請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76436
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何佳安 | |
dc.contributor.author | Lik-Bin Chong | en |
dc.contributor.author | 張立斌 | zh_TW |
dc.date.accessioned | 2021-07-09T15:52:19Z | - |
dc.date.available | 2022-09-12 | |
dc.date.copyright | 2017-09-12 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-17 | |
dc.identifier.citation | 1. Bardeesy, N.; Sharpless, N. E.; DePinho, R. A.; Merlino, G., The genetics of pancreatic adenocarcinoma: a roadmap for a mouse model. Semin Cancer Biol 2001, 11 (3), 201-18.
2. Elayat, A. A.; el-Naggar, M. M.; Tahir, M., An immunocytochemical and morphometric study of the rat pancreatic islets. Journal of anatomy 1995, 186 ( Pt 3), 629-37. 3. Seufferlein, T.; Bachet, J. B.; Van Cutsem, E.; Rougier, P., Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology 2012, 23 Suppl 7, vii33-40. 4. Edge, S. B.; Compton, C. C., The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology 2010, 17 (6), 1471-4. 5. Hidalgo, M., Pancreatic cancer. The New England journal of medicine 2010, 362 (17), 1605-17. 6. Siegel, R.; Naishadham, D.; Jemal, A., Cancer statistics, 2013. CA Cancer J Clin 2013, 63 (1), 11-30. 7. Rahib, L.; Smith, B. D.; Aizenberg, R.; Rosenzweig, A. B.; Fleshman, J. M.; Matrisian, L. M., Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014, 74 (11), 2913-21. 8. Keane, M. G.; Horsfall, L.; Rait, G.; Pereira, S. P., A case-control study comparing the incidence of early symptoms in pancreatic and biliary tract cancer. BMJ Open 2014, 4 (11), e005720. 9. Kamisawa, T.; Isawa, T.; Koike, M.; Tsuruta, K.; Okamoto, A., Hematogenous metastases of pancreatic ductal carcinoma. Pancreas 1995, 11 (4), 345-9. 10. Davids, P. H.; Groen, A. K.; Rauws, E. A.; Tytgat, G. N.; Huibregtse, K., Randomised trial of self-expanding metal stents versus polyethylene stents for distal malignant biliary obstruction. Lancet 1992, 340 (8834-8835), 1488-92. 11. Iodice, S.; Gandini, S.; Maisonneuve, P.; Lowenfels, A. B., Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg 2008, 393 (4), 535-45. 12. Permert, J.; Ihse, I.; Jorfeldt, L.; Vonschenck, H.; Arnqvist, H. J.; Larsson, J., Pancreatic-Cancer Is Associated with Impaired Glucose-Metabolism. Eur J Surg 1993, 159 (2), 101-107. 13. Lin, G.; Zeng, Z.; Wang, X.; Wu, Z.; Wang, J.; Wang, C.; Sun, Q.; Chen, Y.; Quan, H., Cholecystectomy and risk of pancreatic cancer: a meta-analysis of observational studies. Cancer Causes Control 2012, 23 (1), 59-67. 14. Gong, Y.; Zhou, Q.; Zhou, Y.; Lin, Q.; Zeng, B.; Chen, R.; Li, Z., Gastrectomy and risk of pancreatic cancer: systematic review and meta-analysis of observational studies. Cancer Causes Control 2012, 23 (8), 1279-88. 15. DiMagno, E. P.; Reber, H. A.; Tempero, M. A., AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology 1999, 117 (6), 1464-84. 16. Rickes, S.; Unkrodt, K.; Neye, H.; Ocran, K. W.; Wermke, W., Differentiation of pancreatic tumours by conventional ultrasound, unenhanced and echo-enhanced power Doppler sonography. Scand J Gastroenterol 2002, 37 (11), 1313-20. 17. Hessel, S. J.; Siegelman, S. S.; McNeil, B. J.; Sanders, R.; Adams, D. F.; Alderson, P. O.; Finberg, H. J.; Abrams, H. L., A prospective evaluation of computed tomography and ultrasound of the pancreas. Radiology 1982, 143 (1), 129-33. 18. Niederau, C.; Grendell, J. H., Diagnosis of pancreatic carcinoma. Imaging techniques and tumor markers. Pancreas 1992, 7 (1), 66-86. 19. Solofoharivelo, M. C.; van der Walt, A. P.; Stephan, D.; Burger, J. T.; Murray, S. L., MicroRNAs in fruit trees: discovery, diversity and future research directions. Plant biology (Stuttgart, Germany) 2014, 16 (5), 856-65. 20. Bartel, D. P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116 (2), 281-97. 21. Lagos-Quintana, M.; Rauhut, R.; Meyer, J.; Borkhardt, A.; Tuschl, T., New microRNAs from mouse and human. RNA 2003, 9 (2), 175-9. 22. Hwang, H. W.; Mendell, J. T., MicroRNAs in cell proliferation, cell death, and tumorigenesis. British journal of cancer 2006, 94 (6), 776-80. 23. Brennecke, J.; Hipfner, D. R.; Stark, A.; Russell, R. B.; Cohen, S. M., bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003, 113 (1), 25-36. 24. Poy, M. N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X.; Macdonald, P. E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P.; Stoffel, M., A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432 (7014), 226-30. 25. Iorio, M. V.; Croce, C. M., MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012, 4 (3), 143-59. 26. Lu, J.; Getz, G.; Miska, E. A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; Downing, J. R.; Jacks, T.; Horvitz, H. R.; Golub, T. R., MicroRNA expression profiles classify human cancers. Nature 2005, 435 (7043), 834-8. 27. Pandey, A. K.; Agarwal, P.; Kaur, K.; Datta, M., MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 2009, 23 (4-6), 221-32. 28. Davis, T. H.; Cuellar, T. L.; Koch, S. M.; Barker, A. J.; Harfe, B. D.; McManus, M. T.; Ullian, E. M., Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 2008, 28 (17), 4322-30. 29. Quiat, D.; Olson, E. N., MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest 2013, 123 (1), 11-8. 30. Small, E. M.; Frost, R. J.; Olson, E. N., MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010, 121 (8), 1022-32. 31. De Planell-Saguer, M.; Rodicio, M. C., Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta 2011, 699 (2), 134-52. 32. Lee, Y.; Kim, M.; Han, J.; Yeom, K. H.; Lee, S.; Baek, S. H.; Kim, V. N., MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23 (20), 4051-60. 33. Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Radmark, O.; Kim, S.; Kim, V. N., The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425 (6956), 415-9. 34. Murchison, E. P.; Hannon, G. J., miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004, 16 (3), 223-9. 35. Lund, E.; Dahlberg, J. E., Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 2006, 71, 59-66. 36. Garzon, R.; Marcucci, G.; Croce, C. M., Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010, 9 (10), 775-89. 37. Calin, G. A.; Dumitru, C. D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C. M., Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002, 99 (24), 15524-9. 38. Garzon, R.; Calin, G. A.; Croce, C. M., MicroRNAs in Cancer. Annu Rev Med 2009, 60, 167-79. 39. Volinia, S.; Calin, G. A.; Liu, C. G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; Prueitt, R. L.; Yanaihara, N.; Lanza, G.; Scarpa, A.; Vecchione, A.; Negrini, M.; Harris, C. C.; Croce, C. M., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006, 103 (7), 2257-61. 40. Paranjape, T.; Slack, F. J.; Weidhaas, J. B., MicroRNAs: tools for cancer diagnostics. Gut 2009, 58 (11), 1546-54. 41. Pfeffer, S. R.; Yang, C. H.; Pfeffer, L. M., The Role of miR-21 in Cancer. Drug Dev Res 2015, 76 (6), 270-7. 42. Liu, Y.; Yin, B.; Zhang, C.; Zhou, L.; Fan, J., Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc. Biochem Biophys Res Commun 2012, 417 (1), 371-5. 43. Zhang, S. Y.; Xie, J. Y.; Liang, H. W.; Chen, X.; Zhang, C. Y., The Origin, Function and Diagnostic Potential of Extracellular microRNA in Human Body Fluids. Prog Biochem Biophys 2013, 40 (7), 603-616. 44. Gibbings, D. J.; Ciaudo, C.; Erhardt, M.; Voinnet, O., Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 2009, 11 (9), 1143-9. 45. Valadi, H.; Ekstrom, K.; Bossios, A.; Sjostrand, M.; Lee, J. J.; Lotvall, J. O., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 2007, 9 (6), 654-U72. 46. Arroyo, J. D.; Chevillet, J. R.; Kroh, E. M.; Ruf, I. K.; Pritchard, C. C.; Gibson, D. F.; Mitchell, P. S.; Bennett, C. F.; Pogosova-Agadjanyan, E. L.; Stirewalt, D. L.; Tait, J. F.; Tewari, M., Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 2011, 108 (12), 5003-8. 47. Kroh, E. M.; Parkin, R. K.; Mitchell, P. S.; Tewari, M., Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR) (vol 50, pg 298, 2010). Methods 2010, 52 (3), 268-268. 48. Mraz, M.; Malinova, K.; Mayer, J.; Pospisilova, S., MicroRNA isolation and stability in stored RNA samples. Biochem Bioph Res Co 2009, 390 (1), 1-4. 49. Sicard, F.; Gayral, M.; Lulka, H.; Buscail, L.; Cordelier, P., Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 2013, 21 (5), 986-94. 50. Cai, B.; An, Y.; Lv, N.; Chen, J.; Tu, M.; Sun, J.; Wu, P.; Wei, J.; Jiang, K.; Miao, Y., miRNA-181b increases the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine in vitro and in nude mice by targeting BCL-2. Oncol Rep 2013, 29 (5), 1769-76. 51. Kawaguchi, T.; Komatsu, S.; Ichikawa, D.; Morimura, R.; Tsujiura, M.; Konishi, H.; Takeshita, H.; Nagata, H.; Arita, T.; Hirajima, S.; Shiozaki, A.; Ikoma, H.; Okamoto, K.; Ochiai, T.; Taniguchi, H.; Otsuji, E., Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. British journal of cancer 2013, 108 (2), 361-9. 52. Wang, W. S.; Liu, L. X.; Li, G. P.; Chen, Y.; Li, C. Y.; Jin, D. Y.; Wang, X. L., Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer. Cancer Prev Res (Phila) 2013, 6 (4), 331-8. 53. Huang, J. S.; Egger, M. E.; Grizzle, W. E.; McNally, L. R., MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech Histochem 2013, 88 (7), 397-402. 54. Gallardo, E.; Navarro, A.; Vinolas, N.; Marrades, R. M.; Diaz, T.; Gel, B.; Quera, A.; Bandres, E.; Garcia-Foncillas, J.; Ramirez, J.; Monzo, M., miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 2009, 30 (11), 1903-1909. 55. Wang, P.; Chen, L.; Zhang, J.; Chen, H.; Fan, J.; Wang, K.; Luo, J.; Chen, Z.; Meng, Z.; Liu, L., Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 2014, 33 (4), 514-24. 56. Zhao, W. G.; Yu, S. N.; Lu, Z. H.; Ma, Y. H.; Gu, Y. M.; Chen, J., The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 2010, 31 (10), 1726-1733. 57. Delpu, Y.; Lulka, H.; Sicard, F.; Saint-Laurent, N.; Lopez, F.; Hanoun, N.; Buscail, L.; Cordelier, P.; Torrisani, J., The rescue of miR-148a expression in pancreatic cancer: an inappropriate therapeutic tool. PLoS One 2013, 8 (1), e55513. 58. Druz, A.; Chen, Y. C.; Guha, R.; Betenbaugh, M.; Martin, S. E.; Shiloach, J., Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol 2013, 10 (2), 287-300. 59. Hou, B.; Jian, Z.; Chen, S.; Ou, Y.; Li, S.; Ou, J., [Expression of miR-216a in pancreatic cancer and its clinical significance]. Nan Fang Yi Ke Da Xue Xue Bao 2012, 32 (11), 1628-31. 60. Lee, E. J.; Gusev, Y.; Jiang, J.; Nuovo, G. J.; Lerner, M. R.; Frankel, W. L.; Morgan, D. L.; Postier, R. G.; Brackett, D. J.; Schmittgen, T. D., Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007, 120 (5), 1046-54. 61. Pritchard, C. C.; Cheng, H. H.; Tewari, M., MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012, 13 (5), 358-369. 62. Varallyay, E.; Burgyan, J.; Havelda, Z., MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 2008, 3 (2), 190-196. 63. Liu, C. G.; Calin, G. A.; Meloon, B.; Gamliel, N.; Sevignani, C.; Ferracin, M.; Dumitru, C. D.; Shimizu, M.; Zupo, S.; Dono, M.; Alder, H.; Bullrich, F.; Negrini, M.; Croce, C. M., An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 2004, 101 (26), 9740-4. 64. Speicher, M. R.; Carter, N. P., The new cytogenetics: Blurring the boundaries with molecular biology. Nat Rev Genet 2005, 6 (10), 782-792. 65. Chen, C.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R.; Lao, K. Q.; Livak, K. J.; Guegler, K. J., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33 (20), e179. 66. Shi, R.; Chiang, V. L., Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005, 39 (4), 519-25. 67. Seeman, N. C., At the crossroads of chemistry, biology, and materials: Structural DNA nanotechnology. Chem Biol 2003, 10 (12), 1151-1159. 68. Zhang, D. Y.; Seelig, G., Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 2011, 3 (2), 103-113. 69. Zhang, D. Y.; Winfree, E., Control of DNA Strand Displacement Kinetics Using Toehold Exchange. J Am Chem Soc 2009, 131 (47), 17303-17314. 70. Connolly, A. R.; Trau, M., Rapid DNA detection by beacon-assisted detection amplification. Nat Protoc 2011, 6 (6), 772-8. 71. Little, M. C.; Andrews, J.; Moore, R.; Bustos, S.; Jones, L.; Embres, C.; Durmowicz, G.; Harris, J.; Berger, D.; Yanson, K.; Rostkowski, C.; Yursis, D.; Price, J.; Fort, T.; Walters, A.; Collis, M.; Llorin, O.; Wood, J.; Failing, F.; O'Keefe, C.; Scrivens, B.; Pope, B.; Hansen, T.; Marino, K.; Williams, K.; et al., Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem 1999, 45 (6 Pt 1), 777-84. 72. Guo, Q. P.; Yang, X. H.; Wang, K. M.; Tan, W. H.; Li, W.; Tang, H. X.; Li, H. M., Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Research 2009, 37 (3). 73. Viasnoff, V.; Meller, A.; Isambert, H., DNA nanomechanical switches under folding kinetics control. Nano Lett 2006, 6 (1), 101-4. 74. Yang, X.; Tang, Y.; Mason, S. D.; Chen, J.; Li, F., Enzyme-Powered Three-Dimensional DNA Nanomachine for DNA Walking, Payload Release, and Biosensing. ACS Nano 2016, 10 (2), 2324-30. 75. Johne, R.; Muller, H.; Rector, A.; van Ranst, M.; Stevens, H., Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol 2009, 17 (5), 205-11. 76. Hellyer, T. J.; Nadeau, J. G., Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev Mol Diagn 2004, 4 (2), 251-61. 77. Jeong, Y. J.; Park, K.; Kim, D. E., Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci 2009, 66 (20), 3325-36. 78. Linck, L.; Resch-Genger, U., Identification of efficient fluorophores for the direct labeling of DNA via rolling circle amplification (RCA) polymerase phi29. Eur J Med Chem 2010, 45 (12), 5561-6. 79. Yan, L.; Zhou, J.; Zheng, Y.; Gamson, A. S.; Roembke, B. T.; Nakayama, S.; Sintim, H. O., Isothermal amplified detection of DNA and RNA. Mol Biosyst 2014, 10 (5), 970-1003. 80. Steain, M. C.; Dwyer, D. E.; Hurt, A. C.; Kol, C.; Saksena, N. K.; Cunningham, A. L.; Wang, B., Detection of influenza A H1N1 and H3N2 mutations conferring resistance to oseltamivir using rolling circle amplification. Antivir Res 2009, 84 (3), 242-248. 81. Henriksson, S.; Blomstrom, A. L.; Fuxler, L.; Fossum, C.; Berg, M.; Nilsson, M., Development of an in situ assay for simultaneous detection of the genomic and replicative form of PCV2 using padlock probes and rolling circle amplification. Virol J 2011, 8. 82. Walker, G. T.; Little, M. C.; Nadeau, J. G.; Shank, D. D., Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A 1992, 89 (1), 392-6. 83. Vincent, M.; Xu, Y.; Kong, H., Helicase-dependent isothermal DNA amplification. EMBO Rep 2004, 5 (8), 795-800. 84. Tijero, M.; Diez-Ahedo, R.; Benito-Lopez, F.; Basabe-Desmonts, L.; Castro-Lopez, V.; Valero, A., Biomolecule storage on non-modified thermoplastic microfluidic chip by ink-jet printing of ionogels. Biomicrofluidics 2015, 9 (4), 044124. 85. Dirks, R. M.; Pierce, N. A., Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 2004, 101 (43), 15275-8. 86. Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E., Enzyme-free nucleic acid logic circuits. Science 2006, 314 (5805), 1585-8. 87. Chen, Y.; Xu, J.; Su, J.; Xiang, Y.; Yuan, R.; Chai, Y. Q., In Situ Hybridization Chain Reaction Amplification for Universal and Highly Sensitive Electrochemiluminescent Detection of DNA. Anal Chem 2012, 84 (18), 7750-7755. 88. Yang, L.; Liu, C.; Ren, W.; Li, Z., Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS Appl Mater Interfaces 2012, 4 (12), 6450-3. 89. Zhang, B.; Liu, B. Q.; Tang, D. P.; Niessner, R.; Chen, G. N.; Knopp, D., DNA-Based Hybridization Chain Reaction for Amplified Bioelectronic Signal and Ultrasensitive Detection of Proteins. Anal Chem 2012, 84 (12), 5392-5399. 90. Gerasimova, Y. V.; Kolpashchikov, D. M., Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 2014, 43 (17), 6405-38. 91. Bi, S.; Cui, Y.; Li, L., Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay. Anal Chim Acta 2013, 760, 69-74. 92. Wei, F.; Wang, J.; Liao, W.; Zimmermann, B. G.; Wong, D. T.; Ho, C. M., Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucleic Acids Res 2008, 36 (11), e65. 93. Kong, R. M.; Zhang, X. B.; Zhang, L. L.; Huang, Y.; Lu, D. Q.; Tan, W.; Shen, G. L.; Yu, R. Q., Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification. Anal Chem 2011, 83 (1), 14-7. 94. Zou, B.; Ma, Y.; Wu, H.; Zhou, G., Ultrasensitive DNA detection by cascade enzymatic signal amplification based on Afu flap endonuclease coupled with nicking endonuclease. Angew Chem Int Ed Engl 2011, 50 (32), 7395-8. 95. Yin, B. C.; Liu, Y. Q.; Ye, B. C., Sensitive detection of microRNA in complex biological samples via enzymatic signal amplification using DNA polymerase coupled with nicking endonuclease. Anal Chem 2013, 85 (23), 11487-93. 96. Xu, H.; Wang, L.; Ye, H.; Yu, L.; Zhu, X.; Lin, Z.; Wu, G.; Li, X.; Liu, X.; Chen, G., An ultrasensitive electrochemical impedance sensor for a special BRCA1 breast cancer gene sequence based on lambda exonuclease assisted target recycling amplification. Chem Commun (Camb) 2012. 97. Turner, A. P., Biosensors: sense and sensibility. Chem Soc Rev 2013, 42 (8), 3184-96. 98. Clark, L. C., Jr.; Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 1962, 102, 29-45. 99. Cagnin, S.; Caraballo, M.; Guiducci, C.; Martini, P.; Ross, M.; Santaana, M.; Danley, D.; West, T.; Lanfranchi, G., Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors (Basel) 2009, 9 (4), 3122-48. 100. Rodriguez-Delgado, M. M.; Aleman-Nava, G. S.; Rodriguez-Delgado, J. M.; Dieck-Assad, G.; Martinez-Chapa, S. O.; Barcelo, D.; Parra, R., Laccase-based biosensors for detection of phenolic compounds. Trac-Trend Anal Chem 2015, 74, 21-45. 101. Marques, L. P.; Cavaco, I.; Pinheiro, J. P.; Ribeiro, V.; Ferreira, G. N., Electrochemical DNA sensor for detection of single nucleotide polymorphisms. Clin Chem Lab Med 2003, 41 (4), 475-81. 102. Lai, R. Y.; Walker, B.; Stormberg, K.; Zaitouna, A. J.; Yang, W., Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors. Methods 2013, 64 (3), 267-75. 103. Yu, Z. G.; Lai, R. Y., Effect of signaling probe conformation on sensor performance of a displacement-based electrochemical DNA sensor. Anal Chem 2013, 85 (6), 3340-6. 104. Derbyshire, V.; Freemont, P. S.; Sanderson, M. R.; Beese, L.; Friedman, J. M.; Joyce, C. M.; Steitz, T. A., Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science 1988, 240 (4849), 199-201. 105. Mitsis, P. G.; Kwagh, J. G., Characterization of the interaction of lambda exonuclease with the ends of DNA. Nucleic Acids Res 1999, 27 (15), 3057-63. 106. Daniel, R. M.; Peterson, M. E.; Danson, M. J.; Price, N. C.; Kelly, S. M.; Monk, C. R.; Weinberg, C. S.; Oudshoorn, M. L.; Lee, C. K., The molecular basis of the effect of temperature on enzyme activity. Biochem J 2009, 425 (2), 353-60. 107. Mullis, K. B.; Faloona, F. A., Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987, 155, 335-50. 108. Dirks, R. M.; Bois, J. S.; Schaeffer, J. M.; Winfree, E.; Pierce, N. A., Thermodynamic analysis of interacting nucleic acid strands. Siam Rev 2007, 49 (1), 65-88. 109. Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.; Dirks, R. M.; Pierce, N. A., NUPACK: Analysis and design of nucleic acid systems. J Comput Chem 2011, 32 (1), 170-3. 110. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31 (13), 3406-15. 111. Dragan, A. I.; Pavlovic, R.; McGivney, J. B.; Casas-Finet, J. R.; Bishop, E. S.; Strouse, R. J.; Schenerman, M. A.; Geddes, C. D., SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc 2012, 22 (4), 1189-99. 112. Jou, A. F. J.; Chen, Y. J.; Li, Y.; Chang, Y. F.; Lee, J. J.; Liao, A. T.; Ho, J. A. A., Target-Triggered, Dual Amplification Strategy for Sensitive Electrochemical Detection of a Lymphoma-associated MicroRNA. Electrochim Acta 2017, 236, 190-197. 113. Kozomara, A.; Griffiths-Jones, S., miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39 (Database issue), D152-7. 114. He, H. X.; Zhang, H.; Li, Q. G.; Zhu, T.; Li, S. F. Y.; Liu, Z. F., Fabrication of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates. Langmuir : the ACS journal of surfaces and colloids 2000, 16 (8), 3846-3851. 115. Ho, J. A.; Chiu, J. K.; Hong, J. C.; Lin, C. C.; Hwang, K. C.; Hwu, J. R., Gold-nanostructured immunosensor for the electrochemical sensing of biotin based on liposomal competitive assay. J Nanosci Nanotechnol 2009, 9 (4), 2324-9. 116. Ricci, F.; Lai, R. Y.; Heeger, A. J.; Plaxco, K. W.; Sumner, J. J., Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir : the ACS journal of surfaces and colloids 2007, 23 (12), 6827-34. 117. Steel, A. B.; Herne, T. M.; Tarlov, M. J., Electrochemical quantitation of DNA immobilized on gold. Anal Chem 1998, 70 (22), 4670-7. 118. Herne, T. M.; Tarlov, M. J., Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 1997, 119 (38), 8916-8920. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76436 | - |
dc.description.abstract | 雖然胰臟癌的發生事件比起其它癌症來得低,可是它卻是造成癌症相關死亡事件的第四名殺手。由於罹患胰臟癌的病人不會表現出特異的性狀,且胰臟癌的的偵測與診斷存在一定的困難性,因此胰臟癌確診病人的五年存活率只有6%左右。根據先前的文獻指出,罹患上胰臟癌的病人會大量表現某些特定循環性的微型核醣核酸 (microRNAs),並可在病人血液中被偵測出。在本研究中,我們應用酵素驅動型核酸分子奈米機器為放大策略,發展用於檢測胰臟癌相關之生物標記分子miR-221的電化學生化感測平臺。此平臺主要含蓋三部分,分別為⑴. 聚合酶輔助目標分子之循環反應 (Polymerase-assisted Target Recycling)、⑵. 外切酶剪切反應 (Exonuclease Digestion) 和⑶. 電化學訊號的輸出 (Electrochemical Signal Output)。我們首先以膠體電泳的方式先進行產物初步之分析,證明當受質Hairpin (H)、目標分子miR-221 (M)、聚合酶 (P)、外切酶 (E) 四大元件缺乏其一時,DNA Nanomachine則無法運作,最終產物P2就無法成功產出。接著我們進行一系列條件之最佳化,其中包括緩衝溶液的選擇、受質使用的濃度、聚合酶和剪切酶的濃度比,以獲得最多的最終產物P2。在電化學偵測的部分,我們先確認最終產物P2可以成為誘導股,並與修飾在工作電極表面亞甲藍標定的探針進行雜合,進而造成電化學訊號之改變。接著我們進行阻隔劑 (Blocking agent) 和鍍金時間之最佳化,以得到最佳之實驗操作條件。藉由標準曲線 (Calibration curve) 的結果顯示,我們所設計的電化學生化感測器的偵測極限為9.6 pM。我們將20 fmol的miR-221添加入血清中,所測得之回收率 (Recovery rate) 接近百分之百。該感測平台被證實具有可偵測血清中之microRNA之可行性和潛力。此外,我們也使用不同分析物 (目標分子和其同源家族成員) 進行DNA Nanomachine之選擇性測試,結果顯示所研發的電化學感測器只會針對目標分子miR-221展現出訊號之改變,從而證實我們所研發的電化學感測器具有良好之選擇性。 | zh_TW |
dc.description.abstract | Pancreatic cancer with a single-digit survival rate, at ~7%, has the highest mortality rate among all cancers. Similar to lung cancer, pancreatic cancer patients seldom exhibit disease-specific symptoms until late disease stage; therefore an establishment of early detection method for pancreatic cancer is important to classify pancreatic cancer at earlier stages. MicroRNAs (miRNAs) are a class of highly conserved non-coding RNA consisted of approximately 22 nucleotides that regulate gene expression by either degradation of mRNAs or translational repression at the post-transcriptional level. MicroRNAs are voted as potential biomarkers for therapeutics and point-of-care diagnostics, as their aberrant expressions are always associated with diseases and even various cancers. In this study, a novel isothermal electrochemical biosensor was designed for sensitive and selective detection of circulating pancreatic cancer-related microRNA. The amplification strategy was based on dual enzyme-empowered target recycling performed by polymerase and exonuclease. Initially, the presence of target miRNA selectively unfolded a hairpin probe (H), followed by the polymerase-triggered elongation of the H along with the strand displacement of target miR. While the target miR went on a new cycle of H unfolding, a blunt end of the He was formed and digested by the exonuclease, resulting in the release of intermediate DNA product (P1). The released P1 was able to hybridize with a new H, initiating a new round of exonuclease-assisted digestion of H, yielding a final DNA product (P2). Finally, a “signal-off” electrochemical biosensor was established when the signal inducer P2 hybridized with a methylene blue-labelled complementary hairpin probes (P2C) that immobilized on a gold nanostructured screen printed electrode (AuNC@SPCE) through gold-thiol bond. Under optimal condition, this biosensor offered an excellent sensitive platform towards the detection of target miR, with detection limit of 25 pM together with a dynamic range of six orders of magnitude. In addition, an excellent selectivity was achieved in discriminating its homologous inter-family members. We have herein successfully demonstrated a biosensing platform for the detection of pancreatic cancer-related miR and the biosensor holds a potential in the early diagnosis of pancreatic cancer to improve the survival rate in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:19Z (GMT). No. of bitstreams: 1 ntu-106-R04b22045-1.pdf: 8326487 bytes, checksum: d1a54c80b36ebd7cd11a5485e0b2b206 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 第一章 緒論 1
1.1. 胰臟癌 (Pancreatic cancer) 1 1.1.1. 認識胰臟 1 1.1.2. 人類胰臟癌 1 1.1.3. 胰臟癌之診斷 4 1.2. 微型核醣核酸 (MicroRNA) 5 1.2.1. miRNA生合成與作用機制 5 1.2.2. miRNA與癌症 8 1.2.3. 循環性miRNA (Circulating microRNA) 10 1.2.4. miR-221做為胰臟癌之生物指標 11 1.2.5. miRNA之偵測方法 13 1.3. 脫氧核醣核酸奈米機器 (DNA Nanomachine) 19 1.3.1. 以鏈交換反應為基礎之DNA奈米機器 19 1.3.2. 溫度調控之DNA奈米機器 20 1.3.3. 酵素驅動型奈米機器 21 1.4. 等溫核酸放大技術 (Isothermal Amplification) 22 1.4.1. 酵素驅動型等溫核酸放大技術 22 1.4.2. 非酵素驅動型核酸放大技術 25 1.5. 酵素輔助核酸目標循環 (Enzyme-assisted Target Recycling) 27 1.5.1. 典型之輔助目標物循環法 30 1.5.2. 5’→3’外切酶分析法 30 1.5.3. 入侵分析法 (Invader Assay) 31 1.5.4. Lambda exonuclease 輔助目標分子循環法 32 1.6. DNA生化感測器 (DNA Biosensor) 33 1.6.1. 生物元件之修飾法 33 1.6.2. 電化學生化感測器 35 1.7. 電化學偵測法 37 第二章 實驗材料與方法 39 2.1. 核酸序列 39 2.2. 實驗試劑與材料 41 2.3. 實驗儀器 44 2.4. 緩衝溶液 46 2.5. 聚丙烯醯胺膠體電泳 (Polyacrylamide gel electrophoresis, PAGE) 47 2.6. 酵素驅動型核酸奈米機器 (DNA Nanomachine) 產物之鑑定 48 2.7. Hairpin 5’端overhang鹼基数目之最佳化 48 2.8. 反應緩衝溶液之最佳化 49 2.9. 受質H濃度之最佳化 49 2.10. P2C (Complementary Sequence of P2) 之最佳化 50 2.11. 酵素濃度比例之最佳化 50 2.12. 選擇性 (Selectivity) 之測試 51 2.12.1. 受質H之專一性測試 51 2.12.2. KF之專一性延長測試 51 2.12.3. λ之專一性剪切測試 51 2.12.4. P2C之專一性測試 51 2.13. 鍍金時間 (Gold electrodeposition time) 之最佳化 53 2.13.1. 以Fe(CN)63-/4-為電化學訊號分子 53 2.13.2. 以P2C-MB探針上之MB為電化學訊號之分子 56 2.14. P2C-MB固定化濃度之最佳化 59 2.15. P2C-MB於工作電極之密度鑑定 62 2.16. 阻隔劑 (Blocking agent) 之最佳化 65 2.16.1. 以經不同阻隔劑處理之電極量測不同濃度亞甲藍溶液之校正曲線所得之slope和R2進行比較 65 2.16.2. 經不同阻隔劑處理之電極對BSA非專一性吸附之抗性 67 2.17. 工作電極表面之鑑定 70 2.18. 電化學生化感測器應用於目標分子miR-221之分析 71 2.19. 電化學生化感測器之選擇性測試 72 2.20. 儲存天數 (Storage time) 對於氧化電化學訊號之影響 73 2.21. 同日與隔日目標分子miR-221濃度準確度和精密度之比較 76 2.22. 血清 (Serum) 中目標分子miR-221之回收率 (Recovery rate) 77 第三章 實驗結果與討論 79 3.1. 實驗設計 79 3.2. 酵素驅動型核酸奈米機器 (DNA Nanomachine) 產物之鑑定 86 3.3. Hairpin 5’端overhang鹼基数目之最佳化 90 3.4. 反應緩衝溶液之最佳化 95 3.5. 受質H濃度之最佳化 99 3.6. P2C (Complementary Sequence of P2) 之最佳化 101 3.7. 酵素濃度比例之最佳化 105 3.8. 選擇性 (Selectivity) 之測試 109 3.8.1. 受質H之專一性測試 110 3.8.2. KF之專一性延長測試 112 3.8.3.. λ之專一性剪切測試 114 3.8.4. P2C之專一性測試 116 3.9. 網版印刷碳電極工作電極製備條件之最佳化 118 3.9.1. 鍍金時間 (Gold electrodeposition time) 之最佳化 118 3.9.2. P2C-MB固定化濃度之最佳化 123 3.9.3. P2C-MB於工作電極之密度鑑定 123 3.9.4. 阻隔劑 (Blocking agent) 之最佳化 128 3.9.5. 工作電極表面之鑑定 135 3.10. 電化學生化感測器應用於目標分子miR-221之分析 137 3.11. 電化學生化感測器之選擇性測試 142 3.12. 儲存天數 (Storage time) 對於氧化電化學訊號之影響 144 3.13. 同日與隔日目標分子miR-221濃度準確度和精密度之比較 148 3.14. 血清 (Serum) 中目標分子miR-221之回收率 (Recovery rate) 151 第四章 結論 153 第五章 參考文獻 155 | |
dc.language.iso | zh-TW | |
dc.title | 以酵素驅動型核酸分子奈米機器為放大策略發展快速篩檢胰臟癌相關的微小核醣核酸片段之電化學生化感測器 | zh_TW |
dc.title | Electrochemical Biosensor for Pancreatic Cancer-specific MicroRNA Based on Enzyme-powered DNA Nanomachine Amplification Strategy | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐士蘭,楊家銘,鄭建中,廖明淵,陳平 | |
dc.subject.keyword | 胰臟癌,微型核醣核酸,電化學生化感測器,聚合?,外切?, | zh_TW |
dc.subject.keyword | pancreatic cancer,microRNA,methylene blue,screen printed electrode, | en |
dc.relation.page | 168 | |
dc.identifier.doi | 10.6342/NTU201703715 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
dc.date.embargo-lift | 2022-09-12 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04b22045-1.pdf | 8.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。