012), Banff, Canada, pp. 166–167, 2012. [19] Yun-Hsing Fan, Hongwen Ren, Xiao Liang, Haiying Wang, and Shin-Tson Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” IEEE/OSA Journal of Display Technology, vol. 1, no. 1, pp. 151-156, 2005. [20] Jongsun Lim, Seung Seok Oh, Doo Youp Kim, Sang Hee Cho, In Tae Kim, S. H. Han, Hideo Takezoe, Eun Ha Choi, Guang Sup Cho, Yoon Ho Seo, Seung Oun Kang, and Byoungchoo Park, “Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array,” Optics Express, vol. 14, no. 14, pp. 6564-6571, 2006. [21] Wuzhou Song, Andreas E. Vasdekis, and Demetri Psaltis, “Elastomer based tunable optofluidic devices,” Lab Chip, vol. 12, pp. 3590-3597, 2012. [22] Jie Sun, Su Xu, Hongwen Ren, and Shin-Tson Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Applied Physics Letters, vol. 102, 161106, 2013. [23] Difeng Zhu, Xuefeng Zeng, Chenhui Li, and Hongrui Jiang, “Focus-tunable microlens arrays fabricated on spherical surfaces,” Journal of Microelectromechanical Systems, vol. 20, no. 2, pp. 389-395, 2011. [24] Stein Kuiper and Benno Hendriks, “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, vol. 85, no. 7, 2004. [25] Liang Dong, Abhishek K. Agarwal, David J. Beebe, and Hongrui Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels,” Nature, vol. 442, pp. 551-554, 2006. [26] Phuong-Ha Cu-Nguyen, Adrian Grewe, Patrik Feßer, Andreas Seifert, Stefan Sinzinger, and Hans Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light: Science & Applications, vol. 5, 2016. [27] Hongwen Ren, Yun-Hsing Fan, Yi-Hsin Lin, and Shin-Tson Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Optics Communications, vol. 247, pp. 101-106, 2005. [28] Sz-Yuan Lee, Hsi-Wen Tung, Wen-Chih Chen, and Weileun Fang, “Thermal actuated solid tunable lens,” IEEE Photonics Technology Letters, vol. 18, no. 21, pp. 2191-2193, 2006. [29] Vincent A. Handerek and Leslie C. Laycock, “Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view,” Proceedings SPIE, vol. 5614, pp. 1–9, 2004. [30] Chih-Chieh Chang, Ming-Chun Su, Yu-Cheng Yang, and Jui-Che Tsai, “Design, fabrication, and characterization of tunable cat’s eye retroreflector arrays as optical identification tags,” Journal of Lightwave Technology, vol. 32, no. 3, pp. 384–391, 2014. [31] Pierre-Gilles de Gennes and Jacques Prost, The physics of liquid crystals, 2nd ed., Clarendon Press, Oxford, 1993. [32] Jiun-Haw Lee, David Liu, Shin-Tson Wu, Introduction to flat panel displays, Wiley, 2008. [33] Robert Hsin Chen, Liquid crystal displays: fundamental physics and technology, Wiley, 2011. [34] Toralf Scharf, Polarized light in liquid crystals and polymers, Wiley, 2006. [35] Hermann A Haus , Waves and fields in optoelectronics, Prentice-Hall,1984. [36] J. William Doane, N. A. Vaz, Bao-Gang Wu, Slobodan Žumer, “Field controlled light scattering from nematic microdroplets,” Applied Physics Letters, vol. 48, pp. 269–271, 1986. [37] Shun-Ling Hou, Wing-Kit Choi, and Guo-Dung John Su, “Ultra-bright heads-up displays using a method of projected color images by combination of leds and polymer-dispersed liquid crystals,” Journal of Display Technology, vol. 10, no. 3, 2014. [38] Bo-Jiun Chen, Cheng-Huan Lyu, Chih-Chieh Chang, Cheng-Hua Tsai, and Jui-Che Tsai, “Solid-state variable micro aperture with no moving component,” in Proceeding of the IEEE International Conference on Optical MEMS and Nanophotonics (OMN 2014), Glasgow, UK, pp. 69–70, 2014. [39] Gregory Philip Crawford, Slobodan Zumer, Liquid crystals in complex geometries: formed by polymer and porous networks, Taylor & Francis, 1996. [40] Bing-Jun Yang, Keng-Hsing Chao, and Jui-Che Tsai, “Modeling of micro cat’s eye retroreflectors using a matrix-based three-dimensional ray tracing technique,” Applied Optics, vol. 51, no. 25, pp. 6020–6030, 2012. [41] Ajoy Ghatak , Optics, Tata McGraw-Hill, 2008. [42] Chih-Chieh Chang, Yu-Cheng Yang, Ming-Chun Su, and Jui-Che Tsai, “Tunable micro cat’s eye array in an optical identification system and comparison of different ID tags,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 4, 2015 [43] Paul S. Drzaic, Liquid crystal dispersions, World Scientific, 1995. [44] Christos Nikolaos Anagnostopoulos, Ioannis Anagnostopoulos, Vassili Loumos, and Eleftherios Kayafas, “A license plate-recognition algorithm for intelligent transportation system applications,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 3, pp. 377–392, Sep. 2006. [45] Nafiz Arica, and Fatos Yarman-Vural, “Optical character recognition for cursive handwriting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 801–813, 2002. [46] Parul Shah, Sunil Karamchandani, Taskeen Nadkar, Nikita Gulechha, Kaushik Koli, and Ketan Lad, “OCR-based chassis-number recognition using artificial neural networks,” IEEE International Conference on Vehicular Electronics and Safety, pp. 31–34, 2009. [47] Trevor K. Chan and Joseph E. Ford, “Retroreflecting optical modulator using an mems deformable micromirror array,” Journal of Lightwave Technology, vol. 24, no. 1, 2006. [48] Armin Werber and Hans Zappe, “Tunable pneumatic microoptics,” Journal of Microelectromechanical Systems, vol. 17, no. 5, 2008. [49] Sean R. Samuelson, and Huikai Xie, “A large piston displacement mems mirror with electrothermal ladder actuator arrays for ultra-low tilt applications,” Journal of Microelectromechanical Systems, vol. 23, no. 1, 2014. [50] Kah How Koh, Takeshi Kobayashi, and Chengkuo Lee, “Low-voltage driven mems voa using torsional attenuation mechanism based on piezoelectric beam actuators,” IEEE Photonics Technology Letters, vol. 22, no. 18, 2010. [51] Jack W. Judy, and Richard S. Muller, “Magnetically actuated, addressable microstructures,” Journal of Microelectromechanical Systems, vol. 6, no. 3, 1997. [52] Chun-Wei Tsai, Hsu-Tang Chang, Shih-Hsiang Liu, and Jui-Che Tsai, “Magnetically-actuated swing-type mems mirror pair for a reconfigurable optical interconnect,” Journal of Lightwave Technology, vol. 31, no. 24, pp. 4126–4134, 2013. [53] Quentin A. Pankhurst, J. Connolly, Stephen K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” Journal of Physics D: Applied Physics, vol. 36, no. 13, pp. R167-R181, June 2003. [54] Julie Bowles, Mike Jackson, Amy Chen, and Peter Solheid, “Interpretation of low-temperature data part 1: superparamagnetism and paramagnetism,” The IRM Quarterly, vol. 19, no. 3, pp. 1-11, 2009. [55] Sergey S. Shevkoplyas, Adam C. Siegel, Robert M. Westervelt, Mara G. Prentiss, and George M. Whitesides, “The force acting on a superparamagnetic bead due to an applied magnetic field,” Lab Chip, vol. 7, no. 10, pp. 1294-1302, 2007. [56] Edward M. Purcell, Electricity and magnetism, McGraw-Hill, 1985. [57] Betty I. Bleaney and B. Bleaney, Electricity and magnetism, Oxford University Press, 1989. [58] Chih-Chieh Chang, Tzu-Yu Chen, and Jui-Che Tsai, “Magnetically driven mems cat’s eye array as an optical identification,” IEEE Photonics Technology Letters, vol. 28, no. 5, pp. 554-556, 2016 [59] David K. Cheng, Field and wave electromagnetics, Addison-Wesley, 1983. [60] Chih-Chieh Chang, “Independently-addressed tunable cat’s eye retro-reflector array for an optical identification system,” M.S. thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, 2012. [61] Tzu-Yu Chen, “Magnetically-driven micro cat’s eye retroreflector array for optical identification,” M.S. thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76608 | - |
| dc.description.abstract | 本研究中提出兩種不同設計的可調變貓眼回射器陣列,回射器在光學辨識系
統(Optical ID system)中扮演重要角色—光學標籤(Optical ID tag),回射器顧名思義能將入射光沿著原方向將光傳回,所以透過回射器的回射特性能增加資料傳輸的安全性及辨識準確率。貓眼回射器是由前聚焦微透鏡和後反射凹面鏡所構成的,而前後模組之間的間距將決定是否能產生回射光的重要參數,本論文先研究以高分子分散型液晶(Polymer-dispersed liquid crystal, PDLC)薄膜配置於貓眼回射器陣列,透過施加電壓於元件產生一電場使液晶分子轉向,進而改變PDLC 薄膜的狀態,此時回射光將可藉由PDLC 的狀態而自由調控,實驗分別測試單顆貓眼及陣列型元件的特性,也建置了一套簡單的光學字元辨識(Optical character recognition)來辨別光學標籤所產生的動態圖形,我們所製作的PDLC 貓眼回射器陣列能夠運作於特定角度內,確保元件所夾帶的資訊安全。 然而PDLC 貓眼有些先天材料所造成的缺點如回射效率、灰階反轉及在OFF狀態下回射效率不夠低等。接著我們利用微機電製程技術(MEMS)製作貓眼回射器的可翻轉後模組,使用磁性粒子附著在後模組的調變小載台上,並透過永久磁鐵 的移動來改變後模組的旋轉角度,此磁驅動方式可以達到12°的角度旋轉,當凹面鏡的位置改變產生一個角度的傾斜,回射器的回射條件就因此被破壞,破壞的程度視凹面鏡的角度大小而定,此變動將影響回射光的回射特性。相較於以PDLC的散射光方式為調變回射光機制,MEMS 貓眼能夠真正破壞回射光來提高元件對比度。 | zh_TW |
| dc.description.abstract | This study presents two different types of tunable retroreflectors which act as an optical ID tag. Retroreflector plays an important role in optical identification system because it can direct the light back along its original path to the reader directionally. The retroreflection can secure the transmitting data compares to the scattering property of the barcode. The main structure of the cat’s eye retroreflector is the front side focusing unit and the back side reflecting unit. The front-side-back-side gap is an important factor to determine whether the retroreflection can produce. We first design and fabricate cat’s eye retroreflector array with polymer dispersed liquid crystal (PDLC) film. The status of the PDLC film varies as an external electric field applied on the device. This mechanism provides an independently-addressed ability of cat’s eye retroreflector. We characterize the single cat’s eye and cat’s eye array and also build a preliminary optical character recognition (OCR) to detect dynamic images.
Next, we report a micro-electro-mechanical system (MEMS) tunable back side unit of cat’s eye. The rotational concave mirror is employed in the retroreflector to achieve modulability of the retroreflected optical intensity. The magnetic force between the permanent magnet and magnetic beads on the back side unit enables magnetic actuation and accomplishes modulation. The magnetically actuated mirror achieves a large tilt angle. Compare with the scatter mechanism of PDLC cat’s eye, MEMS cat’s eye can destroy the retroreflection condition of the retroreflector. Therefore, MEMS cat’s eye improves the shortcoming of PDLC cat’s eye such as retroreflection efficiency and contrast ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:33:47Z (GMT). No. of bitstreams: 1 ntu-106-D01941015-1.pdf: 15490476 bytes, checksum: 093dd291fe7a12313430bd85417b0237 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 xii 第 1 章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 第 2 章 以PDLC為調變層之可獨立調變貓眼回射器陣列 15 2.1 研究動機與工作原理 15 2.1.1 研究動機 15 2.1.2 液晶簡介 16 2.2 元件之設計與製作 23 2.2.1 元件設計與分析 23 2.2.2 元件製作 28 2.3 單顆貓眼回射器分析 32 2.4 貓眼回射器陣列分析 35 2.4.1 貓眼回射器與不同材料回射器之比較與分析 35 2.4.2 貓眼回射器結合ND (Neutral density)濾光片之分析 41 2.4.3 貓眼回射器接收角與觀察角之分析 45 2.5 識別系統 48 2.5.1 影像擷取(Image acquisition) 48 2.5.2 影像前處理(Pre-process) 49 2.5.3 圖形訓練(Pattern training) 51 2.5.4 圖形辨識(Image recognition) 53 第 3 章 磁驅動MEMS可調變貓眼回射器陣列 54 3.1 研究動機與工作原理 54 3.1.1 研究動機 54 3.1.2 磁驅動MEMS後模組運作原理 57 3.2 元件之設計與組裝 58 3.2.1 微機電後模組元件設計 58 3.2.2 元件製作及組裝 60 3.2.3 磁性粒子介紹 63 3.3 貓眼回射器分析 68 第 4 章 結論與展望 77 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微透鏡陣列 | zh_TW |
| dc.subject | 貓眼回射器 | zh_TW |
| dc.subject | 高分子分散型液晶 | zh_TW |
| dc.subject | 光學身份識別系統 | zh_TW |
| dc.subject | 光學字元辨識 | zh_TW |
| dc.subject | 磁驅動 | zh_TW |
| dc.subject | 磁性粒子 | zh_TW |
| dc.subject | 微機電技術 | zh_TW |
| dc.subject | MEMS | en |
| dc.subject | Cat’s eye retroreflector | en |
| dc.subject | PDLC | en |
| dc.subject | Optical ID system | en |
| dc.subject | OCR | en |
| dc.subject | Magnetic actuation | en |
| dc.subject | Magnetic beads | en |
| dc.title | 應用於光學身份辨識之可調變微型貓眼回射器陣列 | zh_TW |
| dc.title | Tunable Micro Cat’s Eye Retroreflector Arrays for
Optical Identification | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 孫家偉,鍾仁傑,蔡孟燦,呂志偉 | |
| dc.subject.keyword | 貓眼回射器,高分子分散型液晶,光學身份識別系統,光學字元辨識,磁驅動,微透鏡陣列,磁性粒子,微機電技術, | zh_TW |
| dc.subject.keyword | Cat’s eye retroreflector,PDLC,Optical ID system,OCR,Magnetic actuation,Magnetic beads,MEMS, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201700364 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-02-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-D01941015-1.pdf 未授權公開取用 | 15.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
