請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7659完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林頌然(Sung-Jan Lin) | |
| dc.contributor.author | Hai-En Huang | en |
| dc.contributor.author | 黃海恩 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:49:18Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.available | 2021-05-19T17:49:18Z | - |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-21 | |
| dc.identifier.citation | 1. Ovaere P, Lippens S, Vandenabeele P, & Declercq W (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34(9):453- 463.
2. Bensouilah J BP (2006) Architecture and Function. Bensouilah J, Buck P (eds) Aromadermatology. 3. Schmidt-Ullrich R & Paus R (2005) Molecular principles of hair follicle induction and morphogenesis. Bioessays 27(3):247-261. 4. Schneider MR, Schmidt-Ullrich R, & Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132-142. 5. Stenn KS & Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81(1):449- 494. 6. Chen CC, Plikus MV, Tang PC, Widelitz RB, & Chuong CM (2016) The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. J Mol Biol 428(7):1423-1440. 7. Festa E, et al. (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146(5):761-771. 8. Panteleyev AA, Jahoda CA, & Christiano AM (2001) Hair follicle predetermination. J Cell Sci 114(Pt 19):3419-3431. 9. Hsu YC, Pasolli HA, & Fuchs E (2011) Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144(1):92-105. 10. Solanas G & Benitah SA (2013) Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat Rev Mol Cell Biol 14(11):737-748. 11. Lindner G, et al. (1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol 151(6):1601-1617. 12. Greco V, et al. (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2):155-169. 13. Ito M, Kizawa K, Hamada K, & Cotsarelis G (2004) Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72(9-10):548-557. 14. Rompolas P, et al. (2012) Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487(7408):496-499. 15. Legue E & Nicolas JF (2005) Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development 132(18):4143-4154. 16. Rompolas P, Mesa KR, & Greco V (2013) Spatial organization within a niche as a determinant of stem-cell fate. Nature 502(7472):513-518. 17. Sequeira I & Nicolas JF (2012) Redefining the structure of the hair follicle by 3D clonal analysis. Development 139(20):3741-3751. 18. HB. C (1954) Growth of hair. Physiol Rev 34(1):113-126. 19. Muller-Rover S, et al. (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1):3-15. 20. Alonso L & Fuchs E (2006) The hair cycle. J Cell Sci 119(Pt 3):391-393. 21. Plikus MV & Chuong CM (2008) Complex hair cycle domain patterns and regenerative hair waves in living rodents. J Invest Dermatol 128(5):1071-1080. 22. Chase HB & Eaton GJ (1959) The growth of hair follicles in waves. Ann N Y Acad Sci 83:365-368. 23. Kulessa H, Turk G, & Hogan BL (2000) Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J 19(24):6664-6674. 24. Plikus MV, et al. (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451(7176):340-344. 25. Reddy S, et al. (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107(1-2):69-82. 26. Tumbar T, et al. (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359-363. 27. Zhang Y, et al. (2009) Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell 17(1):49-61. 28. Oshimori N & Fuchs E (2012) Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10(1):63-75. 29. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, & Birchmeier W (2001) beta- Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105(4):533-545. 30. Hansen LS, Coggle JE, Wells J, & Charles MW (1984) The influence of the hair cycle on the thickness of mouse skin. Anat Rec 210(4):569-573. 31. Botchkarev VA, Peters EM, Botchkareva NV, Maurer M, & Paus R (1999) Hair cycle-dependent changes in adrenergic skin innervation, and hair growth modulation by adrenergic drugs. J Invest Dermatol 113(6):878-887. 32. Brownell I, Guevara E, Bai CB, Loomis CA, & Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8(5):552-565. 33. Wang LC1 LZ, Gambardella L, Delacour A, Shapiro R, Yang J, Sizing I, Rayhorn P, Garber EA, Benjamin CD, Williams KP, Taylor FR, Barrandon Y, Ling L, Burkly LC. (2000) Conditional Disruption of Hedgehog Signaling Pathway De®nes its Critical Role in Hair Development and Regeneration. J Invest Dermatol 114(5):901-908. 34. Paladini RD, Saleh J, Qian C, Xu GX, & Rubin LL (2005) Modulation of hair growth with small molecule agonists of the hedgehog signaling pathway. J Invest Dermatol 125(4):638-646. 35. Petrova R & Joyner AL (2014) Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 141(18):3445-3457. 36. Martin CM, Southwick EG, & Maibach HI (1973) Propranolol induced alopecia. Am Heart J 86(2):236-237. 37. Kobayasi S, Okuyama F, & Takagi K (1958) Experimental studies on the hemitrichosis and the nervous influences on the hair growth. Acta Neuroveg (Wien) 18(1-4):169-190. 38. Asada-Kubota M (1995) Inhibition of hair growth by subcutaneous injection of a sympathetic neurotoxin, 6-hydroxydopamine in neonatal mice. Anat Embryol (Berl) 191(5):407-414. 39. Kong Y, Liu Y, Pan L, Cheng B, & Liu H (2016) Norepinephrine Regulates Keratinocyte Proliferation to Promote the Growth of Hair Follicles. Cells Tissues Organs. 40. Peters EM, Maurer M, Botchkarev VA, Gordon DS, & Paus R (1999) Hair growth- modulation by adrenergic drugs. Exp Dermatol 8(4):274-281. 41. Castellana D, Paus R, & Perez-Moreno M (2014) Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 12(12):e1002002. 42. Ali N, et al. (2017) Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell 169(6):1119-1129 e1111. 43. Gay D, et al. (2013) Fgf9 from dermal gammadelta T cells induces hair follicle neogenesis after wounding. Nat Med 19(7):916-923. 44. Cipolletta D, et al. (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549-553. 45. Villalta SA, et al. (2014) Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 6(258):258ra142. 46. Nosbaum A, et al. (2016) Cutting Edge: Regulatory T Cells Facilitate Cutaneous Wound Healing. J Immunol 196(5):2010-2014. 47. Ibrahim L & Wright EA (1975) The growth of rats and mice vibrissae under normal and some abnormal conditions. J Embryol Exp Morphol 33(4):831-844. 48. Silver AF & Chase HB (1977) The Incorporation of Tritiated Uridine in Hair Germ and Dermal Papilla during Dormancy (Telogen) and Activation (Early Anagen). Journal of Investigative Dermatology 68(4):201-205. 49. T.D. L (1934) Studies on the expression of genetic hairlessness in the house mouse. J. Exp. Zoöl 68:501-518. 50. Gafter-Gvili A, Sredni B, Gal R, Gafter U, & Kalechman Y (2003) Cyclosporin A- induced hair growth in mice is associated with inhibition of calcineurin- dependent activation of NFAT in follicular keratinocytes. Am J Physiol Cell Physiol 284(6):C1593-1603. 51. Maurer M, Handjiski B, & Paus R (1997) Hair growth modulation by topical immunophilin ligands: induction of anagen, inhibition of massive catagen development, and relative protection from chemotherapy-induced alopecia. Am J Pathol 150(4):1433-1441. 52. Xu W, Fan W, & Yao K (2012) Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model. J Biomed Res 26(5):372-380. 53. Paus R, Handjiski B, Czarnetzki BM, & Eichmuller S (1994) A murine model for inducing and manipulating hair follicle regression (catagen): effects of dexamethasone and cyclosporin A. J Invest Dermatol 103(2):143-147. 54. Paus R, Handjiski B, Eichmuller S, & Czarnetzki BM (1994) Chemotherapy- induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am J Pathol 144(4):719- 734. 55. Kim CD, et al. (2008) Induction of synapse associated protein 102 expression in cyclosporin A-stimulated hair growth. Exp Dermatol 17(8):693-699. 56. Gafter-Gvili A, Kalechman Y, Sredni B, Gal R, & Gafter U (2004) Cyclosporin A- induced hair growth in mice is associated with inhibition of hair follicle regression. Arch Dermatol Res 296(6):265-269. 57. de Arriba G, Calvino M, Benito S, & Parra T (2013) Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicol Lett 218(1):30-38. 58. Lan S, et al. (2015) Cyclosporine A increases hair follicle growth by suppressing apoptosis-inducing factor nuclear translocation: a new mechanism. Fundam Clin Pharmacol 29(2):191-203. 59. Norberg E, Orrenius S, & Zhivotovsky B (2010) Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun 396(1):95-100. 60. Roue G, et al. (2003) Mitochondrial dysfunction in CD47-mediated caspase- independent cell death: ROS production in the absence of cytochrome c and AIF release. Biochimie 85(8):741-746. 61. Zhu C, et al. (2007) Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 204(8):1741-1748. 62. Zupanska A, Dziembowska M, Ellert-Miklaszewska A, Gaweda-Walerych K, & Kaminska B (2005) Cyclosporine a induces growth arrest or programmed cell death of human glioma cells. Neurochem Int 47(6):430-441. 63. O'Donnell J, Zeppenfeld D, McConnell E, Pena S, & Nedergaard M (2012) Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 37(11):2496-2512. 64. Soeda J, et al. (2014) The beta-adrenoceptor agonist isoproterenol rescues acetaminophen-injured livers through increasing progenitor numbers by Wnt in mice. Hepatology 60(3):1023-1034. 65. Oben JA, et al. (2003) Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 38(3):664-673. 66. Oben JA & Diehl AM (2004) Sympathetic nervous system regulation of liver repair. Anat Rec A Discov Mol Cell Evol Biol 280(1):874-883. 67. Mutlu GM & Factor P (2008) Alveolar epithelial beta2-adrenergic receptors. Am J Respir Cell Mol Biol 38(2):127-134. 68. Salathe M (2002) Effects of beta-agonists on airway epithelial cells. J Allergy Clin Immunol 110(6 Suppl):S275-281. 69. Suzuki K, Hayano Y, Nakai A, Furuta F, & Noda M (2016) Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J Exp Med 213(12):2567-2574. 70. Sun F, et al. (2015) beta2-Adrenoreceptor-Mediated Proliferation Inhibition of Embryonic Pluripotent Stem Cells. J Cell Physiol 230(11):2640-2646. 71. Mendez-Ferrer S, Battista M, & Frenette PS (2010) Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci 1192:139-144. 72. Arranz L, et al. (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512(7512):78-81. 73. Katayama Y, et al. (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407-421. 74. Gillbro JM, Marles LK, Hibberts NA, & Schallreuter KU (2004) Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol 123(2):346- 353. 75. Ma M, et al. (2015) Effects of norepinephrine on proliferation and apoptosis of neonatal cardiac fibroblasts in rats. Zhonghua Xin Xue Guan Bing Za Zhi 43(6):542-547. 76. Lorenz J, et al. (2016) Norepinephrine modulates osteoarthritic chondrocyte metabolism and inflammatory responses. Osteoarthritis Cartilage 24(2):325- 334. 77. Sivamani RK, et al. (2014) Acute wounding alters the beta2-adrenergic signaling and catecholamine synthetic pathways in keratinocytes. J Invest Dermatol 134(8):2258-2266. 78. Pullar CE, et al. (2012) beta2AR antagonists and beta2AR gene deletion both promote skin wound repair processes. J Invest Dermatol 132(8):2076-2084. 79. Souza BR, Santos JS, & Costa AM (2006) Blockade of beta1- and beta2- adrenoceptors delays wound contraction and re-epithelialization in rats. Clin Exp Pharmacol Physiol 33(5-6):421-430. 80. Kimura K, Ieda M, & Fukuda K (2012) Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res 110(2):325-336. 81. Wang L, et al. (2014) A conserved axon type hierarchy governing peripheral nerve assembly. Development 141(9):1875-1883. 82. Liu LY, Zhang H, Pan J, & Pen A (2005) The existence of a linear system consisting of sympathetic endings in rat skin. Anat Embryol (Berl) 210(2):91-100. 83. Clausen OPF, Thorud E, & Iversen OH (1982) Adrenalin Has Differential Effects of Epidermal Cell Cycle Progression in Mice. Journal of Investigative Dermatology 78(6):472-476. 84. Schallreuter KU, et al. (1995) Catecholamines in human keratinocyte differentiation. J Invest Dermatol 104(6):953-957. 85. Orenberg EK & Wilkinson DI (1982) Effect of beta-adrenergic receptor blockade or refractoriness induced by isoproterenol on growth of keratinocytes in vitro. Br J Dermatol 107 Suppl 23:119-124. 86. Sivamani RK, Lam ST, & Isseroff RR (2007) Beta adrenergic receptors in keratinocytes. Dermatol Clin 25(4):643-653, x. 87. Orenberg EK, Pfendt EA, & Wilkinson DI (1983) Characterization of alpha- and beta-adrenergic agonist stimulation of adenylate cyclase activity in human epidermal keratinocytes in vitro. J Invest Dermatol 80(6):503-507. 88. Kim N, et al. (2006) Site specific differential activation of ras/raf/ERK signaling in rabbit isoproterenol-induced left ventricular hypertrophy. Biochim Biophys Acta 1763(10):1067-1075. 89. Shenoy SK, et al. (2006) beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281(2):1261- 1273. 90. Zheng M, Hou R, Han Q, & Xiao RP (2004) Different regulation of ERK1/2 activation by beta-adrenergic receptor subtypes in adult mouse cardiomyocytes. Heart Lung Circ 13(2):179-183. 91. Chen J, Hoffman BB, & Isseroff RR (2002) Beta-adrenergic receptor activation inhibits keratinocyte migration via a cyclic adenosine monophosphate- independent mechanism. J Invest Dermatol 119(6):1261-1268. 92. Pullar CE, Chen J, & Isseroff RR (2003) PP2A activation by beta2-adrenergic receptor agonists: novel regulatory mechanism of keratinocyte migration. J Biol Chem 278(25):22555-22562. 93. Li W, et al. (2013) Epidermal adrenergic signaling contributes to inflammation and pain sensitization in a rat model of complex regional pain syndrome. Pain 154(8):1224-1236. 94. Hino S, Tanji C, Nakayama KI, & Kikuchi A (2005) Phosphorylation of beta- catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25(20):9063-9072. 95. Boyce ST & Ham RG (1983) Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol 81(1 Suppl):33s-40s. 96. Hennings H, et al. (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19(1):245-254. 97. Maurer M, Peters EM, Botchkarev VA, & Paus R (1998) Intact hair follicle innervation is not essential for anagen induction and development. Arch Dermatol Res 290(10):574-578. 98. Blum D, et al. (2001) Molecular pathways involved in the neurotoxicity of 6- OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 65(2):135-172. 99. Liu LY, Guo DS, Xin XY, & Fang J (2008) Observation of a system of linear loops formed by re-growing hairs on rat skin. Anat Rec (Hoboken) 291(7):858-868. 100. Roth S & Kummer W (1994) A quantitative ultrastructural investigation of tyrosine hydroxylase-immunoreactive axons in the hairy skin of the guinea pig. Anat Embryol (Berl) 190(2):155-162. 101. Eaton HBCaGJ (1959) The growth of hair follicles in waves. Annals of the New York Academy of Sciences 83(1):365-368. 102. Liapakis G, Chan WC, Papadokostaki M, & Javitch JA (2004) Synergistic contributions of the functional groups of epinephrine to its affinity and efficacy at the beta2 adrenergic receptor. Mol Pharmacol 65(5):1181-1190. 103. Steinkraus V, et al. (1996) Autoradiographic mapping of beta-adrenoceptors in human skin. Arch Dermatol Res 288(9):549-553. 104. Scheiermann C, et al. (2012) Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37(2):290-301. 105. Zhang YV, Cheong J, Ciapurin N, McDermitt DJ, & Tumbar T (2009) Distinct self- renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5(3):267-278. 106. Schallreuter KU, et al. (1992) Production of catecholamines in the human epidermis. Biochem Biophys Res Commun 189(1):72-78. 107. Ishizuka T, Goshima H, Ozawa A, & Watanabe Y (2014) Involvement of beta- adrenoceptors in the differentiation of human induced pluripotent stem cells into mesodermal progenitor cells. Eur J Pharmacol 740:28-34. 108. Yan L, et al. (2011) Beta-adrenergic signals regulate cardiac differentiation of mouse embryonic stem cells via mitogen-activated protein kinase pathways. Dev Growth Differ 53(6):772-779. 109. Sennett R & Rendl M (2012) Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 23(8):917-927. 110. Spiegel A, et al. (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 8(10):1123-1131. 111. Cai G, Wang HY, & Friedman E (2002) Increased dopamine receptor signaling and dopamine receptor-G protein coupling in denervated striatum. J Pharmacol Exp Ther 302(3):1105-1112. 112. Sato N, Leopold PL, & Crystal RG (1999) Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Invest 104(7):855-864. 113. Zhao H, et al. (2014) Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14(2):160-173. 114. Kopp UC, Cicha MZ, Smith LA, Mulder J, & Hokfelt T (2007) Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers. Am J Physiol Regul Integr Comp Physiol 293(4):R1561-1572. 115. Lundberg JM, Terenius L, Hokfelt T, & Goldstein M (1983) High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neurosci Lett 42(2):167-172. 116. Tang HN, et al. (2015) Dose-dependent effects of neuropeptide Y on the regulation of preadipocyte proliferation and adipocyte lipid synthesis via the PPARgamma pathways. Endocr J 62(9):835-846. 117. Liu S, et al. (2016) Neuropeptide Y stimulates osteoblastic differentiation and VEGF expression of bone marrow mesenchymal stem cells related to canonical Wnt signaling activating in vitro. Neuropeptides 56:105-113. 118. Driskell RR, Giangreco A, Jensen KB, Mulder KW, & Watt FM (2009) Sox2- positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136(16):2815-2823. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7659 | - |
| dc.description.abstract | 交感神經突觸會生長進入皮膚並與毛囊和一旁的豎毛肌纏繞形成最簡單的豎 毛單元。透過分泌正腎上腺素,交感神經得以促使毛髮站立來增大動物的體型並 且調控溫度。在毛髮生長週期中,交感神經的纖維會表現出消長的現象,在進入 生長期前期時增加,當進行到中期到後期這段時間開始減少。而在角質細胞中, 正腎上腺素會有抑制細胞分裂並刺激細胞分化的作用。在人體身上使用乙型 2 型 腎上腺素受體抑制劑發現有掉髮的現象,由此暗示交感神經擁有可以影毛髮生理 恆定的能力。 在我們的研究中發現,交感神經跟毛囊突隆區有距離相當近的交集。交感神經纖 維在生長期前期均勻地在整片背皮中分佈,並且有其密度有上升的現象。而在使 用六羥多巴胺除掉交感神經後,毛囊從休止期進入生長期、和生長期前期進入生 長期後期的過程會被阻斷,但是如已經進入生長期後期則沒有影響。使用乙型腎 上腺素受體促進劑(異丙腎上腺素)可以刺激毛髮提前進入生長期。從我們的結 果得知交感神經在自然進入生長期的生長期前期中扮演重要角色。我們更進一步 分離出毛囊幹細胞來探討交感神經移除與不移除對於基因表現的變化。其中 Wnt 信號並不會受到交感神經得去除的影響。然而,Gli1 和 Gli2 的信號在交感神經去 除後很顯著的表現有下降的情況,這很可能是交感神經可以透過刺激生成 hedgehog 信號來活化毛囊幹細胞。但在知道交感神經並不會分泌 Shh 訊號的情況 下,我們認為交感神經可能透過其他方式來調控 hedgehog 在毛囊的表現。 | zh_TW |
| dc.description.abstract | The sympathetic nerve innervates in the skin and associates with hair follicles and arrector pili muscles to assemble the piloerection units. Through secretion norepinephrine, the sympathetic nerves system can trigger piloerection to expand body size and mediate body temperature. During hair cycle, the sympathetic nerve fibers oscillate with hair cycle phase which increases at the early anagen but decreases at the mid-anagen to the regression stage in the hair follicles. Treatment with norepinephrine can inhibit keratinocyte proliferation and trigger cell differentiation. The administration of adrenoceptor antagonist propranolol will lead to hair loss in the human which imply the sympathetic nerves may involve in hair follicle homeostasis regulation.
In our study, we identify that the sympathetic nerve closely associates with bulge region of the hair follicle. The neuron fibers density increases and homogeneously distributes in the interfollicular regions of the back skin at the early anagen phase. The 6- hydroxydopamine induced sympathectomy block telogen-to-anagen transition, early anagen I-to-anagen III transition, but not full anagen progression. Beta-adrenoceptor agonist, isoproterenol, can induce an early hair cycle progression. In our result, the sympathetic nerve is important in the early spontaneous hair cycle entry. We further isolate the hair follicle stem/progenitor cells (HFSC) and identify the gene expression profile in sympathectomy and non-sympathectomy skin. The Wnts expression is not affected after sympathectomy. However, the gli1, gli2 significantly decrease in hair follicle stem cells after sympathectomy which indicates that sympathetic nerves can activate HFSC through activating hedgehog signaling. Furthermore, no study showed SN can secrete Shh. Therefore, we conclude that sympathetic nerves can mediate hair cycle through the alternative pathway by mediating the hedgehog pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:49:18Z (GMT). No. of bitstreams: 1 ntu-106-R04548065-1.pdf: 13198502 bytes, checksum: 95b1cefd83d2f28838ed38c55b01975d (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 ........................................................................................................... I
中文摘要 ......................................................................................................................... II ABSTRACT ..................................................................................................................III CHAPTER 1 INTRODUCTION................................................................................... 1 1.1 INTRODUCTION OF SKIN ......................................................................................... 1 1.2 INTRODUCTION OF HAIR FOLLICLES...................................................................... 2 1.2.1 Hair follicle structure ..................................................................................... 3 1.2.2 Hair cycle (stem cell behavior)....................................................................... 3 1.2.3 Modulation of hair follicle stem cells by the micro- and macro-environment .................................................................................................................................. 8 1.3 HAIR CYCLE INDUCTION ...................................................................................... 10 1.3.1 Plucking ........................................................................................................ 10 1.3.2 Cyclosporin A (CsA).......................................................................................11 1.4 INTRODUCTION OF SYMPATHETIC NERVE (SN) ................................................... 12 1.4.1 Structure and development........................................................................... 13 1.4.2 Role in wound healing.................................................................................. 14 1.4.3 G-protein transduction pathway .................................................................. 15 1.5 RELATIONSHIP BETWEEN SN AND HAIR CYCLE ................................................... 17 1.6 MOTIVATION......................................................................................................... 19 1.7 SPECIFIC AIM ....................................................................................................... 21 CHAPTER 2 MATERIALS AND METHODS.......................................................... 22 2.1 MICE ..................................................................................................................... 22 2.2 NEURO-PHARMACOLOGICAL MANIPULATION ..................................................... 22 2.2.1 Chemical sympathectomy (6-OHDA) .......................................................... 22 2.2.2 Beta-2-adrenoceptor induction (isoproterenol) ........................................... 22 2.3 HAIR CYCLE INDUCTION ...................................................................................... 23 2.3.1 Physical hair cycle induction (waxing)........................................................ 23 2.3.2 Chemical hair cycle induction (CsA) ........................................................... 23 2.4 SKIN HARVESTING ................................................................................................ 23 2.5 CRYOSECTION ...................................................................................................... 23 2.6 IMMUNOFLUORESCENCE STAINING...................................................................... 24 2.6.1 100μm samples immunofluorescent staining .............................................. 24 2.6.2 Whole skin IHC staining .............................................................................. 25 2.7 CELL SORTING ...................................................................................................... 26 2.7.1 Sample preparation....................................................................................... 26 2.7.2 Keratinocytes isolation ................................................................................. 27 2.7.3 Cell staining .................................................................................................. 27 2.8 CDNA SYNTHESIS AND AMPLIFICATION............................................................... 28 2.9 REAL TIME QPCR ................................................................................................ 29 CHAPTER 3 RESULTS............................................................................................... 32 3.1 SYMPATHETIC NERVES LOOP AROUND HAIR FOLLICLE STEM CELLS (HFSCS) AND SYMPATHETIC NERVE DISPLAYS VARIATION ALONG THE HAIR CYCLE ...................... 32 3.2 SYMPATHETIC DENERVATION AFFECTS THE HAIR CYCLE PROGRESSION FROM TELOGEN TO ANAGEN AND ANAGEN I TO ANAGEN III................................................ 35 3.3 SYMPATHETIC NERVE IS REQUIRED FOR HAIR WAVE PROGRESSION ................... 40 3.4 SYMPATHETIC NERVE AFFECTS THE HAIR GROWTH THROUGH THE BETA2- ADRENOCEPTOR (B2AR) ........................................................................................... 42 3.5 SYMPATHETIC NERVE NOT REQUIRED FOR WAXING-INDUCED ANAGEN ENTRY .. 53 CHAPTER 4 DISCUSSION ........................................................................................ 55 4.1 RELATIONSHIP BETWEEN SN AND HAIR FOLLICLE ............................................. 56 4.2 SN DIRECT EFFECT ON THE HAIR GROWTH ......................................................... 58 4.3 SN INDIRECT EFFECT ON HAIR GROWTH ............................................................. 62 4.4 RELATIONSHIP BETWEEN SN AND TRAUMA-INDUCED HAIR CYCLE.................... 64 CHAPTER 5 FUTURE WORK .................................................................................. 66 REFERENCES ............................................................................................................. 69 | |
| dc.language.iso | en | |
| dc.title | 探討交感神經提供易活化毛囊幹細胞的環境 | zh_TW |
| dc.title | Sympathetic nerve provides a permissive niche for hair follicle stem cell activation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝松蒼,陳志強 | |
| dc.subject.keyword | 交感神經,毛囊生長週期,異丙腎上腺素,乙型腎上腺素受體,環孢素, | zh_TW |
| dc.subject.keyword | sympathetic nerve,hair cycle,beta-adrenoceptor,isoproterenol,cyclosporine, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU201701146 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 12.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
