Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76549
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王彥士(Yane-Shih Wang)
dc.contributor.authorChien-Lung Lien
dc.contributor.author李健隆zh_TW
dc.date.accessioned2021-07-09T15:54:14Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation1 Crick, F. H. The origin of the genetic code. Journal of molecular biology 38, 367-379 (1968).
2 McCarthy, J. E. et al. Prokaryotic translation: the interactive pathway leading to initiation. Trends in genetics 10, 402-407 (1994).
3 Adams, J. M. On the release of the formyl group from nascent protein. Journal of molecular biology 33, 571-589 (1968).
4 Ball, L. A. et al. Cleavage of the N-terminal Formymlethionine Residue from a Bacteriophage Coat Protein in vitro. Journal of molecular biology 79, 531-537 (1973).
5 Andersen, G. R. et al. Elongation factors in protein biosynthesis. Trends in biochemical sciences 28, 434-441 (2003).
6 Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255-1266 (2005).
7 Liu, W. R. et al. Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. Molecular biosystems 7, 38-47 (2011).
8 Saitoh, H. et al. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of biological chemistry 275, 6252-6258 (2000).
9 Keusekotten, K. et al. Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochemical journal 457, 207-214 (2014).
10 Hay, R. T. SUMO: a history of modification. Molecular cell 18, 1-12 (2005).
11 Johnson, E. S. Ubiquitin branches out. Nature cell biology 4, 295-298 (2002).
12 Ulrich, H. D. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends in cell biology 15, 525-532 (2005).
13 Martin, S. et al. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nature reviews neuroscience 8, 948-959 (2007).
14 Hershko, A. et al. The ubiquitin system. Annual Reviews 425-479 (1998)
15 Hershko, A. et al. The ubiquitin system for protein degradation. Annual review of biochemistry 61, 761-807 (1992).
16 Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature biotechnology 21, 921-926 (2003).
17 Inobe, T. et al. Defining the geometry of the two-component proteasome degron. Nature chemical biology 7, 161-167 (2011).
18 Hoege, C. et al. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 (2002).
19 Mukhopadhyay, D. et al. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205 (2007).
20 Pickart, C. M. Mechanisms underlying ubiquitination. Annual review of biochemistry 70, 503-533 (2001).
21 Dou, H. et al. BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nature structural and molecular biology 19, 876-883 (2012).
22 Komander, D. et al. Breaking the chains: structure and function of the deubiquitinases. Nature reviews molecular cell biology 10, 550-563 (2009).
23 Carter, S. et al. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nature cell biology 9, 428-435 (2007).
24 Kaiser, S. E. et al. Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nature methods 8, 691-696 (2011).
25 Leinfelder, W., Zehelein, E., MandrandBerthelot, M. & Bock, A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331, 723-725 (1988).
26 Srinivasan, G., James, C. M. & Krzycki, J. A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459-1462 (2002).
27 Kwok, Y. & Wong, J. T.-F. Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Canadian journal of biochemistry 58, 213-218 (1980).
28 Steer, B. A. & Schimmel, P. Major anticodon-binding region missing from an archaebacterial tRNA synthetase. Journal of Biological Chemistry 274, 35601-35606 (1999).
29 Cohen, G. & Munier, R. Incorporation of structural analogues of amino acids in bacterial proteins. Biochimica et biophysica acta 21, 592-593 (1956).
30 Wan, W. et al. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angewandte Chemie International Edition 49, 3211-3214 (2010).
31 Johnson, J. A., Lu, Y. Y., Van Deventer, J. A. & Tirrell, D. A. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Current opinion in chemical biology 14, 774-780 (2010).
32 Singh-Blom, A., Hughes, R. A. & Ellington, A. D. in Enzyme Engineering 93-114 (2013).
33 Xiu, X., Puskar, N. L., Shanata, J. A., Lester, H. A. & Dougherty, D. A. Nicotine binding to brain receptors requires a strong cation–π interaction. Nature 458, 534-537 (2009).
34 Banerjee, A. et al. Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. Proceedings of the national academy of sciences of the United States of America 107, 8165-8170 (2010).
35 Fujiki, M. et al. Optically active polysilanes. Ten years of progress and new polymer twist for nanoscience and nanotechnology. Polymer journal 35, 297-344 (2003).
36 Wang, L., Xie, J. & Schultz, P. G. Expanding the genetic code. Annual review of biophysics and biomolecular structure 35, 225-249 (2006).
37 James, C. M., Ferguson, T. K., Leykam, J. F. & Krzycki, J. A. The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. Journal of biological Chemistry 276, 34252-34258 (2001).
38 Polycarpo, C. et al. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proceedings of the national academy of sciences of the United States of America 101, 12450-12454 (2004).
39 Kavran, J. M. et al. Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proceedings of the national academy of sciences of the United States of America 104, 11268-11273 (2007).
40 Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding Nε-acetyllysine in recombinant proteins. Nature chemical biology 4, 232-234 (2008).
41 Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annual review of biochemistry 79, 413-444 (2010).
42 Raibaut, L., Ollivier, N. & Melnyk, O. Sequential native peptide ligation strategies for total chemical protein synthesis. Chemical society reviews 41, 7001-7015 (2012).
43 Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nature reviews chemistry 2, 0122 (2018).
44 Reich, H. J. & Wollowitz, S. Preparation of α, β‐Unsaturated Carbonyl Compounds and Nitriles by Selenoxide Elimination. Organic reactions (1993).
45 Emerson, D. W., Craig, A. P. & Potts Jr, I. W. Pyrolysis of unsymmetrical dialkyl sulfoxides. Rates of alkene formation and composition of the gaseous products. The Journal of organic chemistry 32, 102-105 (1967).
46 Sharpless, K., Young, M. & Lauer, R. Reactions of selenoxides: Thermal syn-elimination and H218O exchange. Tetrahedron letters 14, 1979-1982 (1973).
47 Emori, E., Arai, T., Sasai, H. & Shibasaki, M. A catalytic Michael addition of thiols to α, β-unsaturated carbonyl compounds: Asymmetric Michael additions and asymmetric protonations. Journal of the American chemical society 120, 4043-4044 (1998).
48 Mather, B. D., Viswanathan, K., Miller, K. M. & Long, T. E. Michael addition reactions in macromolecular design for emerging technologies. Progress in polymer science 31, 487-531 (2006).
49 Little, R. D., Masjedizadeh, M. R., Wallquist, O. & Mcloughlin, J. I. The Intramolecular M ichael Reaction. Organic reactions 47, 315-552 (2004).
50 Windle, C. L. et al. Extending enzyme molecular recognition with an expanded amino acid alphabet. Proceedings of the national academy of sciences of the United States of America, 201616816 (2017).
51 Dadová, J., Galan, S. R. & Davis, B. G. Synthesis of modified proteins via functionalization of dehydroalanine. Current opinion in chemical biology 46, 71-81 (2018).
52 Guo, J., Wang, J., Lee, J. S. & Schultz, P. G. Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angewandte Chemie International Edition 47, 6399-6401 (2008).
53 Meledin, R., Mali, S. M., Singh, S. K. & Brik, A. Protein ubiquitination via dehydroalanine: development and insights into the diastereoselective 1,4-addition step. Org Biomol Chem 14, 4817-4823 (2016).
54 Mevissen, T. E. & Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annual review of biochemistry 86, 159-192 (2017).
55 Lecona, E. et al. USP7 is a SUMO deubiquitinase essential for DNA replication. Nature structural and molecular biology 23, 270-277 (2016).
56 Carvalho, A. F. et al. High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1. Molecular biotechnology 51, 254-261 (2012).
57 Wang, X. A., Kurra, Y., Huang, Y., Lee, Y. J. & Liu, W. R. E1‐Catalyzed Ubiquitin C‐Terminal Amidation for the Facile Synthesis of Deubiquitinase Substrates. ChemBioChem 15, 37-41 (2014).
58 Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature protocols 1, 2856-2860 (2006).
59 Beers, E. & Callis, J. Utility of polyhistidine-tagged ubiquitin in the purification of ubiquitin-protein conjugates and as an affinity ligand for the purification of ubiquitin-specific hydrolases. Journal of biological chemistry 268, 21645-21649 (1993).
60 Krist, D. T., Park, S., Boneh, G. H., Rice, S. E. & Statsyuk, A. V. UbFluor: a mechanism-based probe for HECT E3 ligases. Chemical science 7, 5587-5595 (2016).
61 Englert, M. et al. Probing the active site tryptophan of Staphylococcus aureus thioredoxin with an analog. Nucleic acids research 43, 11061-11067 (2015).
62 Ma, H., Liu, N., Shi, S., Wang, S. & Chen, Y. Genetic incorporation of D-amino acids into green fluorescent protein based on polysubstrate specificity. Royal society of chemistry advances 5, 39580-39586 (2015).
63 Hounsou, C. et al. Time-resolved FRET binding assay to investigate hetero-oligomer binding properties: proof of concept with dopamine D1/D3 heterodimer. ACS Chemical Biology 10, 466-474 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76549-
dc.description.abstract泛素化和類泛素化為細胞內重要之蛋白質轉譯後修飾作用,廣泛參與並影響生物體作用。USP7近期發現亦為泛素-類泛素降解酶,能將鍵結在類泛素2上的泛素移除,暗示泛素-類泛素的動態鍵結之間有著調控受質蛋白功能的生物機制。然而,調控類泛素-泛素異元聚合物轉譯後修飾的其餘調控因子,尚未進一步發現及探討。本研究利用化學生物學方法及非典型胺基酸體內嵌入的技術,合成特定鍵結的泛素-類泛素異元二聚體,做為深入探討相關蛋白間作用的基體。本研究中,類泛素2中的八個賴胺酸基因位點,分別以TAG基因密碼突變並以生物正交配對PylRS•tRNA_CUA^Pyl體內嵌入非典型胺基酸SeCbzK;類泛素2進一步經過硒亞碸脫去反應轉換成類泛素2-Dha,進而衍生化的泛素-ethylthio進行硫醇麥可加成反應,得到泛素-類泛素2異元二聚體產物。
此論文研究亦針對以雜環類非典型胺基酸中對環境敏感而有螢光強弱變化的特性,發展辨認特定鍵結泛素二聚體的分子探針。利用演化後的PylRS•tRNA_CUA^Pyl正交配對,在超折疊綠螢光蛋白的發色團中酪胺酸66及苯丙胺酸27分別取代為7種不同雜環胺基酸。在螢光光譜的測定實驗中,顯示放射光譜和控制組實驗相比,有著顯著發射光譜位移、斯托克斯位移、分子內多重FRET光學現象、增加螢光發光團,相關結果可做為非典型胺基酸分子探針分辨特定泛素二聚體的工具。
zh_TW
dc.description.abstractProtein Ubiquitination and SUMOylation are unique protein post-translational modifications involved in a myriad biological processes. The discovery of USP7 as exclusive SUMO deubiquitinase has manifested the cross-talk between Ubiquitin (Ub) and SUMO. However, the corresponding effectors and biological language of such hetero-linkage are still indecipherable. Here, we report an unbiased novel chemical method in synthesizing Ub-SUMO2 dimers. Se-alkylselenocysteine was incorporated into SUMO2 protein at eight different lysine positions individually and further converted to SUMO2-dehydroalanine (Dha) through selenoxide-elimination chemistry. Subsequently, SUMO2-Dha was covalently tethered with Ub-ethylthio by thiol-Michael addition yielding Ub-SUMO2 heterodimer.
This study also centers on the development of sensitive heterocyclic fluorescent probe which can sense Di-Ub or Ub-SUMO linkage in response to environmental changes. With the evolved pyrrolysyl-tRNA synthetase • pyrrolysyl-tRNA (PylRS•tRNA_CUA^Pyl) pairs, the tyrosine 66 and phenylalanine 27 positions of superfolder green fluorescent protein were efficiently substituted with seven heterocyclic noncanonical amino acids. The photophysical characterization of these proteins have unraveled the significant differences at the emission wavelengths, stoke shift, intramolecular FRET, and additional chromophore. These findings have demonstrated that ncAA-based tool was employed to establish molecular probe which can specifically recognize Ubiquitin dimers.
en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:54:14Z (GMT). No. of bitstreams: 1
ntu-107-R05b46025-1.pdf: 7554595 bytes, checksum: 30221ae69d987c72482ae743d967d023 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbstract I
摘要 II
Table of contents III
List of figures VII
List of tables XI
Abbreviations XII
Chapter 1 Introduction 1
1.1 Protein translation 1
1.1.1 Initiation 1
1.1.2 Elongation 2
1.1.3 Termination 3
1.2 Protein post-translational modifications 4
1.2.1 Protein SUMOylation 4
1.2.2 Protein Ubiquitination 8
1.3 Expanding genetic codes 12
1.3.1 Genetic code reassignment 12
1.3.2 Reside-specific incorporation of ncAAs 13
1.3.3 Site-specific incorporation of ncAAs 13
1.4 Protein ligation 17
1.4.1 Native chemical ligation 17
1.4.2 Selenoxide elimination 17
1.4.3 Michael addition 18
1.5 Specific aim of thesis 18
Chapter 2 Experimental materials and methods 23
2.1 DNA and Protein sequences 23
2.1.1 DNA sequences 23
2.1.2 Protein sequences 27
2.2 Plasmid construction 30
2.2.1 Primer list 30
2.2.2 Plasmids 31
2.2.3 Molecular cloning 35
2.3 Protein productions and purifications 37
2.4 Gel analysis 41
2.4.1 SDS-PAGE 41
2.4.2 Western blot analysis 42
2.5 Protein chemistry 43
2.5.1 Synthesis of Ub-cysteamine 43
2.5.2 Selenoxide β-elimination 43
2.6 Mass spectrometry characterization 44
2.6.1 Protein MALDI-TOF-MS analysis 44
2.6.2 Protein ESI-MS analysis 45
2.7 Protein Biophysical characterizations 45
2.7.1 UV/Visible absorption spectrum 45
2.7.2 Fluorescence spectrum 45
Chapter 3 Results 46
3.1 Synthesis of Ubiquitin-cysteamine 46
3.1.1 Purification of Ubiquitin 46
3.1.2 Purification of Ubiquitin-activating enzyme 49
3.1.3 ESI-MS analysis of Ubiquitin-cysteamine 53
3.1.4 Purification of Ubiquitin-cysteamine 57
3.2 Studying selenoxide β-elimination of SUMO2 variants 59
3.2.1 Purification of SUMO2 variants 59
3.2.2 ESI-MS analysis and MALDI-TOF-MS/MS analysis of SUMO2 variants 65
3.2.3 ESI-MS analysis of selenoxide β-elimination of SUMO2 variants 77
3.3 Protein ligation through thiol-Michael addition on SUMO2Dha 81
3.4 Engineering MmPylRS for heterocyclic ncAAs incorporation 94
3.4.1 Analysis of sfGFP variants 94
3.4.2 ESI-MS analysis and MALDI-TOF-MS/MS analysis of sfGFP variants 98
3.4.3 Incorporating heterocyclic ncAAs into chromophore of sfGFP 110
3.4.4 Photophysical characteristics of sfGFP variants with heterocyclic ncAAs 117
Chapter 4 Discussion 129
Chapter 5 Conclusion 132
Reference 133
Appendix 137
dc.language.isoen
dc.subject硫醇麥可加成反應zh_TW
dc.subject泛素-類泛素異元二聚體zh_TW
dc.subject非典型胺基酸體內嵌入zh_TW
dc.subject雜環非典型胺基酸zh_TW
dc.subjectPylRS‧tRNACUAPyl配對zh_TW
dc.subjectPylRS‧tRNACUAPyl pairen
dc.subjectExpanding genetic codeen
dc.subjectUbiquitin-SUMO2 dimeren
dc.subjectthiol-Michael addition reactionen
dc.subjectheterocyclic noncanonical amino acid incorporationen
dc.title利用擴充基因密碼方法合成泛素-SUMO2異元二聚體與其功能分析之研究zh_TW
dc.titleExpanding genetic code for synthesis and functional studies of Ubiquitin-SUMO2 heterodimersen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡明道(Ming-Daw Tsai),謝俊結(Jiun-Jie Shie)
dc.subject.keyword非典型胺基酸體內嵌入,泛素-類泛素異元二聚體,硫醇麥可加成反應,雜環非典型胺基酸,PylRS‧tRNACUAPyl配對,zh_TW
dc.subject.keywordExpanding genetic code,Ubiquitin-SUMO2 dimer,thiol-Michael addition reaction,heterocyclic noncanonical amino acid incorporation,PylRS‧tRNACUAPyl pair,en
dc.relation.page154
dc.identifier.doi10.6342/NTU201803256
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05b46025-1.pdf7.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved