請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林曉青(Hsiao-Ching Lin) | |
| dc.contributor.author | Yu-Rong Chen | en |
| dc.contributor.author | 陳鈺鎔 | zh_TW |
| dc.date.accessioned | 2021-07-09T15:53:22Z | - |
| dc.date.available | 2029-12-22 | |
| dc.date.copyright | 2019-08-26 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | 1. Bérdy, J. (2005). Bioactive Microbial Metabolites. The Journal of Antibiotics, 58(1), 1-26. doi:10.1038/ja.2005.1
2. Demain, A., Fang A. (2000). The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1-39. doi:10.1007/3-540-44964-7_1 3. Cragg, G.M., Newman, D.J., Snader, K.M. (1997). Natural Products in Drug Discovery and Development. Journal of Natural Products, 60(1), 52-60. doi:10.1021/np9604893 4. Kuklev, D.V., Domb, A.J., Dembitsky, V.M. (2013). Bioactive acetylenic metabolites. Phytomedicine, 20(13), 1145-1159. doi:10.1016/j.phymed.2013.06.009 5. Kuklev, D.V., Dembitsky, V.M. (2014). Epoxy acetylenic lipids: their analogues and derivatives. Progress in Lipid Research, 56, 67-91. doi:10.1016/j.plipres.2014.08.001 6. Metzger, B.T., Barnes, D.M., Reed, J.D. (2008). Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. Journal of Agricultural and Food Chemistry, 56(10), 3554-3360. doi:10.1021/jf073494t 7. Stavri, M., Gibbons, S. (2005). The antimycobacterial constituents of dill (Anethum graveolens). Phytotherapy Research, 19(11), 938-941. doi:10.1002/ptr.1758 8. Sun, S., Du, G. J., Qi, L. W., Williams, S., Wang, C. Z., & Yuan, C. S. (2010). Hydrophobic constituents and their potential anticancer activities from Devil's Club (Oplopanax horridus Miq.). Journal of ethnopharmacology, 132(1), 280–285. doi:10.1016/j.jep.2010.08.026. 9. Smith, L.R., Mahoney, N., Molyneux, R.J. (2003). Synthesis and structure-phytotoxicity relationships of acetylenic phenols and chromene metabolites, and their analogues, from the grapevine pathogen Eutypa lata. Journal of Natural Products, 66(2), 169-176. doi:10.1021/np020415t 10. Andolfi, A., Mugnai, L., Luque, J., Surico, G., Cimmino, A., & Evidente, A. (2011). Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins, 3(12), 1569–1605. doi:10.3390/toxins3121569. 11. Kamikubo, T., Ogasawara, K. (1998). Absolute configuration of (+)-PT-toxin: enantiodivergent synthesis of (+)- and (-)-PT-toxins. Heterocycles, 47(1), 69-72. doi:10.3987/COM-97-S(N)5 12. Moore, R.N., Bigam, G., Chan, J.K.., Hogg, A.M., Nakashima, T.T., Vederas, J.C. (1985). Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by carbon-13 NMR and mass spectrometry. Journal of the American Chemical Society, 107(12), 3694-3701. doi:10.1021/ja00298a046 13. Kennedy, J., Auclair, K., Kendrew, S.G., Park, C., Vederas, J.C., Hutchinson, C.R. (1999). Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science, 284(5418),1368-1372. doi:10.1126/science.284.5418.1368 14. Kennedy, J. (2008). Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining synthetic chemistry and biosynthetic engineering for diversifying natural products. Natural Product Reports, 25(1), 25-34. doi:10.1039/b707678a 15. Binder, W. H., and Kluger, C. (2006). Azide/alkyne-“click” reactions: applications in material science and organic synthesis. Current Organic Chemistry, 10(14), 1791−1815. doi:10.2174/138527206778249838 16. Hein, C.D., Liu, X.M., Wang, D. (2008). Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical Research, 25(10), 2216-2230. doi:10.1007/s11095-008-9616-1 17. Harvey, C.J., Puglisi, J.D., Pande, V.S., Cane, D.E., Khosla, C. (2012). Precursor directed biosynthesis of an orthogonally functional erythromycin analogue: selectivity in the ribosome macrolide binding pocket. Journal of the American Chemical Society, 134(29):12259-12265. doi:10.1021/ja304682q 18. Scrimgeour, C. M. (1981). Natural Acetylenic and Olefinic Compounds excluding Marine Natural Products. Aliphatic and Related Natural Product Chemistry, 2, 1-19. doi:10.1039/9781847555564-00001 19. Minto, R.E., Blacklock, B.J. (2008). Biosynthesis and function of polyacetylenes and allied natural products. Progress in Lipid Research, 47(4), 233-306. doi:10.1016/j.plipres.2008.02.002 20. Blacklock, B.J., Scheffler, B.E., Shepard, M.R., Jayasuriya, N., Minto, R.E. (2010). Functional diversity in fungal fatty acid synthesis: the first acetylenase from the Pacific golden chanterelle, Cantharellus formosus. The Journal of Biological Chemistry, 285(37), 28442-28449. doi:10.1074/jbc.M110.151498 21. Ross, C., Scherlach, K., Kloss, F., Hertweck, C. (2014). The molecular basis of conjugated polyyne biosynthesis in phytopathogenic bacteria. Angewandte Chemie International Edition in English, 53(30), 7794-7798. doi:10.1002/anie.201403344 22. Zhu, X., Liu, J., Zhang, W. (2015). De novo biosynthesis of terminal alkyne-labeled natural products. Nature Chemical Biology, 11(2), 115-20. doi:10.1038/nchembio.1718 23. Zhu, X., Zhang, W. (2015). Tagging polyketides/non-ribosomal peptides with a clickable functionality and applications. Frontiers in Chemistry,3 ,11. doi:10.3389/fchem.2015.00011 24. Marchand, J.A., Neugebauer, M.E., Ing, M.C., Lin, C.I., Pelton, J.G., Chang, M.C.Y. (2019). Discovery of a pathway for terminal-alkyne amino acid biosynthesis. Nature, 567(7748), 420-424. doi:10.1038/s41586-019-1020-y 25. Liu, L., Liu, S., Jiang, L., Chen, X., Guo, L., Che, Y. (2008). Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Organic Letters, 10(7):1397-1400. doi:10.1021/ol800136t 26. Liu, L., Li, Y., Liu, S., Zheng, Z., Chen, X., Zhang, H., Guo, L., Che, Y. (2009). Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Organic Letters, 11(13), 2836-9. doi:10.1021/ol901039m 27. Pan, Y., Liu, L., Guan, F., Li, E., Jin, J., Li, J., Che, Y., Liu, G. (2018). Characterization of a Prenyltransferase for Iso-A82775C Biosynthesis and Generation of New Congeners of Chloropestolides. ACS Chemical Biology, 13(3), 703-711. doi:10.1021/acschembio.7b01059 28. Rukachaisirikul, V., Rungsaiwattana, N., Klaiklay, S., Phongpaichit, S., Borwornwiriyapan, K., Sakayaroj, J. (2014). γ-Butyrolactone, cytochalasin, cyclic carbonate, eutypinic acid, and phenalenone derivatives from the soil fungus Aspergillus sp. PSU-RSPG185. Journal of Natural Products, 77(11), 2375-82. doi:10.1021/np500324b 29. Siless, G.E., Gallardo, G.L., Rodriguez, M.A., Rincón, Y.A., Godeas, A.M., Cabrera, G.M. (2018). Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors. Chemistry & Biodiversity, 15(8), e1800133. doi:10.1002/cbdv.201800133 30. Klaiklay, S., Rukachaisirikul, V., Tadpetch, K., Sukpondma, Y., Phongpaichit, S., Buatong, J., Sakayaroj, J. (2012). Chlorinated chromone and diphenyl ether derivatives from the mangrove-derived fungus Pestalotiopsis sp. PSU-MA69. Tetrahedron, 68(10), 2299-2305. doi:10.1016/j.tet.2012.01.041 31. Mühlenfeld, A., Achenbach, H. (1988). Asperpentyn, a novel acetylenic cyclohexene epoxide from Aspergillus duricaulis. Phytochemistry, 27(12), 3853-3855. doi: 10.1016/0031-9422(88)83031-0 32. Mahoney, N., Lardner, R., Molyneux, R.J., Scott, E.S., Smith, L.R., Schoch, T.K. (2003). Phenolic and heterocyclic metabolite profiles of the grapevine pathogen Eutypa lata. Phytochemistry, 64(2):475-484. doi:10.1016/S0031-9422(03)00337-6 33. Molyneux, R.J., Mahoney, N., Bayman, P., Wong, R.Y., Meyer, K., Irelan, N. (2002). Eutypa dieback in grapevines: differential production of acetylenic phenol metabolites by strains of Eutypa lata. Journal of Agricultural and Food Chemistry, 50(6), 1393-1399. doi:10.1021/jf011215a 34. Abraham, W., Arfmann, H. (1990). Hydroxy-(methylbutenynyl)-benzoic acid and derivatives from Curvularia fallax. Phytochemistry, 29(8), 2641-2644. doi:10.1016/0031-9422(90)85203-R 35. Liu, S., Guo, L., Che, Y., Liu, L. (2013). Pestaloficiols Q-S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia, 85, 114-118. doi:10.1016/j.fitote.2013.01.010 36. Liu, L., Tian, R., Liu, S., Chen, X., Guo, L., Che, Y. (2008). Pestaloficiols A-E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorganic & Medicinal Chemistry, 16(11), 6021-6. doi:10.1016/j.bmc.2008.04.052 37. Wang, Q.Z., Ge, H.M., Zhang, J., Wu, J.H., Song, Y.C., Zhang, Y.F., Tan, R.X. (2010). Cochliones A-D, four new tetrahydrochromanone derivatives from endophytic Cochliobolus sp. Journal of Asian Natural Products Research, 12(6), 485-91. doi:10.1080/10286020.2010.489819 38. Smetanina, O.F., Yurchenko, A.N., Afiyatullov, S.S., Kalinovsky, A.I.et al. (2012). Oxirapentyns B–D produced by a marine sediment-derived fungus Isaria felina (DC.) Fr. Phytochemistry Letters, 5(1):165-169. doi:10.1016/j.phytol.2011.12.002 39. Yurchenko, A.N., Smetanina, O.F., Kalinovsky, A.I., Pushilin, M.A., Glazunov, V.P.et al. (2014). Oxirapentyns F-K from the marine-sediment-derived fungus Isaria felina KMM 4639. Journal of Natural Products, 77(6), 1321-1328. doi:10.1021/np500014m 40. Anisimov, M.M., Chaikina, E.L., Smetanina, O.F., Afiyatullov, S.S. (2014). Oxirapentyns A, B and E from the marine-derived strain of Isaria felina KMM 4639 as stimulators of initial stages of development of agricultural plants. Natural Product Communications, 9(6), 835-836. doi:10.1177/1934578X1400900628 41. Qin S., Krohn K., Hussain H., Schulz B., Draeger S. (2011). Pestalotheols E-H: Antimicrobial metabolites from an endophytic fungus isolated from the tree arbutus unedo. European Journal of Organic Chemistry, 26, 5163-5166. doi:10.1002/ejoc.201100568. 42. Batista Jr. J.M., Lopes A.A., Ambrosio D.L., Regasini L.O., Kato M.J., Bolzani V.D.S., Cicarelli R.M.B., Furlan M. (2008). Natural chromenes and chromene derivatives as potential anti-trypanosomal agents. Biological and Pharmaceutical Bulletin, 31(3), 538-540. doi:10.1248/bpb.31.538 43. Bok, J.W., Keller, N.P. (2012). Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis. Methods in Molecular Biology, 944,163-174. doi:10.1007/978-1-62703-122-6_11 44. Fujii, R., Minami, A., Tsukagoshi, T., Sato, N., Sahara, T., Ohgiya, S., Gomi, K., Oikawa, H. (2011). Total biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase α: heterologous expression of four biosynthetic genes in Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 75(9), 1813-1817. doi:10.1271/bbb.110366 45. Alberti, F., Khairudin, K., Venegas, E. R., Davies, J. A., Hayes, P. M., Willis, C. L., … Foster, G. D. (2017). Heterologous expression reveals the biosynthesis of the antibiotic pleuromutilin and generates bioactive semi-synthetic derivatives. Nature communications, 8(1), 1831. doi:10.1038/s41467-017-01659-1 46. Pahirulzaman, K.A., Williams, K., Lazarus, C.M. (2012). A toolkit for heterologous expression of metabolic pathways in Aspergillus oryzae. Methods in Enzymology, 517, 241-260. doi:10.1016/B978-0-12-404634-4.00012-7 47. Yajima, A. and Mori, K. (2000). Synthesis and Absolute Configuration of (-)‐Phytocassane D, a Diterpene Phytoalexin Isolated from the Rice Plant, Oryza sativa. European Journal of Organic Chemistry, 2000(24), 4079-4091. doi:10.1002/1099-0690(200012)2000:24<4079::AID-EJOC4079>3.0.CO;2-R 48. Boeke, J.D., LaCroute, F., Fink, G.R. (1984). A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Molecular and General Genetics, 197(2), 345-346. doi:10.1007/BF00330984 49. Ling, S.O., Storms, R., Zheng, Y., Rodzi, M.R., Mahadi, N.M.et al. (2013). Development of a pyrG mutant of Aspergillus oryzae strain S1 as a host for the production of heterologous proteins. The Scientific World Journal, 2013, 634317. doi:10.1155/2013/634317 50. Chiang, Y.M., Oakley, C.E., Ahuja, M., Entwistle, R., Schultz, A., Chang, S.L., Sung, C.T., Wang, C.C., Oakley, B.R. (2013). An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. Journal of the American Chemical Society, 135(20), 7720-7731. doi:10.1021/ja401945a 51. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. doi:10.1126/science.1225829 52. Lin, S., Staahl, B.T., Alla, R.K., Doudna, J.A. (2014). Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, 3, e04766. doi:10.7554/eLife.04766 53. Lai, C., Lo, I., Hewage, R., Chen, Y., Chen, C., & Lee, C. et al. (2017). Biosynthesis of Complex Indole Alkaloids: Elucidation of the Concise Pathway of Okaramines. Angewandte Chemie International Edition, 56(32), 9478-9482. doi:10.1002/anie.201705501 54. Tang, M.C., Lin, H.C., Li, D., Zou, Y., Li, J., Xu, W., Cacho, R.A., Hillenmeyer, M.E., Garg, N.K., Tang, Y. (2015). Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast. Journal of the American Chemical Society, 137(43), 13724-13727. doi:10.1021/jacs.5b06108 55. Maruyama, J., Kitamoto, K. (2011). Targeted gene disruption in Koji mold Aspergillus oryzae. Methods in Molecular Biology, 765, 447-456. doi: 10.1007/978-1-61779-197-0_27 56. Goldson-Barnaby, A., Scaman, C.H. (2013). Purification and Characterization of Phenylalanine Ammonia Lyase from Trichosporon cutaneum. Enzyme Research, 2013, 670702. doi:10.1155/2013/670702 57. Phimchan, P., Chanthai, S., Bosland, P.W., Techawongstien, S. (2014). Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in capsicum under drought stress. Journal of Agricultural and Food Chemistry, 62(29), 7057-7062. doi:10.1021/jf4051717 58. Yin, W.B., Reinke, A.W., Szilágyi, M., Emri, T., Chiang, Y.M., Keating, A.E., Pócsi, I., Wang, C.C., Keller, N.P. (2013). bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology, 159(Pt 1), 77-88. doi:10.1099/mic.0.063370-0 59. Ehrlich, K.C., Montalbano, B.G., Cary, J.W. (1999). Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene, 230(2), 249-57. doi:10.1016/s0378-1119(99)00075-x 60. Qiao, K., Chooi, Y. H., & Tang, Y. (2011). Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metabolic engineering, 13(6), 723–732. doi:10.1016/j.ymben.2011.09.008 61. Yang, Y.L., Zhou, H., Du, G., Feng, K.N., Feng, T., Fu, X.L., Liu, J.K., Zeng, Y. (2016). A Monooxygenase from Boreostereum vibrans Catalyzes Oxidative Decarboxylation in a Divergent Vibralactone Biosynthesis Pathway. Angewandte Chemie International Edition in English, 55(18), 5463-5466. doi:10.1002/anie.201510928 62. Roze, L.V., Chanda, A., Linz, J.E. (2011). Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genetics and Biology, 48(1), 35-48. doi:10.1016/j.fgb.2010.05.006 63. Anyaogu, D.C., Mortensen, U.H. (2015). Heterologous production of fungal secondary metabolites in Aspergilli. Frontiers in Microbiology, 6, 77. doi:10.3389/fmicb.2015.00077 64. Wang, X., Zhang, X., Liu, L., Xiang, M., Wang, W.et al. (2015). Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics, 16, 28. doi:10.1186/s12864-014-1190-9 65. Blanco-Ulate, B., Rolshausen, P.E., Cantu, D. (2013). Draft Genome Sequence of the Grapevine Dieback Fungus Eutypa lata UCR-EL1. Genome Announcements, 1(3). doi:10.1128/genomeA.00228-13 66. Lin, H.C., McMahon, T.C., Patel, A., Corsello, M., Simon, A.et al. (2016). P450-Mediated Coupling of Indole Fragments To Forge Communesin and Unnatural Isomers. Journal of the American Chemical Society, 138(12), 4002-4005. doi:10.1021/jacs.6b01413 67. Chen, R., Gao, B., Liu, X., Ruan, F., Zhang, Y.et al. (2017). Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nature Chemical Biology, 13(2), 226-234. doi:10.1038/nchembio.2263 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76502 | - |
| dc.description.abstract | 乙炔天然物含有炔烴官能基,根據報導其具有多種生物活性。炔烴可用於標記天然物,在藥物開發過程中是一種重要的工具。儘管炔烴官能基很重要,但目前對於其生合成途徑卻了解甚少,尤其有關炔環己內酯的中間炔生合成機制仍為未知。
Aspergillus sp. PSU-RSPG185為麴黴菌屬之土壤真菌,可生產一系列炔環己內酯代謝物,其中包含asperpentyn。為了研究中間炔代謝物asperpentyn的生合成,最初我們根據結構推測異戊烯轉移酶可能參與,所以利用此酶序列做基因組探勘,找到了六個可能的生合成基因群,並且發現這些基因群中都具有與調控生合成基因相關的轉錄因子。因此,為了活化生合成基因表現並誘導相關二次代謝物的產生,我們在宿主過度表達轉錄因子,將過度表達轉錄因子的DNA載體轉殖入真菌的原生質體,其中三組顯示出正確的菌落篩選。另外,我們將六個基因群中最有可能負責asperpentyn生合成的scaffold322分別在小巢狀麴菌和米麴菌進行表達,成功地在小巢狀麴菌轉殖入可能參與上游生合成的兩個基因,以及將整個scaffold322生合成基因群轉殖在小巢狀麴菌;在米麴菌則成功轉殖五個生合成基因。然而,利用液相層析進行代謝物分析卻沒有偵測到可能的中間產物。根據此結果,我們推測asperpentyn的生合成可能由其他的生合成基因群負責。 我們再做了一次更深入的基因探勘,比較另外兩個可生產asperpentyn的真菌Eutypa lata及Pestalotiopsis fici,發現aty生合成基因群編碼在這三個真菌的基因組中。根據餵養實驗以及酶體外試驗結果,我們確定了aty基因群中的苯丙胺酸氨裂合酶(AtyH)將苯丙胺酸催化成反式肉桂酸,作為對羥基苯甲酸的前驅物,接下來對羥基苯甲酸的異戊二烯化則是意外地由聚異戊烯轉移酶(AtyB)催化,再由细胞色素P450單加氧酶(AtyI)進行催化產生可能含有炔官能基的產物(m/z 201),此外我們發現水楊酸羥化酶(AtyG)會消耗m/z 201產物,未來我們將會分離m/z 201產物以鑑定其化學結構。總結來說,我們確定了asperpentyn上游生合成途徑及其參與的酶,而未來也將會繼續探索關鍵的炔合成作用機制及解析下游生合成途徑。此研究也為往後研究真菌中間炔生合成機制奠定了基礎。 | zh_TW |
| dc.description.abstract | Acetylenic natural products contain alkyne functionality and are reported to show a variety of bioactivities. Alkyne-tagging of natural products is an important strategy for pharmaceutical development. Despite the importance of the alkyne moiety, the biosynthetic routes to alkynes are poorly understood. To date, the biosynthetic machinery of internal alkyne formation in acetylenic cyclohexanoid remains unknown.
Aspergillus sp. PSU-RSPG185 is a soil fungus that produces a series of acetylenic cyclohexanoids including asperpentyn. To investigate the biosynthesis of asperpentyn, we initially performed genome mining by searching prenyltransferase to scan for the biosynthetic gene cluster candidates, based on the structure of asperpentyn. Six gene cluster candidates were obtained. Interestingly, all of them encode transcriptional factors (TFs) which may regulate the expression of biosynthetic genes. Therefore, we performed TF overexpression to activate gene expression and to induce the production of corresponding secondary metabolites. Protoplasts preparation of this strain was developed and six TF overexpression cassettes were transformed to Aspergillus sp. PSU-RSPG185, respectively. Three of them showed correct selectivity based on medium selection. For candidate scaffold322, we succeeded in transforming two genes in Aspergillus nidulans, five genes into Aspergillu oryzae or even whole scaffold322 in A.nidulans based on PCR screening. However, no intermediates of asperpentyn were detected. Considering the possibilities of other gene clusters as candidates involved in asperpentyn biosynthesis, we did more thorough genome mining by comparing the genome with another two asperpentyn-producing strains, Eutypa lata and Pestalotiopsis fici. One gene cluster candidate aty was found and encoded in the genome of each strain. Here we elucidated the upstream pathway of asperpentyn. Based on the result of in vivo feeding experiments and in vitro test, we characterized a phenylalanine ammonia lyase (AtyH) that converts L-phenylalanine to trans-cinnamic acid, as the precursor of 4-hydroxybenzoic acid (4-HBA). The following prenylation on 4-HBA was catalyzed by unexpected polyprenyl transferase (AtyB). One cytochrome P450 monooxygenase (AtyI) was identified to convert prenyl 4-HBA into a product (m/z 201) which may correspond to eutypinic acid and possess an alkyne moiety. Besides, we found that salicylate hydroxylase (AtyG) might consume the product m/z201 in yeast feeding experiment of co-expressing AtyI together with AtyG. The product m/z 201 will be isolated and its structure will be characterized. In summary, we have characterized the genes involved in the upstream biosynthetic pathway of asperpentyn. The property and mechanism of the key enzymes that install the alkyne functionality and the other enzymes involved in the downstream pathway still need to be characterized. Our study paved the foundation for the study of the biosynthetic machinery of internal alkyne in fungi. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-09T15:53:22Z (GMT). No. of bitstreams: 1 ntu-108-R06b46003-1.pdf: 6237878 bytes, checksum: 44449a63637fc6032d1fbb55d31d2d57 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要---i
Abstract---ii Table of Contents---I List of Figures---III List of Tables---V 1 Introduction---1 1.1 Acetylenic metabolites and bioactivities---1 1.2 Alkyne moiety: application and biosynthetic machinery---2 1.3 Strains and intermediates relate to asperpentyn---6 1.4 Aim of this study---11 2 Materials and Method---12 2.1 Strain and culture condition---12 2.2 Chemical analysis---12 2.3 General molecular biology experiments---12 2.4 Whole genome sequence and analysis---13 2.5 Cloning and plasmid construction---14 2.5.1 Plasmids construction for TFs overexpression in host strain---21 2.5.2 Cloning in study of scaffold322---21 2.5.2.1 Plasmids construction for heterologous expression in A. nidulans---21 2.5.2.2 Plasmids construction: pAdeA-S322_6, pAdeA-S322_5-6, pTAex3-S322_11-8, pPTRI-S322_4 for heterologous expression in A. oryzae---22 2.5.2.3 Plasmids construction: pXW55H-S322_5 and pET23-S322_6 for protein purification---23 2.5.3 Cloning in study of aty gene cluster---24 2.5.3.1 Plasmids construction: pXW06H-atyA, pXW55H-atyB, pXW02H-atyG, pXW55H-atyH, pXW06H-atyI and pXW55H-atyH-atyB for heterologous expression in S. cerevisiae---24 2.5.3.2 Plasmid construction: pAdeA-M-atyHBGI and pTAex3-M-atyCDEA for heterologous expression in A. oryzae---24 2.6 Chemical synthesis of 4-hydroxy-3-prenylbenzoic acid---25 2.7 TFs overexpression in Aspergillus sp. PSU-RSPG185---26 2.7.1 5-fluoro-orotic acid (5-FOA) selection---26 2.7.2 Preparation of sgRNA and Cas9:guide RNA ribonucleoprotein(Cas9 RNP)---26 2.7.3 Protoplast preparation of Aspergillus sp. PSU-RSPG185---27 2.7.4 Fungal transformation in Aspergillus sp. PSU-RSPG185---27 2.8 Heterologous expression in S. cerevisiae---28 2.8.1 Biotransformation of S. cerevisiae expressing atyA, atyB, atyG or atyH---28 2.8.2 Biotransformation of S. cerevisiae expressing atyI---28 2.9 Heterologous reconstitution in A. nidulans---29 2.9.1 Protoplast preparation of A. nidulans---29 2.9.2 A. nidulans transformation for expressing S322_5 and S322_6---30 2.9.3 A. nidulans transformation for expressing whole scaffold322---30 2.10 Heterologous reconstitution in A. oryzae---30 2.10.1 Protoplast preparation of A. oryzae---30 2.10.2 A. oryzae transformation for expressing S322_4-5-6-8-11 and atyHBGI---31 2.11 Expression and purification of His6-tagged proteins---32 2.11.1 Expression of protein S322_6 in E. coli---32 2.11.2 Expression of protein S322_5 or AtyH in S. cerevisiae---32 2.11.3 Purification of His6-tagged protein---33 2.12 Microsome extract preparation of AtyB from S. cerevisiae---33 2.13 In vitro assay---34 2.13.1 In vitro assay of S322_6 (prenyltransferase) or AtyB (polyprenyl transferase)---34 2.13.2 In vitro assay of S322_5 (FAD oxidoreductase)---34 2.13.3 In vitro assay of AtyH (Phenylalanine ammonia lyase)---35 3 Results and Discussion---36 3.1 Previous direction: genome mining by using prenyltransferase as a query---36 3.1.1 Six BGC candidates and scaffold322---36 3.1.2 Overexpression of TFs from six BGC candidates---39 3.1.3 In vitro reaction of scaffold322_6---41 3.1.4 Chemical synthesis of substrate and in vitro assay of scaffold322_5---42 3.1.5 Heterologous expression of S322_5 and 6 in A. nidulans---45 3.1.6 Heterologous reconstitution of S322_4, 5, 6, 8 and 11 in A. oryzae---47 3.1.7 Heterologous reconstitution of whole scaffold322 in A. nidulans---49 3.1.8 Conclusion---51 3.2 Genome mining by comparing asperpentyn-producing strains---52 3.2.1 Biosynthetic gene cluster aty and proposed biosynthesis of asperpentyn---52 3.2.2 Feeding experiments of AtyH, AtyB, AtyA, AtyI and AtyG in yeast---55 3.2.3 Biochemical characterization of AtyH---63 3.2.4 To verify AtyB is involved in early prenylation step---63 3.2.5 Reconstitution of asperpentyn upstream biosynthesis in yeast---66 3.2.6 Reconstitution of asperpentyn upstream biosynthesis in A.oryzae---68 3.2.7 Conclusion---69 4 Reference---71 5 Appendix---78 | |
| dc.language.iso | en | |
| dc.subject | 中間炔 | zh_TW |
| dc.subject | asperpentyn | zh_TW |
| dc.subject | 生合成 | zh_TW |
| dc.subject | 天然物 | zh_TW |
| dc.subject | 乙炔二次代謝物 | zh_TW |
| dc.subject | natural products | en |
| dc.subject | biosynthesis | en |
| dc.subject | internal alkynes | en |
| dc.subject | asperpentyn | en |
| dc.subject | acetylenic metabolites | en |
| dc.title | 基因探勘並解析麴黴菌屬真菌PSU-RSPG185之炔類asperpentyn的上游生合成途徑 | zh_TW |
| dc.title | Genome Mining and Elucidation of Upstream Biosynthetic Pathway of Internal Alkyne-containing Asperpentyn from Aspergillus sp. PSU-RSPG185 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳世雄(Shih-Hsiung Wu),林俊宏(Chun-Hung Lin),李宗璘(Tsung-Lin Li) | |
| dc.subject.keyword | 天然物,乙炔二次代謝物,中間炔,asperpentyn,生合成, | zh_TW |
| dc.subject.keyword | natural products,acetylenic metabolites,asperpentyn,internal alkynes,biosynthesis, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201903452 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2029-12-22 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06b46003-1.pdf 此日期後於網路公開 2029-12-22 | 6.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
