請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76498完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏慧 | |
| dc.contributor.author | Shu-Ya Chang | en |
| dc.contributor.author | 張書亞 | zh_TW |
| dc.date.accessioned | 2021-07-09T15:53:18Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | Uncategorized References
(1966) Ramon y Cajal. New England Journal of Medicine, 274, 1508-1508. Aarts, L. H., P. Schotman, J. Verhaagen, L. H. Schrama & W. H. Gispen (1998) The role of the neural growth associated protein B-50/GAP-43 in morphogenesis. Adv Exp Med Biol, 446, 85-106. Abd-Elmeguid, A. & D. C. Yu (2009a) Dental pulp neurophysiology: part 1. Clinical and diagnostic implications. J Can Dent Assoc, 75, 55-9. --- (2009b) Dental pulp neurophysiology: part 2. Current diagnostic tests to assess pulp vitality. J Can Dent Assoc, 75, 139-43. Avery, J. K. & D. J. Chiego. 2006. Essentials of oral histology and embryology: a clinical approach. St. Louis, Mo.: Mosby Elsevier. Balic, A. & I. Thesleff (2015) Tissue Interactions Regulating Tooth Development and Renewal. Curr Top Dev Biol, 115, 157-86. Benowitz, L. I. & A. Routtenberg (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci, 20, 84-91. Berman, L. H. & K. M. Hargreaves. 2016. Cohen's Pathways of the Pulp. Elsevier. Bernick, S. (1959) Innervation of the developing molar teeth of rats. The Anatomical Record, 133, 91-103. Biggs, L. C. & M. L. Mikkola (2014) Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol, 25-26, 11-21. Byers, M. R. (1980) Development of sensory innervation in dentin. J Comp Neurol, 191, 413-27. --- (1984) Dental sensory receptors. Int Rev Neurobiol, 25, 39-94. Byers, M. R., S. J. Neuhaus & J. D. Gehrig (1982) Dental sensory receptor structure in human teeth. Pain, 13, 221-35. Byers, M. R., G. C. Schatteman & M. Bothwell (1990) Multiple functions for NGF receptor in developing, aging and injured rat teeth are suggested by epithelial, mesenchymal and neural immunoreactivity. Development, 109, 461-71. Byers, M. R., E. F. Wheeler & M. Bothwell (1992) Altered expression of NGF and P75 NGF-receptor by fibroblasts of injured teeth precedes sensory nerve sprouting. Growth Factors, 6, 41-52. Chao, M. V. (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci, 4, 299-309. Couve, A. & J. T. Kittler (2014) Preface. Trafficking of organelles and proteins in the nervous system. Semin Cell Dev Biol, 27, 1-2. Couve, E., M. Lovera, K. Suzuki & O. Schmachtenberg (2018) Schwann Cell Phenotype Changes in Aging Human Dental Pulp. J Dent Res, 97, 347-355. Covas, D. T., R. A. Panepucci, A. M. Fontes, W. A. Silva, Jr., M. D. Orellana, M. C. C. Freitas, L. Neder, A. R. D. Santos, L. C. Peres, M. C. Jamur & M. A. Zago (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146<sup>+</sup> perivascular cells and fibroblasts. Experimental Hematology, 36, 642-654. Dahlstrand, J., V. P. Collins & U. Lendahl (1992) Expression of the Class VI Intermediate Filament Nestin in Human Central Nervous System Tumors. Cancer Research, 52, 5334-5341. Dassule, H. R. & A. P. McMahon (1998) Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol, 202, 215-27. Davies, A. M. (1988) Role of neurotrophic factors in development. Trends Genet, 4, 139-43. --- (1997) Neurotrophin switching: where does it stand? Curr Opin Neurobiol, 7, 110-8. Diamond, J., M. Coughlin, L. Macintyre, M. Holmes & B. Visheau (1987) Evidence that endogenous beta nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats. Proc Natl Acad Sci U S A, 84, 6596-600. Elshal, M. F., S. S. Khan, N. Raghavachari, Y. Takahashi, J. Barb, J. J. Bailey, P. J. Munson, M. A. Solomon, R. L. Danner & J. P. McCoy, Jr. (2007) A unique population of effector memory lymphocytes identified by CD146 having a distinct immunophenotypic and genomic profile. BMC Immunol, 8, 29. Elshal, M. F., S. S. Khan, Y. Takahashi, M. A. Solomon & J. P. McCoy, Jr. (2005) CD146 (Mel-CAM), an adhesion marker of endothelial cells, is a novel marker of lymphocyte subset activation in normal peripheral blood. Blood, 106, 2923-4. Flanagan, K., K. Fitzgerald, J. Baker, K. Regnstrom, S. Gardai, F. Bard, S. Mocci, P. Seto, M. You, C. Larochelle, A. Prat, S. Chow, L. Li, C. Vandevert, W. Zago, C. Lorenzana, C. Nishioka, J. Hoffman, R. Botelho, C. Willits, K. Tanaka, J. Johnston & T. Yednock (2012) Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One, 7, e40443. Fraser, G. J., C. D. Hulsey, R. F. Bloomquist, K. Uyesugi, N. R. Manley & J. T. Streelman (2009) An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol, 7, e31. Fried, K. & C. Hildebrand (1981a) Developmental growth and degeneration of pulpal axons in feline primary incisors. J Comp Neurol, 203, 37-51. --- (1981b) Pulpal axons in developing, mature, and aging feline permanent incisors. A study by electron microscopy. J Comp Neurol, 203, 23-36. Fried, K., C. Nosrat, C. Lillesaar & C. Hildebrand (2000) Molecular signaling and pulpal nerve development. Crit Rev Oral Biol Med, 11, 318-32. Gage, F. H. (2000) Mammalian neural stem cells. Science, 287, 1433-8. Gronthos, S., J. Brahim, W. Li, L. W. Fisher, N. Cherman, A. Boyde, P. DenBesten, P. G. Robey & S. Shi (2002) Stem cell properties of human dental pulp stem cells. J Dent Res, 81, 531-5. Guerette, D., P. A. Khan, P. E. Savard & M. Vincent (2007) Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol, 7, 164. Haara, O., E. Harjunmaa, P. H. Lindfors, S. H. Huh, I. Fliniaux, T. Aberg, J. Jernvall, D. M. Ornitz, M. L. Mikkola & I. Thesleff (2012) Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development, 139, 3189-99. Hildebrand, J. D., M. D. Schaller & J. T. Parsons (1995) Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol Biol Cell, 6, 637-47. Hoffman, R. M. (2007) The potential of nestin-expressing hair follicle stem cells in regenerative medicine. Expert Opin Biol Ther, 7, 289-91. Jernvall, J. & I. Thesleff (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev, 92, 19-29. --- (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139, 3487-97. Johnsen, D. C. (1985) Innervation of teeth: qualitative, quantitative, and developmental assessment. J Dent Res, 64 Spec No, 555-63. Johnsen, D. C. & U. L. Karlsson (1974) Electron microscopic quantitations of feline primary and permanent incisor innervation. Arch Oral Biol, 19, 671-8. --- (1977) Development of neural elements in apical portions of cat primary and permanent incisor pulps. Anat Rec, 189, 29-43. Jussila, M. & I. Thesleff (2012) Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol, 4, a008425. Kökten, T., T. Bécavin, L. Keller, J. L. Weickert, S. Kuchler-Bopp & H. Lesot (2014a) Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One, 9, e86011. Kökten, T., T. Bécavin, L. Keller, J.-L. Weickert, S. Kuchler-Bopp & H. Lesot (2014b) Immunomodulation stimulates the innervation of engineered tooth organ. PloS one, 9, e86011-e86011. Keranen, S. V., P. Kettunen, T. Aberg, I. Thesleff & J. Jernvall (1999) Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol, 209, 495-506. Kettunen, P., B. Spencer-Dene, T. Furmanek, I. H. Kvinnsland, C. Dickson, I. Thesleff & K. Luukko (2007) Fgfr2b mediated epithelial-mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning. Mech Dev, 124, 868-83. Kollar, E. & A. Lumsden (1979a) Tooth morphogenesis: the role of the innervation during induction and pattern formation. Journal de biologie buccale, 7, 49-60. Kollar, E. J. & A. G. Lumsden (1979b) Tooth morphogenesis: the role of the innervation during induction and pattern formation. J Biol Buccale, 7, 49-60. Kuchler-Bopp, S., A. Larrea, L. Petry, Y. Idoux-Gillet, V. Sebastian, A. Ferrandon, P. Schwinte, M. Arruebo & N. Benkirane-Jessel (2017) Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds. Acta Biomater, 50, 493-501. Kuske, M. D. & J. P. Johnson (1999) Assignment of the human melanoma cell adhesion molecule gene (MCAM) to chromosome 11 band q23.3 by radiation hybrid mapping. Cytogenet Cell Genet, 87, 258. Lee, J. H., S. Um, I. S. Song, H. Y. Kim & B. M. Seo (2014) Neurogenic differentiation of human dental stem cells in vitro. J Korean Assoc Oral Maxillofac Surg, 40, 173-80. Lewin, G. R. & Y. A. Barde (1996) Physiology of the neurotrophins. Annu Rev Neurosci, 19, 289-317. Linde, A. & M. Goldberg (1993) Dentinogenesis. Crit Rev Oral Biol Med, 4, 679-728. Lindsay, R. M. (1988) Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci, 8, 2394-405. Lumsden, A. (1982) The developing innervation of the lower jaw and its relation to the formation of tooth germs in mouse. Teeth; from, function and evolution, 32-43. Luukko, K. (1997) Immunohistochemical localization of nerve fibres during development of embryonic rat molar using peripherin and protein gene product 9.5 antibodies. Arch Oral Biol, 42, 189-95. Luukko, K. & P. Kettunen (2014) Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models. Exp Cell Res, 325, 72-7. Luukko, K., I. H. Kvinnsland & P. Kettunen (2005) Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev Dyn, 234, 482-8. Luukko, K., M. Moshnyakov, K. Sainio, M. Saarma, H. Sariola & I. Thesleff (1996) Expression of neurotrophin receptors during rat tooth development is developmentally regulated, independent of innervation, and suggests functions in the regulation of morphogenesis and innervation. Dev Dyn, 206, 87-99. Luukko, K., K. Sainio, H. Sariola, M. Saarma & I. Thesleff (1997) Localization of nerve cells in the developing rat tooth. J Dent Res, 76, 1350-6. Mahdee, A., J. Eastham, J. M. Whitworth & J. I. Gillespie (2019) Evidence for changing nerve growth factor signalling mechanisms during development, maturation and ageing in the rat molar pulp. Int Endod J, 52, 211-222. Marrelli, M., F. Paduano & M. Tatullo (2015) Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells. J Dent Res, 94, 843-52. Martens, W., A. Bronckaers, C. Politis, R. Jacobs & I. Lambrichts (2013) Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig, 17, 1969-83. Matsuo, S., H. Ichikawa, T. A. Henderson, I. Silos-Santiago, M. Barbacid, J. J. Arends & M. F. Jacquin (2001) trkA modulation of developing somatosensory neurons in oro-facial tissues: tooth pulp fibers are absent in trkA knockout mice. Neuroscience, 105, 747-60. Michalczyk, K. & M. Ziman (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol, 20, 665-71. Mitsiadis, T. A., P. Couble, E. Dicou, B. B. Rudkin & H. Magloire (1993) Patterns of nerve growth factor (NGF), proNGF, and p75 NGF receptor expression in the rat incisor: comparison with expression in the molar. Differentiation, 54, 161-75. Mitsiadis, T. A., E. Dicou, A. Joffre & H. Magloire (1992) Immunohistochemical localization of nerve growth factor (NGF) and NGF receptor (NGF-R) in the developing first molar tooth of the rat. Differentiation, 49, 47-61. Mitsiadis, T. A. & P. Pagella (2016) Expression of Nerve Growth Factor (NGF), TrkA, and p75(NTR) in Developing Human Fetal Teeth. Front Physiol, 7, 338. Moe, K., P. Kettunen, I. H. Kvinnsland & K. Luukko (2008) Development of the pioneer sympathetic innervation into the dental pulp of the mouse mandibular first molar. Arch Oral Biol, 53, 865-73. Mohamed, S. S. & M. E. Atkinson (1982) The ontogeny of substance P-containing nerve fibres in the developing mouse dentition. Anatomy and embryology, 164, 153-159. Mohamed, S. S. & M. E. Atkinson (1983) A histological study of the innervation of developing mouse teeth. J Anat, 136, 735-49. Mohiuddin, A. (1950) The fate of the nerves of the deciduous teeth. J Anat, 84, 319-23. Mucchielli, M. L., T. A. Mitsiadis, S. Raffo, J. F. Brunet, J. P. Proust & C. Goridis (1997) Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol, 189, 275-84. Naftel, J. P., X. B. Qian & J. M. Bernanke (1994) Effects of postnatal anti-nerve growth factor serum exposure on development of apical nerves of the rat molar. Brain Res Dev Brain Res, 80, 54-62. Naftel, J. P., A. Shamssoolari & R. K. Thueson (1992) Immunoassay evidence for a role of nerve growth factor in development of dental innervation. Proc Finn Dent Soc, 88 Suppl 1, 543-9. Nanci, A. 2008. Ten Cate’s oral histology: development, structure, and formation. St. Louis, MO, Mosby. Nishikawa, S. (2006) Systemic labeling and visualization of dental sensory nerves by the novel fluorescent marker AM1-43. Anat Sci Int, 81, 181-6. --- (2007) Developmental changes in pulpal sensory innervation of rat incisors and molars shown on a single injection of the fluorescent dye AM1-43. Anat Sci Int, 82, 227-32. --- (2008) Histochemistry of nerve fibres double labelled with anti-TRPV2 antibodies and sensory nerve marker AM1-43 in the dental pulp of rat molars. Arch Oral Biol, 53, 859-64. Nosrat, C. A., K. Fried, T. Ebendal & L. Olson (1998) NGF, BDNF, NT3, NT4 and GDNF in tooth development. Eur J Oral Sci, 106 Suppl 1, 94-9. Nosrat, C. A., K. Fried, S. Lindskog & L. Olson (1997) Cellular expression of neurotrophin mRNAs during tooth development. Cell Tissue Res, 290, 569-80. Nourbakhsh, N., M. Soleimani, Z. Taghipour, K. Karbalaie, S. B. Mousavi, A. Talebi, F. Nadali, S. Tanhaei, G. A. Kiyani, M. Nematollahi, F. Rabiei, M. Mardani, H. Bahramiyan, M. Torabinejad, M. H. Nasr-Esfahani & H. Baharvand (2011) Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol, 55, 189-95. Nuti, N., C. Corallo, B. M. Chan, M. Ferrari & B. Gerami-Naini (2016) Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review. Stem Cell Rev, 12, 511-523. Pagella, P., L. Jimenez-Rojo & T. A. Mitsiadis (2014) Roles of innervation in developing and regenerating orofacial tissues. Cell Mol Life Sci, 71, 2241-51. Pearson, A. A. (1977) The early innervation of the developing deciduous teeth. J Anat, 123, 563-77. Peterkova, R., M. Peterka & H. Lesot (2003) The developing mouse dentition: a new tool for apoptosis study. Ann N Y Acad Sci, 1010, 453-66. Qian, X. B. & J. P. Naftel (1996) Effects of neonatal exposure to anti-nerve growth factor on the number and size distribution of trigeminal neurones projecting to the molar dental pulp in rats. Arch Oral Biol, 41, 359-67. Ratajczak, J., A. Bronckaers, Y. Dillen, P. Gervois, T. Vangansewinkel, R. B. Driesen, E. Wolfs, I. Lambrichts & P. Hilkens (2016) The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells Int, 2016, 9762871. Rosskothen-Kuhl, N. & R.-B. Illing (2014) Gap43 transcription modulation in the adult brain depends on sensory activity and synaptic cooperation. PloS one, 9, e92624-e92624. Ruch, J. V., H. Lesot & C. Begue-Kirn (1995) Odontoblast differentiation. Int J Dev Biol, 39, 51-68. Russell, K. C., D. G. Phinney, M. R. Lacey, B. L. Barrilleaux, K. E. Meyertholen & K. C. O'Connor (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells, 28, 788-98. Sasano, T., N. Shoji, S. Kuriwada, D. Sanjo, H. Izumi & K. Karita (1995) Absence of parasympathetic vasodilatation in cat dental pulp. J Dent Res, 74, 1665-70. Shirokova, V., M. Jussila, M. K. Hytonen, N. Perala, C. Drogemuller, T. Leeb, H. Lohi, K. Sainio, I. Thesleff & M. L. Mikkola (2013) Expression of Foxi3 is regulated by ectodysplasin in skin appendage placodes. Dev Dyn, 242, 593-603. Sohn, W. J., G. J. Gwon, C. H. An, C. Moon, Y. C. Bae, H. Yamamoto, S. Lee & J. Y. Kim (2011) Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol, 44, 274-83. Taylor, P. E. & M. R. Byers (1990) An immunocytochemical study of the morphological reaction of nerves containing calcitonin gene-related peptide to microabscess formation and healing in rat molars. Arch Oral Biol, 35, 629-38. Teranishi, N., Z. Naito, T. Ishiwata, N. Tanaka, K. Furukawa, T. Seya, S. Shinji & T. Tajiri (2007) Identification of neovasculature using nestin in colorectal cancer. Int J Oncol, 30, 593-603. Terling, C., A. Rass, T. A. Mitsiadis, K. Fried, U. Lendahl & J. Wroblewski (1995) Expression of the intermediate filament nestin during rodent tooth development. Int J Dev Biol, 39, 947-56. Thesleff, I. (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci, 116, 1647-8. --- (2018) From understanding tooth development to bioengineering of teeth. Eur J Oral Sci, 126 Suppl 1, 67-71. Thesleff, I. & M. Mikkola (2002) The role of growth factors in tooth development. Int Rev Cytol, 217, 93-135. Tsuzuki, H. & H. Kitamura (1991) Immunohistochemical analysis of pulpal innervation in developing rat molars. Arch Oral Biol, 36, 139-46. Tummers, M. & I. Thesleff (2009) The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol, 312b, 309-19. Turner, D. F., C. F. Marfurt & C. Sattelberg (1989) Demonstration of physiological barrier between pulpal odontoblasts and its perturbation following routine restorative procedures: a horseradish peroxidase tracing study in the rat. J Dent Res, 68, 1262-8. Walters, J. W., J. L. Anderson, R. Bittman, M. Pack & S. A. Farber (2012) Visualization of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid. Chemistry & biology, 19, 913-925. Wassermann, F. (1939) The Innervation of Teeth. The Journal of the American Dental Association, 26, 1097-1109. Wiese, C., A. Rolletschek, G. Kania, P. Blyszczuk, K. V. Tarasov, Y. Tarasova, R. P. Wersto, K. R. Boheler & A. M. Wobus (2004) Nestin expression--a property of multi-lineage progenitor cells? Cell Mol Life Sci, 61, 2510-22. Winkler, L. A., J. H. Schwartz & D. R. Swindler (1991) Aspects of dental development in the orangutan prior to eruption of the permanent dentition. American Journal of Physical Anthropology, 86, 255-271. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76498 | - |
| dc.description.abstract | 牙齒的神經發育是很重要的議題,由之前的研究可知牙齒神經隨著牙冠與牙根的形成而出現在牙髓腔之內。牙髓幹細胞來自牙髓組織,根據研究能在體外具有神經分化能力,可作為幹細胞的替代來源,具有表達 CD146的特徵,且是外胚層來源,起源於遷移的神經脊細胞和擁有間葉幹細胞的特性,有分化為成牙本質母細胞,骨細胞/骨細胞胚細胞,脂肪細胞,軟骨細胞和神經細胞的潛力。因此我們推測神經的生長可能與牙髓腔內的牙髓幹細胞有關係。所以,本研究的目的是探討和觀察牙髓幹細胞在牙齒神經支配中的角色。
本實驗方法是使用螢光染色和注射螢光染劑的方式,觀察牙髓幹細胞、神 經幹細胞、牙髓神經和神經生長椎在老鼠出生後第四天和第八天在牙胚中的位 置分佈和量,觀察這兩個不同時間點這些標記之間的關係。 實驗發現出生後四天的牙胚結果顯示神經纖維在牙胚外,並未進入牙髓中。出生後八天在牙胚內外都有神經纖維,且已進入牙髓中。 出生後四天和八天的牙胚中結果顯示神經幹細胞免疫反應陽性出現在成牙本質細胞和其突觸的位置。 出生後四天和八天的牙胚結果顯示牙髓幹細胞在牙胚中微血管內皮細胞和牙胚外微血管內皮細胞是免疫反應陽性。 出生後四天牙胚中結果顯示神經生長錐在牙囊外圍是免疫反應陽性。出生 後八天的牙胚在牙胚齒頸部免疫反應陽性的量較多且牙髓中有少量免疫反應陽 性。 經第四天至第八天的臼齒牙胚觀察到神經慢慢從牙胚外進入牙胚內。神經幹細胞一直出現在成牙本質細胞和其突觸的位置;此外,也一直有牙髓幹細胞出現在牙髓中。神經生長錐則由牙胚外慢慢往牙胚齒頸部移動。由實驗結果可以推測幹細胞和神經向牙髓內生長有相當大的關係,且牙髓內應具有神經分化潛力相關的類神經幹細胞。 | zh_TW |
| dc.description.abstract | The neurodevelopment of teeth is an important issue. It is known from previous studies that the growth of dental nerves occurs in the pulp cavity with the formation of crowns and roots. The dental pulp stem cells are derived from pulp tissue and can be studied in vitro. They have the abilities to be differentiated into nerve cells and can be used as an alternative source of stem cells. They have the characteristic of expressing CD146. These stem cells are derived from the ectoderm, which are originated from the migrating nerve ridge cells and possess the characteristics of mesenchymal stem cells. They can be differentiated into odontoblasts, osteocytes/osteocyte blasts, fat cells, chondrocytes and nerve cells. Therefore, we hypothesize that nerve growth may be related to dental pulp stem cells in the pulp cavity. The purpose of this study was to investigate and observe the relationship between dental pulp stem cells and teeth innervation.
Immunofluorescence staining and injection of fluorescent dye were used to observe the distribution of dental pulp stem cells, neural stem cells, pulp nerves and nerve growth cone in the tooth germ of mice on the fourth and eighth day after birth. The relationship between these markers at these two different time points was observed. The results showed that in the tooth germ of mice at four days after birth showed that the nerve fibers were outside the tooth germ and did not enter the pulp. Eight days after birth, there are nerve fibers inside and outside the tooth germ, and they have entered the pulp. In both the four-day and eight-day tooth germs It was shown that the immunostaining of neural stem cell was positive in the odontoblasts and their processes we also found that dental pulp stem cells were positive for immunoreactivity in microvascular endothelial cells inside and outside of dental pulp in both the four-day and eight-day tooth germs. In the tooth germ four days after birth showed that the nerve growth cone was immunoreactive at the periphery of the tooth follicle. The tooth germs that were eight days after birth had more immunoreactive effects on the tooth germ and a small amount of immunoreactivity in the pulp. From the fourth to the eighth day, the nerve was observed to enter the pulp from the outside of the tooth germ slowly. Neural stem cells continue to appear in odontoblasts and their processes. Stem cells have also been found in the pulp. The nerve growth cone moves from the outside of the tooth germ to the cervical of the tooth germ. From the results, it can be inferred that stem cells have relationship with the growth of nerves in the pulp, and might have neural stem cells related properties with potential for neural differentiation in the pulp. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-09T15:53:18Z (GMT). No. of bitstreams: 1 ntu-108-R04422015-1.pdf: 2806038 bytes, checksum: c4704a2ee4fdca5651c2064661c4556a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii 英文摘要 v 目 錄 vii 圖次目錄 ix 第一章 引言 1 1. 牙齒發育 1 1.1 牙齒發育的起始和階段 1 1.2 老鼠牙齒胚胎發育 3 1.3 牙齒神經發育 7 1.4牙齒神經支配 9 2. 幹細胞 11 2.1 牙髓幹細胞 11 2.2 神經幹細胞 13 3.神經因子, receptor 14 4. 幹細胞表面標記 16 4.1 CD146 16 5. 神經表面標記 17 5.1 巢蛋白(Nestin) ) 17 6. 神經介紹 18 7. Growth associated protein(GAP-43): 18 8. AM1-43 mechanism: 20 第二章 實驗假說,實驗目的,特定目標 21 第三章 材料與方法 22 1. 實驗流程圖 22 2. AM1-43,石蠟包埋 23 3. 免疫螢光染色 25 4. 材料 26 5. 共軛焦顯微鏡 27 第四章 結果 28 第五章 討論 30 1. AM1-43反應陽性的時間和位置 30 2. 巢蛋白(Nestin)反應陽性的時間和位置 30 3. CD146 免疫反應陽性的時間和位置: 32 4. 生長相關蛋白43(GAP-43)免疫反應陽性的時間和位置: 33 第六章 結論 34 第七章 未來研究方向 35 第八章 參考書目 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 免疫螢光染色 | zh_TW |
| dc.subject | 牙髓神經 | zh_TW |
| dc.subject | 人類牙齒發育 | zh_TW |
| dc.subject | 老鼠牙齒發育 | zh_TW |
| dc.subject | 牙髓幹細胞 | zh_TW |
| dc.subject | Human Tooth development | en |
| dc.subject | Immunofluorescence staining | en |
| dc.subject | Nerve of pulp | en |
| dc.subject | Dental pulp stem cells | en |
| dc.subject | Mouse Tooth development | en |
| dc.title | 牙髓幹細胞與牙齒神經發育的關係 | zh_TW |
| dc.title | The relationship between Dental Pulp Stem Cells and
Tooth innervation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳羿貞,周涵怡 | |
| dc.subject.keyword | 人類牙齒發育,老鼠牙齒發育,牙髓幹細胞,牙髓神經,免疫螢光染色, | zh_TW |
| dc.subject.keyword | Human Tooth development,Mouse Tooth development,Dental pulp stem cells,Nerve of pulp,Immunofluorescence staining, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201903415 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R04422015-1.pdf | 2.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
