Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76499
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶
dc.contributor.authorKuo-Jen Leeen
dc.contributor.author李國任zh_TW
dc.date.accessioned2021-07-09T15:53:19Z-
dc.date.available2021-08-26
dc.date.copyright2019-08-26
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citation[1] Liping Zhang, Ju Fu and Chuhong Zhang, Mechanical Composite of /Carbon Nanotubes with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Nanoscale Research Letters (2017) 12:376.
[2] Roland Jung, Michael Metzger, Filippo Maglia, Christoph Stinner, and Hubert A. Gasteigera, Oxygen Release and Its Effect on the Cycling Stability of (NMC) Cathode Materials for Li-Ion Batteries, Journal of The Electrochemical Society, 164 (7) A1361-A1377 (2017).
[3] Christoph J. Weber, Sigrid Geiger, Sandra Falusi, and Michael Roth, Material review of Li ion battery separators, AIP Conference Proceedings 1597, 66 (2014).
[4] Atetegeb Meazah Haregewoin, Aselefech Sorsa Wotango and Bing-Joe Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci., 2016, 9, 1955.
[5] Kang Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev. 2004, 104, 4303−4417.
[6] E. R. Logan, Erin M. Tonita, K. L. Gering, Jing Li, Xiaowei Ma, L. Y. Beaulieu, and J. R. Dahn, A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters, Journal of The Electrochemical Society, 165 (2) A21-A30 (2018).
[7] E. Paled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model, J.Electrochem. Soc. 1979, 126, 2047.
[8] X.-B. Cheng, et al., A Review of Solid Electrolyte Interphases on Lithium Metal Anode, Adv. Sci. 2016, 3, 1500213.
[9] Kai Yan, Hyun-Wook Lee, Teng Gao, Guangyuan Zheng, Hongbin Yao, Haotian Wang, Zhenda Lu, Yu Zhou, Zheng Liang, Zhongfan Liu, Steven Chu, and Yi Cui, Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode, Nano Lett. 2014, 14, 6016−6022.
[10] Dingchang Lin1, Yayuan Liu1, Zheng Liang, Hyun-Wook Lee, Jie Sun, Haotian Wang, Kai Yan1, Jin Xie and Yi Cui1, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nature Nanotechnology, vol 11 , 2016.
[11] Guangyuan Zheng, Seok Woo Lee, Zheng Liang, Hyun-Wook Lee, Kai Yan, Hongbin Yao, Haotian Wang, Weiyang Li, Steven Chu and Yi Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nature Nanotechnology, vol 9, 2014 .
[12] Y.J. Zhang, X.Y. Liu, W.Q. Bai, H. Tang, S.J. Shi, X.L. Wang, C.D. Gu, J.P. Tu, Magnetron sputtering amorphous carbon coatings on metallic lithium: Towards promising anodes for lithium secondary batteries, Journal of Power Sources 266 (2014) 43-50.
[13] Sho Eijima, Hidetoshi Sonoki, Mitsuhiro Matsumoto, Sou Taminato, Daisuke Mori, and Nobuyuki Imanishi, Solid Electrolyte Interphase Film on Lithium Metal Anode in Mixed-Salt System ournal of The Electrochemical Society, 166 (3) A5421-A5429 (2019).
[14] Jin Xie, Lei Liao, Yongji Gong, Yanbin Li, Feifei Shi, Allen Pei, Jie Sun, Rufan Zhang, Biao Kong, Ram Subbaraman, Jake Christensen, Yi Cui, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode , Sci. Adv. 2017; 3.
[15] Guoqiang Ma, Zhaoyin Wen, Meifen Wu, Chen Shen, Qingsong Wang, Jun Jin and Xiangwei Wu, A lithium anode protection guided highly-stable lithium–sulfur battery, Chem. Commun., 2014, 50, 14209.
[16] Ma, Zhaoyin Wen, Qingsong Wang, Chen Shen, Jun Jin and Xiangwei Wu, Enhanced cycle performance of a Li–S battery based on a protected lithium anode, J. Mater. Chem. A, 2014, 2, 19355.
[17] Hongkyung Lee, Dong Jin Lee, Yun-Jung Kim, Jung-Ki Park, Hee-Tak Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries, Journal of Power Sources 284 (2015) 103-108.
[18] Grant A. Umeda, Erik Menke, Monique Richard, Kimber L. Stamm, Fred Wudl and Bruce Dunn, Protection of lithium metal surfaces using tetraethoxysilane, J. Mater. Chem., 2011, 21, 1593–1599.
[19] Yayuan Liu, Dingchang Lin, Pak Yan Yuen, Kai Liu, Jin Xie, Reinhold H. Dauskardt, and Yi Cui, An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Adv. Mater. 2017, 29, 1605531.
[20] Chaofeng Liu, Zachary G.Neale and Guozhong Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries , Materials Today, vol 19, 2 ,2016.
[21] Haodong Liu, Hongyao Zhou, Byoung-Sun Lee, Xing Xing, Matthew Gonzalez, and Ping Liu, Suppressing Lithium Dendrite Growth with a Single-Component Coating, ACS Appl. Mater. Interfaces 2017, 9, 30635−30642.
[22] Piet J.G. Schreurs(2012), Fracture Mechanics
[23] Viggo Tvergaard, Effect of pure mode I, II or III loading or mode mixity on crack growth in ahomogeneous solid, International Journal of Solids and Structures 47 (2010) 1611–1617
[24] Y-Y. Su and X.-L. Gao, An Analytical Study on Peeling of an Adhesively Bonded Joint Based on the Timoshenko Beam Theory, Mechanics of Advanced Materials and Structures (2013) 20, 454–463
[25] Fatih Dogan, Homayoun Hadavinia, Todor Donchev, Prasannakumar S. Bhonge, Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact, Cent. Eur. J. Eng. • 2(4) • 2012 • 612-626
[26] Raymond H. Plaut, Jennifer L. Ritchie, ANALYTICAL SOLUTIONS FOR PEELING USING BEAM-ON-FOUNDATION MODEL AND COHESIVE ZONE, The Journal of Adhesion, 80:313-331, 2004
[27] M.Heidarhaeia, M.Shariati, andH.R.Eipakchi, Analytical investigation of interfacial debonding in graphene-reinforced polymer nanocomposites with cohesive zone interface, MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2018, Vol 0, N0 0,1-10
[28] Samit Roy and Yong Wang, Analytical Solution for Cohesive Layer Model and Model Verifi cation, Polymers & Polymer Composites, Vol. 13, No. 8, 2005
[29] A. Dunbar, X. Wang, W. R. Tyson and S. Xu, Simulation of ductile crack propagation and determination of CTOAs in pipeline steels using cohesive zone modelling, Fatigue Fract Engng Mater Struct, 2014, 37, 592–602
[30] Jiawen Xie , Anthony M. Waas , Mostafa Rassaian, Closed-form solutions for cohesive zone modeling of delamination toughness tests, International Journal of Solids and Structures 88–89 (2016) 379–400
[31] Scheider I., Hachez F, Brocks W, Effect of Cohesive Law and Triaxiality Dependence of Cohesive Parameters in Ductile Tearing”, Fracture of Nano and Engineering Materials and Structures, Springer, 2006; 965-966
[32] A. NEEDLEMAN, An analysis of decohesion along an imperfect interface, International Journal of Fracture 42: 21-40, 1990
[33] Bo Wang, T. Siegmund, A modified 4-point bend delamination test, Microelectronic Engineering 85 (2008) 477–485.
[34] F. Toth, F.G. Rammerstorfer, M.J. Cordill, F.D.Fischer,Detailed modelling of delamination buckling of thin films under global tension, Acta Materialia 61 (2013) 2425–2433.
[35] Ines Hofinger, Matthias Oechsner,Hans-achim Bahr,Michael V. Swain, Modified four-point bending specimen for determining the interface fracture energy for thin, brittle layers, International Journal of Fracture 92: 213–220, 1998.
[36] Luka Kljucˇar,Mario Gonzalez ,Kris Vanstreels,Andrej Ivankovic´,Michael Hecker d,Ingrid De Wolf, Effect of 4-point bending test procedure on crack propagation in thin film stacks, Microelectronic Engineering 137 (2015) 59–63.
[37] P.J.J. Forschelen,A.S.J. Suiker,O. van der Sluis, Effect of residual stress on the delamination response of film-substrate systems under bending, International Journal of Solids and Structures 97–98 (2016) 284–2990.
[38] Coraly Cuminatto,Guillaume Parry, Muriel Braccini, A model for patterned interfaces debonding – Application to adhesion tests, International Journal of Solids and Structures 75–76 (2015) 122–133.
[39] Jinhyeok Jang, Minchang Sung, Sungjin Han,Woong-Ryeol Yu, Prediction of delamination of steel-polymer composites using cohesive zone model and peeling tests, Composite Structures 160 (2017) 118–127.
[40] C. Jin, X.D. Wang, A theoretical study of a thin-film delamination using shaft-loaded blister test: Constitutive relation without delamination, Journal of the Mechanics and Physics of Solids 56 (2008) 2815– 2831
[41] A Hillerborg, M Moder and P-E Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research. Vol. 6, pp. 773-782, 1976
[42] Hiroshi Kawamoto, Trends of R&D on Materials for High-power and Large-capacity Lithium-ion Batteries for Vehicles Application, QUARTERLY REVIEW ,No.36, July 2010
[43] R. Krueger , The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials, National Institute of Aerospace, Hampton, VA, USA
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76499-
dc.description.abstract本論文主要為探討人工SEI膜與電極界面上發生的脫層行為。在鋰金屬做為負極材料的鋰離子電池中,為了抑制枝晶生長而利用人工方式於電極表面製造人工SEI膜,提供良好的機械強度與均勻結構,並同時擁有高離子導電率與化學穩定性。然而在循環充放電過後鋰金屬於電極表面不均勻的沉積,造成枝晶的生長,隨著循環次數不斷增加慢慢累積增大,進而推使人工SEI膜與電極間發生脫層行為。
本論文主要利用有限元素軟體對人工SEI膜的脫層行為進行模擬,同時將人工SEI膜與電極間的界面性質以黏著層模型描述。在模擬模型中主要以兩個主軸進行討論,分別為利用不同的界面性質進行模擬、不同枝晶大小與人工SEI膜厚度進行模擬,由不同的模型假設下模擬人工SEI膜與枝晶間的抑制關係。
由本論文所提供的人工SEI膜脫層力學模型進行研究,對於不同界面性質的模擬結果,可歸納出於人工SEI膜對於枝晶的抑制能力可完全反應在脫層半徑上。對於不同的枝晶大小與人工SEI膜厚度模擬結果,可以建構出抑制力(SF)與脫層半徑的關係式和枝晶大小與抑制均佈力(SDF)的關係式。從模擬結果可以更進一步了解到人工SEI膜、枝晶、脫層行為三者之間的關係。
zh_TW
dc.description.abstractThis thesis mainly discusses the delamination behavior occurring at the interface between artificial SEI film and electrode. In the lithium ion battery in which lithium metal is used as a negative electrode material, artificial SEI film is artificially fabricated on the surface of the electrode in order to suppress dendrite growth, providing good mechanical strength and uniform structure, and at the same time having high ionic conductivity and chemical stability. However, after the charge and discharge cycle, the lithium metal deposits unevenly on the surface of the electrode, causing the growth of dendrites, which gradually accumulates as the number of cycles increases, and then causes the delamination behavior between the artificial SEI film and the electrode.
In this thesis, the delamination behavior of artificial SEI film is simulated by finite element software, and the interface properties between artificial SEI film and electrode are described by cohesive zone model. In the simulation model, two conditions are mainly discussed, which are simulated by different interface properties, different dendrite sizes and artificial SEI film thickness.
The artificial SEI film delamination mechanical model provided by this paper is studied. The simulation results of different interface properties can be summarized as the artificial SEI film can completely react to the delamination radius. For the simulation results of different dendrite size and artificial SEI film thickness, the relationship between suppressing force (SF) and delamination radius and the relationship between dendrite size and suppressing distribution force (SDF) can be constructed. From the simulation results, the relationship between artificial SEI film, dendrites and delamination behavior can be further understood.
en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:53:19Z (GMT). No. of bitstreams: 1
ntu-108-R06543005-1.pdf: 3207646 bytes, checksum: b4d6472c8bc19bb7f6fcbbac3086068f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3論文架構 3
第二章 鋰離子電池與文獻回顧 4
2.1鋰離子電池 4
2.1.1鋰離子電池工作原理 4
2.1.2鋰離子電池材料 5
2.2天然SEI膜 9
第三章 黏著層模型(COHESIVE ZONE MODEL) 12
3.1 CZM模型 13
3.2 牽引力-位移法則:TRACTION-SEPARATION LAW(TSL) 15
3.3 TSL參數定義 17
第四章 解析界面脫層模型 19
4.1模型一(張裂型) 21
4.2模型二(剪力型) 22
4.3模型三(混合型) 24
第五章 人工SEI膜脫層力學模型 27
5.1人工SEI膜脫層力學模型 27
5.2不同彈簧的組成 30
5.2.1模型設置 30
5.2.2模擬結果 33
5.3不同初始脫層半徑與人工SEI膜厚度 40
5.3.1模型設置 40
5.3.2模擬結果 41
第六章 結論與未來展望 48
6.1結論 48
6.2未來展望 49
參考資料 50
dc.language.isozh-TW
dc.title鋰離子電池之人工薄膜界面脫層力學分析zh_TW
dc.titleOn the Mechanical Analysis of the Delamination of the Artifical Solid Electrolyte Interface(SEI) in Lithium-Ion Batteriesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭志禹,林揚善,林祺皓,周鼎贏
dc.subject.keyword鋰離子電池,人工SEI膜,枝晶生長,黏著層模型,zh_TW
dc.subject.keywordlithium-ion battery,artificial SEI film,dendrite growth,cohesive zone model,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201903758
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2021-08-26-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06543005-1.pdf3.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved