Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76487
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭寧馨(Ning-Sing Siao)
dc.contributor.authorYu-Cheng Chenen
dc.contributor.author陳育成zh_TW
dc.date.accessioned2021-07-09T15:53:07Z-
dc.date.available2025-02-25
dc.date.copyright2020-02-26
dc.date.issued2019
dc.date.submitted2020-02-13
dc.identifier.citation[1] National Research Council. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington, DC: The National Academies Press. 2011.
[2] Inke R. König, Oliver Fuchs, Gesine Hansen, Erika von Mutius, Matthias V. Kopp., What is precision medicine? European Respiratory Journal 2017, 50 1700391
[3] Ziegler, A., Koch, A., Krockenberger, K. et al., Personalized medicine using DNA biomarkers: a review. Hum Genet 2012, 131(10), 1627-38
[4] Zhang Z, Yang T, Xiao J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine. 2018, 34, 267–274.
[5] Boschetti, Egisto; D'Amato, Alfonsina; Candiano, Giovanni; Righetti, Pier Giorgio., Protein biomarkers for early detection of diseases: The decisive contribution of combinatorial peptide ligand libraries. Journal of Proteomics, 2018, 188, 1-14
[6] Srivastava A, Creek DJ., Discovery and Validation of Clinical Biomarkers of Cancer: A Review Combining Metabolomics and Proteomics. Proteomics. 2019, 19(10), 1700448
[7] Bhalla N, Jolly P, Formisano N, Estrela P., Introduction to biosensors. Essays Biochem. 2016, 60(1), 1–8.
[8] Michael Keusgen., Biosensors: new approaches in drug discovery. Naturwissenschaften 2002, 89(10), 433–444.
[9] Celine I. L. Justino, Armando C. Duarte, Teresa A. P. Rocha-Santos., Recent Progress in Biosensors for Environmental Monitoring: A Review. Sensors 2017, 17, 2918
[10] Paul Leonard, Stephen Hearty, Joanne Brennan, Lynsey Dunnea, John Quinn, Trinad Chakraborty, RichardO’Kennedy., Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology. 2003, 32(1), 3–13
[11] Liu J, Jasim I, Shen Z, et al. A microfluidic based biosensor for rapid detection of Salmonella in food products. PLoS One. 2019, 14(5):e0216873.
[12] Slaughter, G.; Kulkarni, T. Detection of Human Plasma Glucose Using a Self-Powered Glucose Biosensor. Energies 2019, 12, 825.
[13] V.S.P.K. Sankara, Aditya Jayanthi, Asim Bikas Das, Urmila Saxena., Recent advances in biosensor development for the detection of cancer biomarkers. Biosensors and Bioelectronics 2017, 91(15), 15-23.
[14] Danielle Bruen, Colm Delaney, Larisa Florea, Dermot Diamond., Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 2017, 17, 1866.
[15] Nikhil Bhalla, Pawan Jolly, Nello Formisano, Pedro Estrela., Introduction to biosensors. Essays in Biochemistry 2016, 60, 1–8.
[16] Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H., Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986, 51 Pt 1, 263-73.
[17] Yan Li, Qiupeng Zheng, Chunyang Bao, Shuyi Li, Weijie Guo, Jiang Zhao, Di Chen, Jianren Gu, Xianghuo He, Shenglin Huang., Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Research 2015, 25, 981-984
[18] G T Walker, M S Fraiser, J L Schram, M C Little, J G Nadeau, D P Malinowski., Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992, 20(7), 1691–1696.
[19] Jingpu Zhang, Chao Li, Xiao Zhi, Gabriel Alfranca Ramon, Yanlei Liu, Chunlei Zhang, Fei Pan, Daxiang Cu. Hairpin DNA-Templated Silver Nanoclusters as Novel Beacons in Strand Displacement Amplification for MicroRNA Detection. Anal. Chem. 2016, 88(2), 1294-1302
[20] Ou, S., Xu, T., Liu, X., Yu, X., Li, R., Deng, J., Chen, Y.. Rapid and ultrasensitive detection of microRNA based on strand displacement amplification-mediated entropy-driven circuit reaction. Sensors and Actuators B: Chemical, 2018, 255, 3057–3063.
[21] Andrew Fire, Si-Qun Xu. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci., 1995, 92(10), 4641-4645
[22] Tian Tian, Jiaqi Wang, Xiang Zhou., A review: microRNA detection methods. Org. Biomol. Chem., 2015, 13, 2226-2238
[23] Ye Zhu, Huijuan Wang, Lin Wang, Jing Zhu, Wei Jiang., Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker. ACS Appl. Mater. Interfaces. 2016, 8(4), 2573-2581
[24] Xiaoli Zhu, Yalan Shen, Jiepei Cao, Li Yin, Fangfang Ban, Yongqian Shu, Genxi Li., Detection of microRNA SNPs with ultrahigh specificity by using reduced graphene oxide-assisted rolling circle amplification., Chem. Commun. 2015, 51, 10002-10005.
[25] Jing Ma, Long Wu, Zhonghua Li, Zhicheng Lu, Wenmin Yin, Axiu Nie, Fan Ding, Biru Wang, Heyou Han., Versatile Electrochemiluminescence Assays for PEDV Antibody Based on Rolling Circle Amplification and Ru-DNA Nanotags. Anal. Chem. 2018, 90(12), 7415-7421.
[26] Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO. Isothermal amplified detection of DNA and RNA. Mol Biosyst. 2014, 10(5), 970-1003
[27] Jeffrey Van Ness, Lori K. Van Ness, David J. Galas. Isothermal reactions for the amplification of oligonucleotides. PNAS, 2003, 100 (8) 4504-4509.
[28] Jifeng Qian, Tanya M. Ferguson, Deepali N. Shinde, Alissa J. Ramı´rez-Borrero, Arend Hintze, Christoph Adami, Angelika Niemz. Sequence dependence of isothermal DNA amplification via EXPAR. Nucleic Acids Res. 2012, 40(11), e87
[29] Yanyan Yu, Zuanguang Chen, Wensi Jian, Duanping Sun, Beibei Zhang, Xinchun Li, Meicun Yao. Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosensors and Bioelectronics, 2015, 64 (15), 566-571.
[30] Kaixiang Zhang, Dong-Ku Kang, M. Monsur Ali, Linan Liu, Louai Labanieh, Mengrou Lu, Hamidreza Riazifar, Thi N. Nguyen, Jason A. Zell, Michelle A. Digman, Enrico Gratton, Jinghong Li, Weian Zhao. Digital quantification of miRNA directly in plasma using integrated comprehensive droplet digital detection. Lab on a Chip. 2015, 15(21), 4217-4226.
[31] Myriam Vincent, Yan Xu, Huimin Kong. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004, 5(8), 795–800.
[32] Jeong, YJ., Park, K. & Kim, DE. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell. Mol. Life Sci. 2009, 66, 3325.
[33] Bjørn-Ivar Haukanes, Catrine Kvam. Application of Magnetic Beads in Bioassays. Bio/Technology. 1993, 11, 60–63.
[34] Manel Ben Ismail, Erica de la Serna, Gisela Ruiz-Vega, Teresa García-Berrocoso, Joan Montaner, Mohammed Zourob, Ali Othmane, Eva Baldrich., Using magnetic beads and signal amplifiers to produce short andsimple immunoassays: Application to MMP-9 detection in plasmasamples. Analytica Chimica Acta. 2018, 999, 144-154.
[35] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75(5), 843-54.
[36] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN., MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004, 23, 4051‐4060.
[37] Gregory PA, Bracken CP, Bert AG, Goodall GJ., MicroRNAs as regulators of epithelial–mesenchymal transition. Cell Cycle, 2008, 7, 3112‐3118.
[38] H-W Hwang, J T Mendell., MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer. 2006, 94, 776–780.
[39] Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM., Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113, 25–36.
[40] Xu P, Vernooy SY, Guo M, Hay BA., The Drosophila microRNA miR-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 2003, 13, 790–795.
[41] Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013, 42, 217-39.
[42] Lee Y, Kim M, Han J, et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23(20):4051–4060.
[43] Borchert GM, Lanier W, Davidson BL., RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006, 13(12), 1097-101.
[44] Yeom KH, Lee Y, Han J, Suh MR, Kim VN. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 2006, 34(16), 4622–4629.
[45] Faller M, Guo F. MicroRNA biogenesis: there's more than one way to skin a cat. Biochim Biophys Acta. 2008, 1779(11), 663–667
[46] Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004, 18(24), 3016–3027.
[47] Murchison EP, Hannon GJ; Hannon. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Current Opinion in Cell Biology. 2004, 16(3), 223–9.
[48] Lund E, Dahlberg JE, Dahlberg. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 59–66.
[49] Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014, 15, 509–24.
[50] Richard I., GregoryThimmaiah P. Chendrimada, Neil Cooch, Ramin Shiekhattar., Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing. Cell, 2005, 123(4), 631-640.
[51] Thimmaiah P. Chendrimada, Kenneth J. Finn, Xinjun Ji, David Baillat, Richard I. Gregory, Stephen A. Liebhaber, Amy E. Pasquinelli, Ramin Shiekhattar. MicroRNA silencing through RISC recruitment of eIF6. Nature, 2007, 447, 823–828.
[52] Ashlee M. Strubberg, Blair B. Madison., MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Disease Models & Mechanisms. 2017, 10, 197-214.
[53] Pritchard, C. C., Cheng, H. H., & Tewari, M. (2012). MicroRNA profiling: approaches and considerations. Nature reviews. Genetics, 13(5), 358–369.
[54] Varallyay, E.; Burgyan, J.; Havelda, Z., MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 2008, 3(2), 190-16
[55] Liu, C. G., Calin, G. A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, M., … Croce, C. M. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26), 9740–9744.
[56] Afzal M, Manzoor I, Kuipers OP. A Fast and Reliable Pipeline for Bacterial Transcriptome Analysis Case study: Serine-dependent Gene Regulation in Streptococcus pneumoniae. J Vis Exp. 2015, 25(98).
[57] Erika Varkonyi-Gasic, Rongmei Wu, Marion Wood, Eric F Walton, Roger P Hellens. A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007, 3(1), 12.
[58] Shi, R.; Chiang, V.L., Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 2005, 39(4),519-25
[59] Hong-Duc Phan, Junan Li, Ming Poi, Kotaro Nakanishi. Quantification of miRNAs Co-Immunoprecipitated with Argonaute Proteins Using SYBR Green-Based qRT-PCR. Argonaute Proteins. 2017, 1680, 29-40.
[60] Volinia S1, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006, 103(7), 2257-61.
[61] Tania Frixa, Sara Donzelli, Giovanni Blandino., Oncogenic MicroRNAs: Key Players in Malignant Transformation. Cancers (Basel). 2015, 7(4), 2466–2485.
[62] Baohong Zhang, Xiaoping Pan, George P. Cobb, Todd A. Anderson. microRNAs as oncogenes and tumor suppressors. Developmental Biology. 2007, 302(1), 1-12.
[63] IA Asangani, SAK Rasheed, DA Nikolova, JH Leupold, NH Colburn, S Post and H Allgayer. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008, 27, 2128–2136.
[64] Lisa B. Frankel, Nanna R. Christoffersen, Anders Jacobsen, Morten Lindow, Anders Krogh, Anders H. Lund. Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells. The Journal of Biological Chemistry. 2007, 283, 1026-1033.
[65] Nip, H., Dar, A. A., Saini, S., Colden, M., Varahram, S., Chowdhary, H., Majid, S., Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget. 2016, 7(42), 68371–68384.
[66] Xiaohua Li, Ying Zhang, Hongwei Zhang, Xiaonan Liu, Taiqian Gong, Mengbin Li, Li Sun, Gang Ji, Yongquan Shi, Zheyi Han, Shuang Han, Yongzhang Nie, Xiong Chen, Qinchuan Zhao, Jie Ding, Kaichun Wu, Fan Daiming. miRNA-223 Promotes Gastric Cancer Invasion and Metastasis by Targeting Tumor Suppressor EPB41L3. Mol Cancer Res. 2011, 9(7), 824-833.
[67] Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S.‐S., Ngankeu, A., Secchiero, P. MiR‐221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009, 16, 498–509.
[68] Tao Tang, Hoi KinWong, Wenyi Guc, Mei-yung Yu, Ka-Fai To, Chi Chiu Wang, Yick Fu Wong, Tak Hong Cheung, Tony Kwok Hung Chung, Kwong Wai Choy. MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecologic Oncology. 2013, 129(1), 199-208.
[69] Xin, W., Liu, X., Ding, J., Zhao, J., Zhou, Y., Wu, Q., & Hua, K. Long non-coding RNA derived miR-205-5p modulates human endometrial cancer by targeting PTEN. American journal of translational research. 2015, 7(11), 2433–2441.
[70] Zhou, B., Shan, H., Su, Y., Xia, K., Zou, R., & Shao, Q. Let-7a inhibits migration, invasion and tumor growth by targeting AKT2 in papillary thyroid carcinoma. Oncotarget, 2017, 8(41), 69746–69755
[71] Yi-Chia Lin, Ji-Fan Lin, Te-Fu Tsai, Kuang-Yu Chou, Hung-En Chen, Thomas I-Sheng Hwang., Tumor suppressor miRNA-204-5p promotesapoptosis by targeting BCL2 in prostatecancer cells. Asian Journal of Surgery, 2017, 40, 396-406.
[72] Liu, J., Yan, J., Zhou, C., Ma, Q., Jin, Q., & Yang, Z., miR-1285-3p acts as a potential tumor suppressor miRNA via downregulating JUN expression in hepatocellular carcinoma. Tumor Biology, 2014, 36(1), 219–225.
[73] Zhao, Y., Lu, G., Ke, X., Lu, X., Wang, X., Li, H., … He, S., miR-488 acts as a tumor suppressor gene in gastric cancer. Tumor Biology, 2016, 37(7), 8691–8698.
[74] E Mets, J Van der Meulen, G Van Peer, M Boice, P Mestdagh, I Van de Walle, T Lammens, S Goossens, B De Moerloose, Y Benoit, N Van Roy, E Clappier, B Poppe, J Vandesompele, H-G Wendel, T Taghon, P Rondou, J Soulier, P Van Vlierberghe, F Speleman., MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia. Leukemia. 2015, 29, 798–806.
[75] Teng Lv, Kejuan Song, Lili Zhang, Weihua Li, Yulong Chen, Yuchao Diao, Qin Yao, Peishu Liu. miRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1. Biochemistry and Cell Biology, 2018, 96(5), 663-671.
[76] Hong, B. S., Ryu, H. S., Kim, N., Kim, J., Lee, E., Moon, H., ... Moon, H. G. ., Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Research, 2019, 79(7), 1520-1534.
[77] William M. Burke, James Orr, Mario Leitao, Emery Salom, Paola Gehrig, Alexander B. Olawaiye, Molly Brewer, Dave Boruta, Jeannine Villella, Tom Herzog, Fadi Abu Shahin., Endometrial cancer: A review and current management strategies: Part I. Gynecologic Oncology 2014, 134 (3), 385–392.
[78] Choi, S., & Hsu, I.-C. J., Endometrial Cancer. Handbook of Evidence-Based Radiation Oncology. 2018, 645–669.
[79] Akhmedkhanov A, Zeleniuch-Jacquotte A, Toniolo P., Role of exogenous and endogenous hormones in endometrial cancer: review of the evidence and research perspectives. Ann N Y Acad Sci. 2001, 943(1), 296-315.
[80] D. Aune, D. A. Navarro Rosenblatt, D. S. M. Chan, S. Vingeliene, L. Abar, A. R. Vieira, D. C. Greenwood, E. V. Bandera, T. Norat. Anthropometric factors and endometrial cancer risk: a systematic review and dose–response meta-analysis of prospective studies. Annals of Oncology, 2015, 26(8), 1635-1648.
[81] Myong Cheol Lim, Young-Joo Won, Mun Jung Ko, Miseon Kim, Seung-Hyuk Shim, Dong Hoon Suh, Jae-Weon Kim. Incidence of cervical, endometrial, and ovarian cancer in Korea during 1999–2015. J Gynecol Oncol. 2019, 30(1), e38.
[82] Pietro Litta, Federica Merlin, Carlo Saccardi, Chiara Pozzan, Giuseppe Sacco, Mara Fracas, Giampiero Capobianco, Salvatore Dessole. Role of hysteroscopy with endometrial biopsy to rule out endometrial cancer in postmenopausal women with abnormal uterine bleeding. Maturitas, 2005, 50, 117–123.
[83] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–86.
[84] Franca Bianchini, Rudolf Kaaks, Harri Vainio. Overweight, obesity, and cancer risk. Lancet Oncol. 2002, 3(9), 565-74.
[85] Gangemi, M., G. Meneghetti, O. Predebon, et al., Obesity as a risk factor for endometrial cancer. Clin. Exp. Obstet. Gynecol. 1987 (14), 119–122.
[86] J Luo, S Beresford, C Chen, R Chlebowski, L Garcia, L Kuller, M Regier, J Wactawski-Wende, K L Margolis. Association between diabetes, diabetes treatment and risk of developing endometrial cancer. British Journal of Cancer. 2014, 111, 1432–1439.
[87] Dagfinn Aune, Abhijit Sen, Lars J. Vatten. Hypertension and the risk of endometrial cancer: a systematic review and meta-analysis of case-control and cohort studies. Sci Rep. 2017, 7, 44808.
[88] Philippe Morice, Alexandra Leary, Carien Creutzberg, Nadeem Abu-Rustum, Emile Darai. Endometrial cancer. The lancet. 2016, 387, 1094-1108.
[89] MM Braun, EA Overbeek-Wager Diagnosis and Management of Endometrial Cancer. American Family Physician. 2016, 93, 6.
[90] Dakubo G.D. Endometrial Cancer Biomarkers in Circulation. In: Cancer Biomarkers in Body Fluids. Springer, Cham. 2017, 417-433.
[91] Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009, 105(2), 103-4.
[92] Sorosky JI. Endometrial cancer. Obstet Gynecol. 2012, 120, 383–397.
[93] Elsandabesee D, et al. The performance of Pipelle endometrial sampling in a dedicated postmenopausal bleeding clinic. J Obstet Gynaecol. 2005, 25(1), 32–34.
[94] Ginath S, Menczer J, Fintsi Y, Ben-Shem E, Glezerman M, Avinoach I. Tissue and serum CA125 expression in endometrial cancer. Int J Gynecol Cancer. 2002, 12(4), 372-5.
[95] Razmi, N., & Hasanzadeh, M., Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. TrAC Trends in Analytical Chemistry. 2018, 108, 1-12.
[96] B.Szymańska, Z.Lukaszewski, K.Hermanowicz-Szamatowicz, E.Gorodkiewicz. A biosensor for determination of the circulating biomarker CA125/MUC16 by Surface Plasmon Resonance Imaging. Talanta. 2020, 206, 120187.
[97] Tsukamoto, Ozora et al., Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecologic Oncology, 2014, 132(3), 715 – 721.
[98] Guiyu Zhang, Xinxin Hou, Yue Li, Meng Zhao., MiR-205 inhibits cell apoptosis by targeting phosphatase and tensin homolog deleted on chromosome ten in endometrial cancer ishikawa cells. BMC Cancer. 2014, 14, 440.
[99] Ning Su, Haifeng Qiu, Yifei Chen, Tingting Yang, Qin Yan, Xiaoping Wan. miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncology reports. 2013, 29(6), 2297-2302.
[100] Chenyu Jin, Ruojia Liang., miR‐205 promotes epithelial–mesenchymal transition by targeting AKT signaling in endometrial cancer cells. J. Obstet. Gynaecol. Res. 2015, 41(10), 1653–1660.
[101] Cramer, D.W., S.J. Cutler & B. Christine., Trends in the incidence of endometrial cancer in the United States. Gynecol. Oncol. 1974, (2), 130–143.
[102] Surveillance, Epidemiology, and End Results Program Public- Use Data (1973–1999), National Cancer Institute, DCCPS, Surveillance Research Program,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76487-
dc.description.abstract子宮內膜癌是目前世界上女性第四常見的癌症,其中子宮內膜樣腺癌佔了病例之九成,其發病率更在近年來大幅上升,因此早期診斷子宮內膜樣腺癌的分析平台有其迫切需求。據先前研究指出,microRNA-205之表現水平與子宮內膜樣腺癌具有高度相關性,可作為子宮內膜樣腺癌之生物標誌分子。本篇研究首先藉由鏈結合素及生物素之間的親和作用,將核酸探針修飾到磁珠上,再以強力磁鐵進行磁吸分離並將目標核酸microRNA-205進行分離純化。接著加入核酸聚合酶及核酸限制酶,於磁珠上進行鏈置換增擴放大反應以產生核酸產物。反應後再次磁吸分離並蒐集產物之上清液後,加入與產物序列互補之產物核酸探針,並形成富含腺苷酸及胸苷酸之雙股核酸分子,產物探針之利用可做為第二道檢測專一性之檢查點。而本篇研究著重於磁珠對於鏈置換增擴放大反應的使用策略,在確立酵素反應之最佳化反應時間為六十分鐘後,核酸聚合酶與核酸限制酶可於修飾於磁珠上的探針附近持續進行反應,並發現可對於產物之產率產生影響:於相同反應時間內,相較於未使用磁珠的組別,使用磁珠的組別之產率明顯較高,並且保持在無目標核酸出現時的良好反應專一性,不會有偽陽性之結果發生。而修飾於磁珠上的探針選擇性,與未修飾於磁珠上的探針相同,對於非目標序列之真實存在microRNA序列具有良好的選擇性。經本篇研究確立:磁珠之使用,於使用鏈置換增擴放大反應作為放大訊號的方式,具有良好的產率增加之效果;磁吸分離之方式亦可簡化子宮內膜樣腺癌之偵檢流程,於疾病檢測上更為便利。zh_TW
dc.description.abstractEndometrioid Endometrial Carcinoma (EEC) is the fourth most common cancer among women in the world, and the incidence of EEC has increased sharply in recent years. Therefore, it is urgent to develop an EEC diagnostic platform for early detection of EEC. MicroRNA-205 was previously reported as a potential biomarker for EEC, which motivated us to develop an ultrasensitive sensing platform to further confirm its correlation to EEC. Strand displacement amplification (SDA) reaction is an isothermal technique to amplify nucleic acid target, relying on a polymerase and a restriction enzyme. We herein utilized the concept of SDA, and designed a new isothermal amplification method for the detection of EEC-related miR-205. We first conjugated DNA probe on magnetic beads via streptavidin-biotin interaction, it was followed by the enrichment of miR-205 present in the sample through magnetic separation. DNA polymerase (3' → 5' exo-) and nicking enzyme were added afterwards to induce the synthesis of the product DNA. After SDA reaction time optimization as 60 min, we found that applying magnetic beads to SDA amplification reaction can increase the yield of product DNA, compared with the magnetic bead- free group. In specificity, probes conjugated on magnetic beads can distinguish microRNA-205 from others non-target microRNA. Magnetic separation can also simplify the process of diagnosis of Endometrioid Endometrial Carcinomaen
dc.description.provenanceMade available in DSpace on 2021-07-09T15:53:07Z (GMT). No. of bitstreams: 1
ntu-108-R06b22040-1.pdf: 3885895 bytes, checksum: fcde1cfdce458bd116c744325c5546bc (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents第一章 緒論…………………………………………………………………………….1
1.1. 精準醫療概念結合生醫感測器領域的興起…………………………………………….1
1.1.1. 精準醫療……………………………………………………………………..1
1.1.2. 生醫感測器…………………………………………………………………..1
1.1.3. 核酸增擴放大技術…………………………………………………………..2
1.1.4. 恆溫核酸增擴放大技術……………………………………………………..2
1.1.4.1 鏈置換增擴放大法 (Strand displacement amplification, SDA)………….3
1.1.4.2 滾環式增擴放大法 (Rolling circle amplification, RCA)………………...4
1.1.4.3 指數增擴放大法 (Exponential amplification, EXPAR)…………….........5
1.1.4.4 解旋酶增擴放大法 (Helicase dependent amplification, HAD)………….6
1.1.5. 磁珠之應用…………………………………………………………………..8
1.2. 微型核醣核酸(MicroRNA)...…………………………………………………….9
1.2.1. miRNA之生合成路徑與作用機制…………………………………………..9
1.2.2. miRNA偵測方法…………………………………………………………....11
1.2.3. miRNA與癌症………………………………………………………………14
1.3. 子宮內膜樣腺癌………………………………………………………………...16
1.3.1. 子宮內膜樣腺癌之診斷……………………………………………………17
1.3.2. miRNA作為子宮內膜樣腺癌診斷之生物標記分子………………………18
第二章 實驗材料與方法………………………………………………...……………21
2.1. 核酸序列………………………………………………………………………...21
2.2. 實驗試劑與材料………………………………………………………………...22
2.3. 實驗儀器………………………………………………………………………...24
2.4. 實驗方法……………………………………………………………………...…26
2.4.1. 聚丙烯醯胺膠體電泳 (Polyacrylamide gel electrophoresis, PAGE)……...26
2.4.2. 核酸探針之最佳化…………………………………………………………26
2.4.3. 核酸探針(P3)之選擇性…………………………………………………….26
2.4.4. 磁珠-探針(P3b@MB)之製備……………….....…………………………...27
2.4.5. 磁珠上探針之鑑定及定量…………………………………………………28
2.4.6. 磁珠-探針(P3b@MB)之抓取效率鑑定........................................................29
2.4.7. P3b@MB之SDA增擴反應時間最佳化........................................................29
2.4.8. P3b@MB之SDA增擴反應情況探討............................................................30
2.4.9. 動態光散射儀確認P3b@MB進行SDA反應之各階段磁珠....................32
2.4.10.P3b@MB之選擇性探討................................................................................32
2.4.11. P3b@MB與miR-205之SDA反應探討.....................................................34
2.4.12. SDA產物與產物探針(product probe)之結合..............................................34
第三章 實驗結果與討論……………………………………………………………...35
3.1. 實驗設計………………………………………………………………………...35
3.2. 核酸探針之最佳化……………………………………………………………...37
3.3. 磁珠-探針之鑑定及定量………………………………………………………..41
3.3.1. DLS磁珠修飾前後之鑑定…………………………………………………...41
3.3.2. SYBR gold之螢光定量………………………………………………………46
3.4. 磁珠-探針(p3b@MB)之抓取效率鑑定...............................................................49
3.5. SDA增擴反應時間最佳化………………………………………………………55
3.6. P3b@MB進行SDA增擴反應之情況..................................................................60
3.7. 動態光散射儀確認SDA反應各階段磁珠之粒徑大小及zeta potential……...64
3.8. Free form P3b及P3b@MB之選擇性探討...........................................................67
3.9. P3b@MB與miR-205之SDA反應.......................................................................81
3.10. SDA產物與產物探針(product probe)之結合…………………………………81
第四章 結論…………………………………………………………………………...84
參考文獻……………………………………………………………………………….85
dc.language.isozh-TW
dc.title使用磁珠分離及鏈置換增擴放大法開發子宮內膜樣腺癌偵檢策略zh_TW
dc.titleThe strategy of using magnetic beads and Strand-Displacement Amplification to develop the Detection platform of Endometrioid Endometrial Carcinoma diagnosis.en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.coadvisor何佳安(Ja-An Annie Ho)
dc.contributor.oralexamcommittee周芳如(Fang-Ju Chou),吳立真(Li-Chen Wu),張英風(Ying-Feng Chang)
dc.subject.keyword磁珠,鏈置換增擴放大法,zh_TW
dc.subject.keywordmagnetic bead,SDA,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202000461
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-02-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2025-02-25-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06b22040-1.pdf3.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved