Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76443
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章(Wen-Chang Chen)
dc.contributor.authorMercedes Wuen
dc.contributor.author吳加恩zh_TW
dc.date.accessioned2021-07-09T15:52:26Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citation1.4 References
1. M. Irimia-Vladu, Chem. Soc. Rev. 2014, 43, 588;
2. M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer, N. S. Sariciftci, Mater. Today 2012, 15, 340;
3. S. W. Hwang, J. K. Song, X. Huang, H. Cheng, S. K. Kang, B. H. Kim, J. H. Kim, S. Yu, Y. Huang, J. A. Rogers, Adv. Mater. 2014, 26, 3905;
4. J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603;
5. H. Yuk, T. Zhang, G. A. Parada, X. Liu, X. Zhao, Nat. Commun. 2016, 7;
6. A. B. Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito, Y. Sakai, Y. Takeoka, Nat. Commun. 2014, 5;
7. J.-Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133;
8. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, H. M. Akil, Mater. Sci. Eng. C. 2015, 57, 414;
9. J. Maitra, V. K. Shukla, Am. J. Polym. Sci. 2014, 4, 25;
10. W. Sun, B. Xue, Y. Li, M. Qin, J. Wu, K. Lu, J. Wu, Y. Cao, Q. Jiang, W. Wang, Adv. Funct. Mater. 2016, 26, 9044;
11. T. Nakajima, Polym. J. 2017;
12. J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155;
13. G. Cai, J. Wang, K. Qian, J. Chen, S. Li, P. S. Lee, Adv. Sci. 2016;
14. S. Lin, C. Cao, Q. Wang, M. Gonzalez, J. E. Dolbow, X. Zhao, Soft Matter 2014, 10, 7519;
15. D. L. Taylor, Adv. Mater. 2016;
16. J. Cui, A. del Campo, Chem. Commun. 2012, 48, 9302;
17. A. Phadke, C. Zhang, B. Arman, C.-C. Hsu, R. A. Mashelkar, A. K. Lele, M. J. Tauber, G. Arya, S. Varghese, Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 4383;
18. A. Vintiloiu, J.-C. Leroux, J. Control. Release 2008, 125, 179;
19. Y. Y. Lee, H. Y. Kang, S. H. Gwon, G. M. Choi, S. M. Lim, J. Y. Sun, Y. C. Joo, Adv. Mater. 2016, 28, 1636;
20. J. Puigmartí‐Luis, V. Laukhin, Á. Pérez del Pino, J. Vidal‐Gancedo, C. Rovira, E. Laukhina, D. B. Amabilino, Angew. Chem. Int. Ed. 2007, 46, 238;
21. S. S. Babu, S. Prasanthkumar, A. Ajayaghosh, Angew. Chem. Int. Ed. 2012, 51, 1766;
22. A. R. Hirst, B. Escuder, J. F. Miravet, D. K. Smith, Angew. Chem. Int. Ed. 2008, 47, 8002;
23. Z. Wei, J. H. Yang, J. Zhou, F. Xu, M. Zrínyi, P. H. Dussault, Y. Osada, Y. M. Chen, Chem. Soc. Rev. 2014, 43, 8114;
24. H. Zhu, Z. Xiao, D. Liu, Y. Li, N. J. Weadock, Z. Fang, J. Huang, L. Hu, Energy Environ. Sci. 2013, 6, 2105;
25. B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, P. K. Chan, Sci. Rep. 2014, 4, 6430;
26. C. J. Bettinger, Z. Bao, Adv. Mater. 2010, 22, 651;
27. C.-C. Shih, C.-Y. Chung, J.-Y. Lam, H.-C. Wu, Y. Morimitsu, H. Matsuno, K. Tanaka, W.-C. Chen, Chem. Commun. 2016, 52, 13463;
28. B. P. Partlow, C. W. Hanna, J. Rnjak‐Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, D. L. Kaplan, Adv. Funct. Mater. 2014, 24, 4615;
29. Y. Wang, G. A. Ameer, B. J. Sheppard, R. Langer, Nat. Biotechnol. 2002, 20, 602;
30. P. Heremans, G. H. Gelinck, R. Muller, K.-J. Baeg, D.-Y. Kim, Y.-Y. Noh, Chem. Mater. 2010, 23, 341;
31. N.-H. You, C.-C. Chueh, C.-L. Liu, M. Ueda, W.-C. Chen, Macromolecules 2009, 42, 4456;
32. E. Teo, Q. Ling, Y. Song, Y. Tan, W. Wang, E. Kang, D. Chan, C. Zhu, Org. Electron. 2006, 7, 173;
33. S. H. Jo, W. Lu, Nano Lett. 2008, 8, 392;
34. Y. Yang, J. Ouyang, L. Ma, R. H. Tseng, C. W. Chu, Adv. Funct. Mater. 2006, 16, 1001;
35. T. W. Kim, Y. Yang, F. Li, W. L. Kwan, NPG Asia Mater. 2012, 4, e18;
36. S. Park, K. Kim, D. M. Kim, W. Kwon, J. Choi, M. Ree, ACS Appl. Mater. Interfaces. 2011, 3, 765;
37. B. Hu, X. Zhu, X. Chen, L. Pan, S. Peng, Y. Wu, J. Shang, G. Liu, Q. Yan, R.-W. Li, J. Am. Chem. Soc. 2012, 134, 17408;
38. G. Tian, S. Qi, F. Chen, L. Shi, W. Hu, D. Wu, Appl. Phys. Lett. 2011, 98, 92;
39. C. C. Shih, W. Y. Lee, C. Lu, H. C. Wu, W. C. Chen, Adv. Electron. Mater. 2017, 3;
40. C.-L. Liu, T. Kurosawa, A.-D. Yu, T. Higashihara, M. Ueda, W.-C. Chen, J. Phys. Chem. C 2011, 115, 5930;
41. T. J. Lee, S. Park, S. G. Hahm, D. M. Kim, K. Kim, J. Kim, W. Kwon, Y. Kim, T. Chang, M. Ree, J. Phys. Chem. C 2009, 113, 3855;
42. T. J. Lee, Y.-G. Ko, H.-J. Yen, K. Kim, D. M. Kim, W. Kwon, S. G. Hahm, G.-S. Liou, M. Ree, Polym. Chem. 2012, 3, 1276;
43. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917;
44. X. D. Zhuang, Y. Chen, G. Liu, B. Zhang, K. G. Neoh, E. T. Kang, C. X. Zhu, Y. X. Li, L. J. Niu, Adv. Funct. Mater. 2010, 20, 2916;
45. B. Cho, T.-W. Kim, M. Choe, G. Wang, S. Song, T. Lee, Org. Electron. 2009, 10, 473;
46. D. Attianese, M. Petrosino, P. Vacca, S. Concilio, P. Iannelli, A. Rubino, S. Bellone, IEEE Electr. Device 2008, 29, 44;
47. P. Guo, Y.-W. Dong, X. Ji, Y.-X. Lu, W. Xu, IEEE Electr. Device 2007, 28, 572;
48. W. Tang, H. Shi, G. Xu, B. S. Ong, Z. D. Popovic, J. Deng, J. Zhao, G. Rao, Adv. Mater. 2005, 17, 2307;
49. J. H. Smits, S. C. Meskers, R. A. Janssen, A. W. Marsman, D. M. de Leeuw, Adv. Mater. 2005, 17, 1169;
50. F. Verbakel, S. C. Meskers, R. A. Janssen, Chem. Mater. 2006, 18, 2707;
51. G. Dearnaley, D. Morgan, A. Stoneham, J. Non-Cryst. Solids 1970, 4, 593;
52. G. Dearnaley, A. Stoneham, D. Morgan, Rep. Prog. Phys. 1970, 33, 1129;
53. P. Sliva, G. Dir, C. Griffiths, J. Non-Cryst. Solids 1970, 2, 316;
54. H. Carchano, R. Lacoste, Y. Segui, Appl. Phys. Lett. 1971, 19, 414;
55. L. Pender, R. Fleming, J. Appl. Phys. 1975, 46, 3426;
56. W.-J. Joo, T.-L. Choi, J. Lee, S. K. Lee, M.-S. Jung, N. Kim, J. M. Kim, J. Phys. Chem. B 2006, 110, 23812;
57. B. Hu, F. Zhuge, X. Zhu, S. Peng, X. Chen, L. Pan, Q. Yan, R.-W. Li, J. Mater. Chem. 2012, 22, 520;
58. C. W. Chu, J. Ouyang, J. H. Tseng, Y. Yang, Adv. Mater. 2005, 17, 1440;
59. S. J. Liu, Z. H. Lin, Q. Zhao, Y. Ma, H. F. Shi, M. D. Yi, Q. D. Ling, Q. L. Fan, C. X. Zhu, E. T. Kang, Adv. Funct. Mater. 2011, 21, 979;
60. B. Zhang, G. Liu, Y. Chen, C. Wang, K. G. Neoh, T. Bai, E. T. Kang, ChemPlusChem 2012, 77, 74;
61. C.-L. Liu, W.-C. Chen, Polym. Chem. 2011, 2, 2169;
62. Q.-D. Ling, Y. Song, E. Y. H. Teo, S.-L. Lim, C. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang, K.-G. Neoh, Electrochem. Solid State Lett. 2006, 9, G268;
63. B. Cho, S. Song, Y. Ji, T. W. Kim, T. Lee, Adv. Funct. Mater. 2011, 21, 2806;
64. Y.-C. Lai, K. Ohshimizu, W.-Y. Lee, J.-C. Hsu, T. Higashihara, M. Ueda, W.-C. Chen, J. Mater. Chem. 2011, 21, 14502;
65. S. L. Lim, Q. Ling, E. Y. H. Teo, C. X. Zhu, D. S. H. Chan, E.-T. Kang, K. G. Neoh, Chem. Mater. 2007, 19, 5148;
66. S. J. Liu, P. Wang, Q. Zhao, H. Y. Yang, J. Wong, H. B. Sun, X. C. Dong, W. P. Lin, W. Huang, Adv. Mater. 2012, 24, 2901;
67. D. M. Kim, S. Park, T. J. Lee, S. G. Hahm, K. Kim, J. C. Kim, W. Kwon, M. Ree, Langmuir 2009, 25, 11713;
68. Y.-Q. Li, R.-C. Fang, A.-M. Zheng, Y.-Y. Chu, X. Tao, H.-H. Xu, S.-J. Ding, Y.-Z. Shen, J. Mater. Chem. 2011, 21, 15643;
69. Y. Li, H. Xu, X. Tao, K. Qian, S. Fu, Y. Shen, S. Ding, J. Mater. Chem. 2011, 21, 1810;
70. S. G. Hahm, S. Choi, S.-H. Hong, T. J. Lee, S. Park, D. M. Kim, J. C. Kim, W. Kwon, K. Kim, M.-J. Kim, J. Mater. Chem. 2009, 19, 2207;
71. Q. D. Ling, Y. Song, S. L. Lim, E. Y. H. Teo, Y. P. Tan, C. Zhu, D. S. H. Chan, D. L. Kwong, E. T. Kang, K. G. Neoh, Angew. Chem. 2006, 118, 3013;
72. C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S. H. Tung, W. C. Chen, Adv. Funct. Mater. 2017, 27;
73. J. Lee, Y. Kim, C. Kim, M. Ree, Mater. Horiz. 2017, 4, 423;
74. Y. C. Lai, F. C. Hsu, J. Y. Chen, H. He Jr, T. C. Chang, Y. P. Hsieh, T. Y. Lin, Y. J. Yang, Y. F. Chen, Adv. Mater. 2013, 25, 2733;
75. A.-D. Yu, T. Kurosawa, Y.-H. Chou, K. Aoyagi, Y. Shoji, T. Higashihara, M. Ueda, C.-L. Liu, W.-C. Chen, ACS Appl. Mater. Interfaces. 2013, 5, 4921;
76. G. Liu, Q.-D. Ling, E. Y. H. Teo, C.-X. Zhu, D. S.-H. Chan, K.-G. Neoh, E.-T. Kang, ACS Nano 2009, 3, 1929;
77. Q. Zhang, J. Pan, X. Yi, L. Li, S. Shang, Org. Electron. 2012, 13, 1289;
78. D. I. Son, D. H. Park, J. B. Kim, J.-W. Choi, T. W. Kim, B. Angadi, Y. Yi, W. K. Choi, J. Phys. Chem. C 2010, 115, 2341;
79. S. I. White, P. M. Vora, J. M. Kikkawa, K. I. Winey, Adv. Funct. Mater. 2011, 21, 233.
2.5 References
1. H. Yuk, T. Zhang, G. A. Parada, X. Liu, X. Zhao, Nat. Commun. 2016, 7;
2. A. B. Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito, Y. Sakai, Y. Takeoka, Nat. Commun. 2014, 5;
3. J.-Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133;
4. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, H. M. Akil, Mater. Sci. Eng. C. 2015, 57, 414;
5. J. Maitra, V. K. Shukla, Am. J. Polym. Sci. 2014, 4, 25;
6. W. Sun, B. Xue, Y. Li, M. Qin, J. Wu, K. Lu, J. Wu, Y. Cao, Q. Jiang, W. Wang, Adv. Funct. Mater. 2016, 26, 9044;
7. T. Nakajima, Polym. J. 2017;
8. J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155;
9. G. Cai, J. Wang, K. Qian, J. Chen, S. Li, P. S. Lee, Adv. Sci. 2016;
10. S. Lin, C. Cao, Q. Wang, M. Gonzalez, J. E. Dolbow, X. Zhao, Soft Matter 2014, 10, 7519;
11. D. L. Taylor, Adv. Mater. 2016;
12. J. Cui, A. del Campo, Chem. Commun. 2012, 48, 9302;
13. A. Phadke, C. Zhang, B. Arman, C.-C. Hsu, R. A. Mashelkar, A. K. Lele, M. J. Tauber, G. Arya, S. Varghese, Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 4383;
14. C. Chang, A. Lue, L. Zhang, Macromol. Chem. Phys. 2008, 209, 1266;
15. J.-S. Park, J.-W. Park, E. Ruckenstein, Polymer 2001, 42, 4271;
16. T. Karbowiak, H. Hervet, L. Léger, D. Champion, F. Debeaufort, A. Voilley, Biomacromolecules. 2006, 7, 2011;
17. H. Liang, L. Zheng, S. Liao, Int. J. Hydrogen Energy 2012, 37, 12860;
18. G. Silva, P. Sobral, R. Carvalho, P. Bergo, O. Mendieta-Taboada, A. Habitante, J. Polym. Environ. 2008, 16, 276;
19. R. A. Gross, B. Kalra, Science 2002, 297, 803;
20. P. Yang, D. Li, S. Jin, J. Ding, J. Guo, W. Shi, C. Wang, Biomaterials. 2014, 35, 2079;
21. R. Shi, J. Bi, Z. Zhang, A. Zhu, D. Chen, X. Zhou, L. Zhang, W. Tian, Carbohydr. Polym. 2008, 74, 763;
22. N. A. Peppas, E. W. Merrill, J. Appl. Polym. Sci. 1976, 20, 1457;
23. K. Yamaura, H. Kitahara, T. Tanigami, J. Appl. Polym. Sci. 1997, 64, 1283;
24. E. A. Soliman, M. Furuta, Food Nutr. Sci. 2014, 2014;
25. X. Zhang, J. Zhu, X. Liu, J. Feng, Cellulose. 2012, 19, 121;
26. H. Mansur, C. Sadahira, A. Souza, A. Mansur, Mater. Sci. Eng. C, 2008, 28, 539
27. P. Hong, J. Chen, H. Wu, J. Appl. Polym. Sci. 1998, 69, 2477
28. I. Okhrimenko, E. D'yakonova, Polym. Sci. (USSR) 1964, 6, 2095;
29. G. Distler, E. D'yakonova, I. Yefremov, Y. I. Kortukova, I. Okhrimenko, P. Sotnikov, Polym. Sci. (USSR) 1966, 8, 1917;
30. Y. ROOS, M. KAREL, J. Food Sci. 1991, 56, 38;
31. S. Mali, L. Sakanaka, F. Yamashita, M. Grossmann, Carbohydr. Polym. 2005, 60, 283;
32. N. Gontard, S. Guilbert, J. L. CUQ, J. Food Sci. 1993, 58, 206;
33. P. Blasi, S. S. D'Souza, F. Selmin, P. P. DeLuca, J. Control. Release 2005, 108, 1;
34. Z. Ping, Q. Nguyen, S. Chen, J. Zhou, Y. Ding, Polymer 2001, 42, 8461;
35. H. Bair, G. Johnson, E. Anderson, S. Matsuoka, Polym. Eng. Sci. 1981, 21, 930;
36. T.-Y. Liu, S.-Y. Chen, Y.-L. Lin, D.-M. Liu, Langmuir 2006, 22, 9740;
37. Y. Y. Lee, H. Y. Kang, S. H. Gwon, G. M. Choi, S. M. Lim, J. Y. Sun, Y. C. Joo, Adv. Mater. 2016, 28, 1636;
38. N. Cao, X. Yang, Y. Fu, Food Hydrocoll. 2009, 23, 729;
39. F. Debeaufort, A. Voilley, J. Agric. Food Chem. 1997, 45, 685;
40. Y. Xianda, W. Anlai, C. Suqin, Desalination 1987, 62, 293;
41. W. Amass, A. Amass, B. Tighe, Polym. Int. 1998, 47, 89;
42. G. Saunders, B. MacCreath, Application Compendium. Agilent Technologies 2010;
43. C. De Vasconcelos, d. P. Bezerril, D. Dos Santos, d. T. Dantas, M. Pereira, J. Fonseca, Biomacromolecules. 2006, 7, 1245;
44. R. Larson, E. Bookland, R. Williams, K. Yocom, D. Saucy, M. Freeman, G. Swift, J. Environ. Polym. Degrad. 1997, 5, 41;
45. Y. Wang, G. A. Ameer, B. J. Sheppard, R. Langer, Nat. Biotechnol. 2002, 20, 602;
46. K. Kumeta, I. Nagashima, J. Appl. Polym. Sci. 2003, 90, 2420;
47. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H.-p. Lee, E. Lippens, G. N. Duda, Nat. Mater. 2015;
48. X. Zhao, N. Huebsch, D. J. Mooney, Z. Suo, J. Appl. Phys. 2010, 107, 063509
3.4 References
1. C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S. H. Tung, W. C. Chen, Adv. Funct. Mater. 2017, 27;
2. C.-C. Shih, C.-Y. Chung, J.-Y. Lam, H.-C. Wu, Y. Morimitsu, H. Matsuno, K. Tanaka, W.-C. Chen, Chem. Commun. 2016, 52, 13463;
3. J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, J. M. Tour, Nat. Commun. 2012, 3, 1101;
4. J. Lee, Y. Kim, C. Kim, M. Ree, Mater. Horiz. 2017, 4, 423;
5. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh, W.-F. Su, NPG Asia Mater. 2014, 6, e87;
6. J. H. Smits, S. C. Meskers, R. A. Janssen, A. W. Marsman, D. M. de Leeuw, Adv. Mater. 2005, 17, 1169;
7. F. Verbakel, S. C. Meskers, R. A. Janssen, Chem. Mater. 2006, 18, 2707;
8. C. W. Chu, J. Ouyang, J. H. Tseng, Y. Yang, Adv. Mater. 2005, 17, 1440;
9. S. L. Lim, Q. Ling, E. Y. H. Teo, C. X. Zhu, D. S. H. Chan, E.-T. Kang, K. G. Neoh, Chem. Mater. 2007, 19, 5148;
10. B. Cho, S. Song, Y. Ji, T. W. Kim, T. Lee, Adv. Funct. Mater. 2011, 21, 2806;
11. B. Peng, X. Ren, Z. Wang, X. Wang, R. C. Roberts, P. K. Chan, Sci. Rep. 2014, 4, 6430;
12. C. J. Bettinger, Z. Bao, Adv. Mater. 2010, 22, 651;
13. A. Campbell, D. Bradley, D. Lidzey, J. Appl. Phys. 1997, 82, 6326;
14. P. Mark, W. Helfrich, J. Appl. Phys. 1962, 33, 205;
15. L. Yin, A. B. Farimani, K. Min, N. Vishal, J. Lam, Y. K. Lee, N. R. Aluru, J. A. Rogers, Adv. Mater. 2015, 27, 1857;
16. G. Silva, P. Sobral, R. Carvalho, P. Bergo, O. Mendieta-Taboada, A. Habitante, J. Polym. Environ. 2008, 16, 276;
17. R. A. Gross, B. Kalra, Science 2002, 297, 803;
18. G. Saunders, B. MacCreath, Application Compendium. Agilent Technologies 2010;
19. L. Yu, N. Ren, K. Yang, M. Zhang, L. Su, J. Appl. Polym. Sci. 2016, 133;
20. P. Yang, D. Li, S. Jin, J. Ding, J. Guo, W. Shi, C. Wang, Biomaterials. 2014, 35, 2079;
21. C. De Vasconcelos, d. P. Bezerril, D. Dos Santos, d. T. Dantas, M. Pereira, J. Fonseca, Biomacromolecules. 2006, 7, 1245;
22. R. Larson, E. Bookland, R. Williams, K. Yocom, D. Saucy, M. Freeman, G. Swift, J. Environ. Polym. Degrad. 1997, 5, 41;
23. S.-C. Luo, E. Mohamed Ali, N. C. Tansil, H.-h. Yu, S. Gao, E. A. Kantchev, J. Y. Ying, Langmuir 2008, 24, 8071;
24. G. Cellot, P. Lagonegro, G. Tarabella, D. Scaini, F. Fabbri, S. Iannotta, M. Prato, G. Salviati, L. Ballerini, Front. Neurosci. 2015, 9;
25. Y. Marois, R. Guidoin, 2013;
26. A. Tayal, S. A. Khan, Macromolecules 2000, 33, 9488.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76443-
dc.description.abstractAbstract
Biodegradable/biocompatible organic materials are a safe, non-toxic, renewable, and low-cost alternative to traditional inorganic and plastic options. In the world of electronic substrates, hydrogels are a viable “green” alternative to traditional stretchable electronic substrates but lack a direct integration pathway because of intrinsic properties like solvent evaporation, high water content, and poor mechanical characteristics. If these weaknesses were overcome, a suitable scaffold for fully stretchable, non-toxic, and biocompatible electronics could be recognized.
In the first part of the thesis (chapter 2), a biocompatible, non-toxic, self-healing, mechanically tough, vapor absorbing and retaining, and recyclable PVA:PMAA pseudo-hydrogel is facilely fabricated. TGA, DSC, XRD, FTIR, and self-healing testing were used to confirm that the full blending of PVA and PMAA polymers as well as give insight on the strong hydrogen cross-link bonding between them. Stress-strain curves, relaxation times, loading and unloading mechanical testing revealed the high elongation, fast recovery, and tunable mechanical properties which helped confirm the 3D gel network of the pseudo-hydrogel structure. The pseudo-hydrogel interactions with water were especially important as the gel was able to absorb and retain water vapor which is a novel property. The gel was also able to dissolve fully in water which is important for recycling and biodegradable pathways.
In the second part of the thesis (chapter 3), we built upon the stretchable, biocompatible, nontoxic, and water-soluble nature of the pseudo-hydrogel and fabricated a high performance resistive DNA memory device. Using St-DNA as a charge trapping and transporting layer, the memory device was fabricated using a structure of 1:1 pseudo-hydrogel/1:4 PEDOT:PU/St-DNA/1:4 PEDOT:PU to preserve the “green” properties of the pseudo-hydrogel. The device exhibited WORM memory characteristics similar to literature findings with a Vc,ON of 2V, a high ON/OFF current ratio of 104 and a long retention time of 104s. The device also retained these memory characteristics under 10, 30, and 50% strain as well as 1000 strain cycles at 30% strain. The device could be easily dissolved in DI water, which opens up recyclability, bioresorbability, and biodegradability potential.
en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:52:26Z (GMT). No. of bitstreams: 1
ntu-106-R04524100-1.pdf: 3317658 bytes, checksum: e08652e2b0b34f90762c2837b7f606ce (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsContents
Abstract……………………………………………………………………………....II
Table Captions………………………………………………………………....…VIII
Figure Captions……………………………………………………………......……IX
Chapter 1. Introduction……………………………………………………………...1
1.1 Introduction to Biodegradable/Biocompatible Organic Electronics…….…...1
1.1.1 Hydrogels………………………………………………………………2
1.1.1.1 Tough Double-network Hydrogels……………………....…….2
1.1.1.2 Hybrid Hydrogels…………………………………...…………4
1.1.1.3 Self-healing Hydrogels…………………………………...……5
1.1.2 Organogels………………………………………………………...….6
1.1.3 Biodegradable “Green” Substrates……………………………………8
1.2 Introduction to Polymer Memory……………………………………..…….10
1.2.1 Resistor-type Polymer Memory Device Structure and Fabrication…11
1.2.2 Resistor-type Memory Classifications………………………...…….12
1.2.3 Operating Mechanism of Polymer Resistor-type Memory………….13
1.2.3.1 Filamentary Conduction Mechanism………………….…..…13
1.2.3.2 Charge Transfer (CT) Mechanism……………………...……14
1.2.3.3 Charge Trapping-Detrapping Mechanism……………………15
1.2.3.4 Conformational Change……………………………...………16
1.2.4 Polymer Materials for Resistor-type Memory……………………….17
1.2.4.1 Polyimides………………………………………………...….18
1.2.4.2 π-Conjugated Polymers………………………………………19
1.2.4.3 “Green” and Biocompatible Polymers………………...……..20
1.2.4.4 Polymer Composites…………………………………………21
1.3 Research Objectives…………………………………………………...……24
1.4 References…………………………………………………..………………26
Chapter 2. Fabrication and Characterization of PVA:PMAA Pseudo-Hydrogels for Biocompatible and Stretchable Electronic Substrates………………………..46
2.1 Introduction to PVA:PMAA Pseudo-Hydrogel……………………...……..46
2.2 Experimental………………………………………………………………..47
2.2.1 Materials……………………………………………………………..47
2.2.2 Characterization………………………………………………...……47
2.2.3 Fabrication of Pseudo-Hydrogels……………………………………48
2.3 Results and Discussion…………………………………………………..….49
2.3.1 Pseudo-hydrogel Analysis…………………………………………...49
2.3.1.1 Thermogravimetric Analysis (TGA)……………...………….49
2.3.1.2 Differential Scanning Calorimetry (DSC)……………………50
2.3.1.3 X-ray Diffraction (XRD)……………………………………..52
2.3.1.4 Infrared Spectroscopy (FTIR)………………………………..53
2.3.1.5 Self-healing Properties……………………………………….55
2.3.2 Water and Pseudo-hydrogel interactions…………………………….56
2.3.2.1 Water Vapor Absorption and Equilibrium…………….……..57
2.3.2.2 Recycling and Biodegradable Potential………………..…….60
2.3.2.3 Effect of Vapor Content on Mechanical Properties……...…..61
2.3.3 Mechanical Properties……………………………………………….62
2.3.3.1 Stress-Strain Curves and Relaxation Times of Pseudo-hydrogel Blends …………………………….…………………………………………….……62
2.3.3.2 Relaxation Times and Load-Unload Cycles……….…………64
2.3.3.3 Effect of Different Cross-linking Times and Temperatures.…65
2.4 Conclusion………………………………………………………….……….66
2.5 References…………………………………………………………….…….68
Chapter 3. Biocompatible and Stretchable DNA Memory fabricated on a PVA:PMAA Pseudo Hydrogel……………………………………………..………90
3.1 Introduction to Biocompatible Memory Devices…………………...………90
3.2 Experimental………………………………………………………..………93
3.2.1 Materials………………………………………………………….….93
3.2.2 Characterization………………………………………………...……93
3.3.3 Fabrication and Measurement of Memory Devices…………….…...94
3.3 Results and Discussion……………………………………………….…..…96
3.3.1 Pseudo-hydrogel Surface Morphology………………………………97
3.3.2 Memory Device Characterization………………………………...…99
3.3.2.1 Memory Device Performance Under Strain…………...……100
3.3.2.2 DNA Memory Mechanism…………………………….……100
3.3.3 Memory Device Dissolution in Water………………...……………102
3.3.4 Conclusions………………………………………………………...103
3.4 References……………………………………………………………....…104
Chapter 4. Conclusion and Future Work………………………………..………112
dc.language.isoen
dc.subject可分解性zh_TW
dc.subject拉伸性zh_TW
dc.subject水膠zh_TW
dc.subject電阻式記憶體zh_TW
dc.subject生物相容性zh_TW
dc.subjectbiocompatibleen
dc.subjectstretchableen
dc.subjecthydrogelen
dc.subjectresistor memoryen
dc.subjectdisintegratableen
dc.title具拉伸及生物可相容性之水膠:製備、特性分析及於電阻式記憶體應用zh_TW
dc.titleFabrication and Characterization of a Stretchable and Biocompatible Pseudo-Hydrogel for Resistor Memory Device Applicationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭霽慶(Chi-Ching Guo),李文亞(Wen-Ya Lee),邱昱誠(Yu-Cheng Chiu)
dc.subject.keyword拉伸性,水膠,電阻式記憶體,生物相容性,可分解性,zh_TW
dc.subject.keywordstretchable,hydrogel,resistor memory,biocompatible,disintegratable,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201702068
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-08-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04524100-1.pdf3.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved