Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學(Pei-Shiue Tsai)
dc.contributor.authorChun-Yuan Chaoen
dc.contributor.author趙淳媛zh_TW
dc.date.accessioned2021-07-09T15:53:33Z-
dc.date.available2024-08-15
dc.date.copyright2019-08-15
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation1. NephCure Kidney International https://nephcure.org/peritoneal-dialysis/.
2. TeachMeAnatomy https://teachmeanatomy.info/abdomen/areas/peritoneum/.
3. Abelardo Aguilera MaYne-M, Rafael Selgas, Francisco Sánchez- Madrid,, and López-Cabrera M. Epithelial to mesenchymal transition as a triggering factor of peritoneal membrane fibrosis and angiogenesis in peritoneal dialysis patients. Current Opinion in Investigational Drugs 6: 2005.
4. Blitek A, Kaczmarek MM, Kiewisz J, and Ziecik AJ. Endometrial and conceptus expression of HoxA10, transforming growth factor beta1, leukemia inhibitory factor, and prostaglandin H synthase-2 in early pregnant pigs with gonadotropin-induced estrus. Domest Anim Endocrinol 38: 222-234, 2010.
5. Chen YT, Chang YT, Pan SY, Chou YH, Chang FC, Yeh PY, Liu YH, Chiang WC, Chen YM, Wu KD, Tsai TJ, Duffield JS, and Lin SL. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. Journal of the American Society of Nephrology : JASN 25: 2847-2858, 2014.
6. Cho YJ, Lee YA, Lee JW, Kim JI, and Han JS. Kinetics of proinflammatory cytokines after intraperitoneal injection of tribromoethanol and a tribromoethanol/xylazine combination in ICR mice. Lab Anim Res 27: 197-203, 2011.
7. Coester AM, Smit W, Struijk DG, and Krediet RT. Peritoneal function in clinical practice: the importance of follow-up and its measurement in patients. Recommendations for patient information and measurement of peritoneal function. NDT Plus 2: 104-110, 2009.
8. Danford CJ, Lin SC, Smith MP, and Wolf JL. Encapsulating peritoneal sclerosis. World J Gastroenterol 24: 3101-3111, 2018.
9. Dawson HD, Smith AD, Chen C, and Urban JF, Jr. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. Vet Microbiol 202: 2-15, 2017.
10. Del Peso G, Jimenez-Heffernan JA, Bajo MA, Aroeira LS, Aguilera A, Fernandez-Perpen A, Cirugeda A, Castro MJ, de Gracia R, Sanchez-Villanueva R, Sanchez-Tomero JA, Lopez-Cabrera M, and Selgas R. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int Suppl S26-33, 2008.
11. do Amaral R, Arcanjo KD, El-Cheikh MC, and de Oliveira FL. The Peritoneum: Health, Disease, and Perspectives regarding Tissue Engineering and Cell Therapies. Cells Tissues Organs 204: 211-217, 2017.
12. Dyson MC, Alloosh M, Vuchetich JP, Mokelke EA, and M. S. Components of Metabolic Syndrome and Coronary Artery Disease in Female Ossabaw Swine Fed Excess Atherogenic Diet. Comparative Medicine 56: 35-45, 2006.
13. Fang CC, Huang JW, Shyu RS, Yen CJ, Shiao CH, Chiang CK, Hu RH, and Tsai TJ. Fibrin-Induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells as a mechanism of peritoneal fibrosis: effects of pentoxifylline. PLoS One 7: e44765, 2012.
14. Ghellai AM, Stucchi AF, Chegini N, Ma C, Andry CD, Kaseta JM, Burns JW, Skinner KC, and JM. B. Role of transforming growth factor beta-l in peritonitis-induced adhesions. J Gastrointest Surg 4: 316-323, 2000.
15. Gotloib L, Crassweller P, Rodella H, Oreopoulos DG, Zellerman G, Ogilvie R, Husdan H, Brandes L, and S. V. Experimental Model for Studies of Continuous Peritoneal’Dialysis in Uremic Rabbits. Nephron 31: 254-259, 1982.
16. Gyöngyösi M, Pavo N, Lukovic D, Zlabinger K, Spannbauer A, Traxler D, Goliasch G, Mandic L, Bergler-Klein J, Gugerell A, Jakab A, Szankai Z, Toth L, Garamvölgyi R, Maurer G, Jaisser F, Zannad F, Thum T, Bátkai S, and Winkler J. Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension. Journal of Translational Medicine 15: 2017.
17. Heimbürger O, Waniewski J, Warynski A, Tranæus A, and Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney International 38: 495-506, 1990.
18. Helmke A, Nordlohne J, Balzer MS, Dong L, Rong S, Hiss M, Shushakova N, Haller H, and von Vietinghoff S. CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney Int 95: 1405-1417, 2019.
19. Huang JW, Yen CJ, Wu HY, Chiang CK, Cheng HT, Lien YC, Hung KY, and Tsai TJ. Tamoxifen downregulates connective tissue growth factor to ameliorate peritoneal fibrosis. Blood Purif 31: 252-258, 2011.
20. Hung KY, Shyu RS, Fang CC, Tsai CC, Lee PH, Tsai TJ, and Hsieh BS. Dipyridamole inhibits human peritoneal mesothelial cell proliferation in vitro and attenuates rat peritoneal fibrosis in vivo. Kidney Int 59: 2316-2324, 2001.
21. Io H, Hamada C, Ro Y, Ito Y, Hirahara I, and Tomino Y. Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int 65: 1927-1936, 2004.
22. Ishida Y, Hayashi T, Goto T, Kimura A, Akimoto S, Mukaida N, and Kondo T. Essential involvement of CX3CR1-mediated signals in the bactericidal host defense during septic peritonitis. J Immunol 181: 4208-4218, 2008.
23. Judge EP, Hughes JM, Egan JJ, Maguire M, Molloy EL, and O'Dea S. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. Am J Respir Cell Mol Biol 51: 334-343, 2014.
24. Junor BJ, Briggs D, Forwell MA, Dobbie JW, and I. H. Sclerosing peritonitis—the contribution of chlorhexidine in alcohol. . Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 5: 4, 1985.
25. Kemter E, and Wolf E. Pigs pave a way to de novo formation of functional human kidneys. Proc Natl Acad Sci U S A 112: 12905-12906, 2015.
26. Lai KN, Lai KB, Lam CW, Chan TM, Li FK, and JC. L. Cytokine profiles in peritoneal dialysis effluent predicts the peritoneal solute transport rate in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis 35: 644-652, 2000.
27. Levine S, and A. S. Abdominal cocoon: An animal model for a complication of peritoneal dialysis. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 16: 613-616, 1996.
28. Li J, Zhang Y, Lou J, Zhu J, He M, Deng X, and Cai Z. Neutralisation of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS One 7: e46506, 2012.
29. Lua I, Li Y, Pappoe LS, and Asahina K. Myofibroblastic Conversion and Regeneration of Mesothelial Cells in Peritoneal and Liver Fibrosis. Am J Pathol 185: 3258-3273, 2015.
30. Mackow RC, Argy WP, Winchester JF, Rakowski TA, Fields PA, Rotellar C, and GE. S. Sclerosing encapsulating peritonitis in rats induced by long-term intraperitoneal administration of antiseptics. J Lab Clin Med 112(3): 363-371, 1988.
31. Mackow RC, Winchester JF, Argy WP, Andrews PM, Fields PA, Bates S, Rakowski TA, and GE. S. Sclerosing encapsulating peritonitis in rats: an experimental study with intraperitoneal antiseptics. Contributions to nephrology 57: 213-218, 1987.
32. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, and Kelly MM. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. Journal of the American Society of Nephrology : JASN 16: 425-436, 2005.
33. Margetts PJ, Hoff C, Liu L, Korstanje R, Walkin L, Summers A, Herrick S, and Brenchley P. Transforming growth factor beta-induced peritoneal fibrosis is mouse strain dependent. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 28: 2015-2027, 2013.
34. Meng XM, Nikolic-Paterson DJ, and Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12: 325-338, 2016.
35. Moinuddin Z, Summers A, Van Dellen D, Augustine T, and Herrick SE. Encapsulating peritoneal sclerosis-a rare but devastating peritoneal disease. Front Physiol 5: 470, 2014.
36. Mutsaers SE, Prele CM, Pengelly S, and Herrick SE. Mesothelial cells and peritoneal homeostasis. Fertil Steril 106: 1018-1024, 2016.
37. Nakamoto H, Imai H, Ishida Y, Yamanouchi Y, Inoue T, Okada H, and H. S. New animal models for encapsulating peri- toneal sclerosis—role of acidic solution. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 21: S349-353, 2001.
38. Noel JM, Fernandez de Castro JP, Demarco PJ, Jr., Franco LM, Wang W, Vukmanic EV, Peng X, Sandell JH, Scott PA, Kaplan HJ, and McCall MA. Iodoacetic acid, but not sodium iodate, creates an inducible swine model of photoreceptor damage. Exp Eye Res 97: 137-147, 2012.
39. Oliveira LG, Luengo J, Caramori JC, Montelli AC, Cunha Mde L, and Barretti P. Peritonitis in recent years: clinical findings and predictors of treatment response of 170 episodes at a single Brazilian center. Int Urol Nephrol 44: 1529-1537, 2012.
40. Onishi A. The Mechanism of Peritoneal Fibrosis in Peritoneal Dialysis. Journal of Nephrology & Therapeutics 01: 2012.
41. Pannekeet MM, Imholz ALT, Struijk DG, Koomen GCM, Langedijk MJ, Schouten N, de Waart R, Hiralall J, and Krediet RT. The standard peritoneal permeability analysis: A tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney International 48: 866-875, 1995.
42. Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB, and SS. T. Hepatic expression of mature transforming growth factor β 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci U S A 92: 2572-2576, 1995.
43. Schwenger V, Morath C, Salava A, Amann K, Seregin Y, Deppisch R, Ritz E, Bierhaus A, Nawroth PP, and Zeier M. Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. Journal of the American Society of Nephrology : JASN 17: 199-207, 2006.
44. Seaton M, Hocking A, and Gibran NS. Porcine models of cutaneous wound healing. ILAR J 56: 127-138, 2015.
45. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Inflammation, and Host Response to Injury LSCRP. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110: 3507-3512, 2013.
46. Su X, Zhou G, Wang Y, Yang X, Li L, Yu R, and Li D. The PPARbeta/delta agonist GW501516 attenuates peritonitis in peritoneal fibrosis via inhibition of TAK1-NFkappaB pathway in rats. Inflammation 37: 729-737, 2014.
47. Teitelbaum I, and J. B. Peritoneal Dialysis. Am J Physiol 42(5): 1082-1096, 2003.
48. Tsai Y-C, Jeng C-R, Chang C-C, Hsiao S-H, Chang H-W, Lin C-M, Chia M-Y, Wan C-H, and Pang VF. Differences in the Expression of Innate Immune Response-Modulating Genes in Blood Monocytes between Subclinically Porcine Circovirus Type 2 (Pcv2)-Infected and Pcv2-Free Pigs Prior to and after Lipopolysaccharide Stimulation in Vitro. Taiwan Veterinary Journal 40: 37-48, 2014.
49. Van Biesen W, Vanholder R, and N. L. Animal models in peritoneal dialysis: a story of kangaroos and ostriches. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 26: 571-573, 2006.
50. Walters EM, Wolf E, Whyte JJ, Mao J, Renner S, Nagashima H, Kobayashi E, Zhao J, Wells KD, Critser JK, Riley LK, and RS. P. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics 15: 55, 2012.
51. Wang L, He FL, Liu FQ, Yue ZD, and Zhao HW. Establishment of a hepatic cirrhosis and portal hypertension model by hepatic arterial perfusion with 80% alcohol. World J Gastroenterol 21: 9544-9553, 2015.
52. Wang L, Liu N, Xiong C, Xu L, Shi Y, Qiu A, Zang X, Mao H, and Zhuang S. Inhibition of EGF Receptor Blocks the Development and Progression of Peritoneal Fibrosis. Journal of the American Society of Nephrology : JASN 27: 2631-2644, 2016.
53. Wang L, and Zhuang S. The Role of Tyrosine Kinase Receptors in Peritoneal Fibrosis. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 35: 497-505, 2015.
54. Yáñez-Mó M, Lara-Pezzi E SR, Ramírez-Huesca M, Domínguez-Jiménez C, Jiménez-Heffernan JA, Aguilera A, Sánchez-Tomero JA, Bajo MA AV, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sánchez-Madrid F, and M. L-C. Peritoneal Dialysis and Epithelial-to- Mesenchymal Transition of Mesothelial Cells. The New England Journal of Medicine 348: 2003.
55. Zhou Q, Bajo MA, Del Peso G, Yu X, and Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 90: 515-524, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76513-
dc.description.abstract腎衰竭患者依靠挽救生命的腹膜透析來促進廢物交換並維持身體狀況的穩定。然而,腹膜透析本身和腹腔內手術經常導致腹膜纖維化和器官沾黏,這會損害腹膜透析的效率或內臟器官的正常功能。儘管囓齒動物模型已經為腹膜纖維化的發病機制提供了有用的線索,但牠們與人體的生理學和解剖學上的差異限制了牠們在後續評估治療效果時的應用。在這本論文中,我們首次透過腹腔注射次氯酸鈉,於5週齡仔豬建立腹膜纖維化的動物模式。我們證實腹腔注射30ml / kg BW,0.1%-0.2%(0.1mM-0.2mM)次氯酸鹽可以成功誘導腹膜纖維化和內臟器官沾黏,其特徵是器官表面增厚,膠原沉積,腹側腹膜間皮破碎和-SMA+肌纖維母細胞的增殖/累積。為了進一步了解次氯酸鈉誘導的腹膜纖維化的分子致病機制,我們以時間軸實驗來追蹤次氯酸鈉所引發之纖維化過程其細胞與分子層面的變化。在此實驗中,急性炎性細胞因子,IL-1β,TNF-α,TGF-β1和趨化因子CX3CL1在0.1%SHC處理的豬中有顯著上升的趨勢。通過此論文中建立的腹腔鏡檢查和活組織檢查與採樣,我們可以即時監測活體動物中器官纖維化和沾黏的進展與嚴重程度,並評估藥物及幹細胞預防與治療的效果,並且進行即時調整。此模型不僅可以用作研究纖維化形成的平台,還可用於評估藥物與再生醫學功效的動物模式。zh_TW
dc.description.abstractPatients with kidney failure rely on life-saving peritoneal dialysis (PD) to facilitate waste exchange and maintain homeostasis of physical conditions. However, PD itself and intra-abdominal surgery often result in peritoneal fibrosis (PF) and organ adhesions that compromise the efficiency of peritoneal dialysis or normal functions of visceral organs. Although rodent models had delivered useful clues on the pathogenesis of peritoneal fibrosis, their physiological and anatomical dis-similarities to human limit their further applications on the evaluation of therapeutic efficacy. In this thesis, we established for the first time, porcine model of peritoneal fibrosis by the use of a bleach-like chemical, sodium hypochlorite. We demonstrated that intraperitoneal injection of 30ml/kg B.W., 0.1%-0.2% (0.1mM-0.2mM) hypochlorite induced peritoneal fibrosis and visceral organ adhesions characterized by organ surface thickening, collagen deposition, ventral peritoneal mesothelium fragmentation, and -SMA+ myofibroblasts proliferation/accumulation in 5-week-old piglets. To further understand the underlying mechanism of sodium hypochlorite-induced PF, we designed a time course experiment to follow the progression of this fibrosis model. In this experiment, acute inflammatory cytokine, IL-1β, TNF-, TGF-β1 and CX3CL1 chemokine was significant elevated in 0.1% SHC-treated pigs. With laparoscopy examination and biopsy established in current study, we could monitor the progression and severity of organ fibrosis and adhesion in alive animals and evaluate the efficacy of preventive and/or therapeutic treatments with possibility of instant adjustments. This pig model could not only be used as a platform for studying fibrosis/scar formation, but can also be used to evaluate the efficacy of potential candidates on the prevention (e.g. compounds) and treatments (e.g. stem cells) for regenerative medicine.en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:53:33Z (GMT). No. of bitstreams: 1
ntu-108-R06629015-1.pdf: 15167097 bytes, checksum: 62f8b3619c3cb20f9390ad913c2a1229 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 i
Abstract iii
Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 General peritoneal structure and its physiological functions 1
1.2 Peritoneal injury 2
1.2.1 Causes of peritoneal injury 2
1.2.2 Clinical signs for peritonitis 3
1.2.3 Pathological findings 5
1.3 Animal models for the study of peritoneal dysfunction 7
1.3.1 Rodent models (Advantages/Disadvantages/Similarity) 7
1.3.2 Porcine model (Advantages/Disadvantages/Similarity) 8
1.3.3 Animal models of other species (Advantages/Disadvantages /Similarity) 9
1.4 Methods to induce peritoneal dysfunction in animal model 9
1.5 Aim of this study 10
Chapter 2 Materials and Methods 12
2.1 Chemicals, reagents, antibodies 12
2.2 Establishment of SHC-induced pig model 12
2.2.1 End point model 12
2.2.2 Time course progression model 13
2.3 Antemortem laparoscopy evaluation 15
2.4 Tissue preparation, pathological evaluation and immunohistochemistry staining (IHC) 16
2.5 Indirect immunofluorescence staining and image acquisition 19
2.6 Tissue surface thickening, mesothelial cells integrity and alpha smooth muscle actin (α-SMA) quantification 19
2.7 Enzyme-linked immunosorbent assay (ELISA) analysis 21
2.8 Real-time PCR 22
Chapter 3 Results 24
3.1 Antemortem laparoscopic examination revealed fibrotic organ surface and tissue adhesions in SHC-treated pigs 24
3.2 Pathology findings 25
3.2.1 Postmortem examination showed dose-dependent pathological changes after SHC stimulation 25
3.2.2 Histological analyses demonstrated dose-dependent thickening and accumulation of collagen at the surface of visceral organs 27
3.2.3 Immunofluorescent study demonstrated the loss of mesothelial cells and accumulation of α-smooth muscle actin positive myofibroblasts in SHC-treated pigs 30
3.3 Cytokine 34
3.3.1 Inflammatory cytokines IL1-β, TNF-α and TGF-β1 were elevated in SHC-treated pigs. 34
3.3.2 Cytokine measurements from abdominal lavage showed higher IL1-β and TNF-α in 0.1% SHC-treated pigs at day 2. 35
3.3.3 Immunofluorescent study demonstrated increase of TGF-β1 expressing cells in SHC-treated pigs 36
3.3.4 Immunofluorescent study demonstrated an increase of CX3CL1 expressing cells in SHC-treated pig 37
Chapter 4 Discussions 41
Chapter 5 Conclusions and future work 47
References 49
dc.language.isoen
dc.title建立以次氯酸鈉引發腹膜纖維化之豬動物模式zh_TW
dc.titleEstablishment of Hypochlorite-Induced Porcine Model of Peritoneal Fibrosisen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林水龍,陳怡婷,李雅珍
dc.subject.keyword豬模型,腹膜纖維化,腹膜透析,器官沾黏,細胞因子,zh_TW
dc.subject.keywordporcine model,PF,peritoneal dialysis,adhesion,cytokine,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201903182
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-13
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
dc.date.embargo-lift2024-08-15-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06629015-1.pdf14.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved