請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76415
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何傳愷 | |
dc.contributor.author | Chi-Ming Liu | en |
dc.contributor.author | 劉騏銘 | zh_TW |
dc.date.accessioned | 2021-07-09T15:52:01Z | - |
dc.date.available | 2023-08-21 | |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-06 | |
dc.identifier.citation | Akbar, S. M., T. Pavani, T. Nagaraja, and H. Sharma. 2015. Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). Environmental Entomology 45:229-236.
Arnett, A. E., and N. J. Gotelli. 1999. Geographic variation in life‐history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann's rule. Evolution 53:1180-1188. Arnett, A. E., and N. J. Gotelli. 2003. Bergmann's rule in larval ant lions: testing the starvation resistance hypothesis. Ecological Entomology 28:645-650. Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. Butterfield, A. Buse, J. C. Coulson, and J. Farrar. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8:1-16. Bauerfeind, S. S., and K. Fischer. 2013. Increased temperature reduces herbivore host‐plant quality. Global Change Biology 19:3272-3282. Bergmann, C. 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3:595-708. Brooks, G., and J. Whittaker. 1998. Responses of multiple generations of Gastrophysa viridula, feeding on Rumex obtusifolius, to elevated CO2. Global Change Biology 4:63-75. Choudhury, S., J. M. Black, and M. Owen. 1996. Body size, fitness and compatibility in barnacle geese Branta leucopsis. Ibis 138:700-709. Cotrufo, M. F., P. Ineson, and A. Scott. 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4:43-54. Dury, S., J. Good, C. Perrins, A. Buse, and T. Kaye. 1998. The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Global Change Biology 4:55-61. Data Bank for Atmospheric & Hydrologic Research. Retrieved from https://dbahr.narlabs.org.tw/. Ellers, J., J. J. Van Alphen, and J. G. Sevenster. 1998. A field study of size–fitness relationships in the parasitoid Asobara tabida. Journal of Animal Ecology 67:318-324. Fajer, E. D., M. D. Bowers, and F. A. Bazzaz. 1989. The effects of enriched carbon dioxide atmospheres on plant—insect herbivore interactions. Science 243:1198-1200. Foss, A. R., W. J. Mattson, and T. M. Trier. 2013. Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates. Environmental Entomology 42:503-514. Gardner, J. L., A. Peters, M. R. Kearney, L. Joseph, and R. Heinsohn. 2011. Declining body size: a third universal response to warming? Trends in Ecology & Evolution 26:285-291. Gherlenda, A. N., A. M. Haigh, B. D. Moore, S. N. Johnson, and M. Riegler. 2015. Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia 177:607-617. Harlow, H. J., S. S. Hillman, and M. Hoffman. 1976. The effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 111:1-6. Ho, C.-K., and S. C. Pennings. 2013. Preference and performance in plant–herbivore interactions across latitude–a study in U. S. Atlantic salt marshes. PloS One 8:e59829. Ho, C.-K., S. C. Pennings, and T. H. Carefoot. 2009. Is diet quality an overlooked mechanism for Bergmann’s rule? The American Naturalist 175:269-276. Honěk, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos:483-492. Hunter, M. D. 2001. Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Agricultural and Forest Entomology 3:153-159. IPCC. 2007. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland. IPCC. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC. Johns, C. V., L. J. Beaumont, and L. Hughes. 2003. Effects of elevated CO2 and temperature on development and consumption rates of Octotoma championi and O. scabripennis feeding on Lantana camara. Entomologia Experimentalis et Applicata 108:169-178. Johns, C. V., and L. Hughes. 2002. Interactive effects of elevated CO2 and temperature on the leaf‐miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae). Global Change Biology 8:142-152. Karl, I., R. Stoks, M. De Block, S. A. Janowitz, and K. Fischer. 2011. Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biology 17:676-687. Kato, Y. 2005. Geographic variation in photoperiodic response for the induction of pupal diapause in the Aristolochia-feeding butterfly Atrophaneura alcinous. Applied Entomology and Zoology 40:347-350. Klaiber, J., S. Dorn, and A. J. Najar-Rodriguez. 2013. Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. Journal of Chemical Ecology 39:653-665. Kukal, O., and T. E. Dawson. 1989. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia 79:526-532. Lawler, I., W. Foley, I. Woodrow, and S. Cork. 1996. The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59-68. Lemoine, N. P., W. A. Drews, D. E. Burkepile, and J. D. Parker. 2013. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122:1669-1678. Li, Y., A. A. Pierce, and J. C. de Roode. 2016. Variation in forewing size linked to migratory status in monarch butterflies. Animal Migration 3:27-34. Liang, J., J. Xia, L. Liu, and S. Wan. 2013. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology 6:437-447. Lincoln, D. E., E. D. Fajer, and R. H. Johnson. 1993. Plant-insect herbivore interactions in elevated CO2 environments. Trends in Ecology & Evolution 8:64-68. Murray, T. J., D. S. Ellsworth, D. T. Tissue, and M. Riegler. 2013. Interactive direct and plant‐mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt‐feeding insect herbivore. Global Change Biology 19:1407-1416. Posledovich, D., T. Toftegaard, C. Wiklund, J. Ehrlén, and K. Gotthard. 2015. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Oecologia 177:181-190. Sheridan, J. A., and D. Bickford. 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1:401. Sokolovska, N., L. Rowe, and F. Johansson. 2000. Fitness and body size in mature odonates. Ecological Entomology 25:239-248. Srinivasa Rao, M., D. Manimanjari, M. Vanaja, C. Rama Rao, K. Srinivas, V. Rao, B. Venkateswarlu, and R. Jay. 2012. Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science 12. Stamp, N. E., and M. D. Bowers. 1991. Indirect effect on survivorship of caterpillars due to presence of invertebrate predators. Oecologia 88:325-330. Way, D. A., and R. Oren. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30:669-688. Williams, R. S., R. J. Norby, and D. E. Lincoln. 2000. Effects of elevated CO2 and temperature‐grown red and sugar maple on gypsy moth performance. Global Change Biology 6:685-695. Zhao, C., and Q. Liu. 2008. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39:1-11. Zvereva, E., and M. Kozlov. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Global Change Biology 12:27-41. 余淑惠. 2016. 暖化操控對不同海拔的本土種紋白蝶、外來種紋白蝶及其蜜源植物的影響. 國立臺灣大學, 台北市. 呂至堅, and 陳建仁. 2014. 蝴蝶生活史圖鑑. Page 161. 晨星出版, 臺中市. 橋本健一, 飯島和子, and 小川賢一. 2008. モンシロチョウ Pieris rapae crucivora Boisduval (チョウ目: シロチョウ科) の蛹休眠を誘起する光周反応の地理的変異. 日本応用動物昆虫学会誌 52:201-206. 鍾明哲. 2011. 都市野花野草圖鑑. Page 119. 晨星出版, 臺中市. 顏韶寬. 2017. 溫度與二氧化碳濃度增加對跨海拔植食動物表現的單獨與共同效應:以緣點白粉蝶與葶藶為例. 國立臺灣大學, 台北市. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76415 | - |
dc.description.abstract | 溫度上升與二氧化碳濃度增加,是近年來全球氣候變遷的兩項重要變化。為了進一步了解它們對生態系統造成的衝擊,本研究探討: (一)溫度上升與二氧化碳濃度增加是否會有交互作用,並且直接地(例如透過生長與發育)、或是間接地(例如:透過影響食草)影響植食性昆蟲的表現。 (二)跨越環境梯度(例如海拔)的生物族群,是否具有種內變異,因而對於氣候變遷產生不同的反應。為了回答前述問題,本研究以緣點白粉蝶(Pieris canidia)幼蟲,及其主要食草葶藶(Rorippa indica)為材料,進行兩組生長箱實驗: 直接與間接效應實驗。每一實驗共有十二種(3*2*2)處理組合: (現今平均溫度[21.8°C]、+3°C、+6°C)*(環境CO2濃度500 ppm、預估本世紀末CO2濃度1000 ppm)*(生物的海拔來源:[低或中海拔]),其中溫度處理具有氣溫日變化。「直接效應」實驗將P. canidia飼養在各個(溫度*二氧化碳)處理之下,並以統一培養於人工氣候室的食草加以餵食。「間接效應」實驗則是將食草培養在各個(溫度*二氧化碳)處理之下,分別餵食培養於控制組環境的幼蟲。結果顯示,溫度上升和二氧化碳濃度增加,會透過單獨以及彼此交互作用的形式,影響P. canidia的表現。而溫度上升單獨影響P. canidia的性狀項目,多於二氧化碳濃度增加所影響的項目。此外,物種的海拔來源會單獨的影響P. canidia表現,並且與溫度及二氧化碳處理產生交互作用。綜合以上的結果,本研究建議氣候變遷的評估 (一)應該考慮氣候變遷因子之間的交互作用,以及它們如何透過直接與間接效應影響生物表現; (二)應考慮隨環境梯度產生的種內差異,以族群而非整個物種作為評估的反應單位。 | zh_TW |
dc.description.abstract | Temperature and CO2 concentration in the atmosphere are predicted to keep rising during this century. Therefore, it becomes increasingly important to understand 1) whether the elevated temperature and CO2 will interact and influence species performance directly or indirectly (e.g., indirectly via their effects on interacting species, such as herbivores’ host plants), and 2) whether these effects will vary spatially (e.g., populations across altitudes might react differently due to their adaption history). To answer the aforementioned questions, we empirically examined the direct and indirect effects of elevated temperature and CO2 on the performance of Pieris canidia (herbivore; Pieris hereafter) on Rorippa indica (host plant; Rorippa hereafter) across altitudinal gradients by conducting two experiments: direct and indirect effect experiments. Each experiment had a 3x2x2 factorial design including temperature treatment (daily fluctuating about a average of 21.8, 24.8, and 27.8°C, representing control, +3°C, and +6°C, respectively), CO2 treatment (500 and 1000 ppm, representing control and elevation) and altitudinal origin of species (low- and medium-altitude), allowing us to examine the individual and collective effects of temperature and CO2 on populations across altitude. In the direct effect experiment, Pieris larvae were reared under each of six temperature-CO2 treatments but fed with Rorippa plants grown from a common garden. In the indirect effect experiment, Pieris larvae were reared under control treatment (21.8°C on average, 500 ppm CO2) but fed with Rorippa plants grown under each of six temperature-CO2 treatments. Pieris and Rorippa plants were originally collected from three regions each at low (c.a.100 m a. s. l.) and medium (c.a. 1000 m a. s. l.) altitudes, to avoid potential idiosyncrasies. The results showed that in direct or indirect effect experiments, elevated temperature and CO2 individually or interactively affected Pieris performance, while elevated CO2 alone affected fewer performance traits than elevated temperature did. Furthermore, species’ altitudinal origin affected Pieris performance and mediated the temperature and CO2 effects. In conclusion, the results have two implications: 1 ) Climate change impact assessments may need to consider the interplay between climate change components (e.g., elevated temperature and CO2), which can directly and indirectly affect species. 2) These assessments should also consider intraspecific variation across spatial gradients, such as treating a population, instead of an entire species, as a responsive unit. | en |
dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:01Z (GMT). No. of bitstreams: 1 ntu-107-R03b44001-1.pdf: 2532565 bytes, checksum: 163e5048bbe2b6fb0a73e0ab5858ef7f (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
序 ii 摘要 iii Abstract iv 目錄 vi List of Tables vii List of Figures viii Introduction 1 Materials & Methods 5 Study system 5 Experimental design 5 Species collection 6 Trait measurement 7 Analysis 9 Results 10 Temperature 10 CO2 11 Altitude 12 Plant trait (environmental chamber) 13 Discussion 14 Conflicting warming effects on species performance 14 Interactive effects of CO2 and other factors 15 Altitudinal effects 16 Plant effects 17 Caveats 18 Conclusions 19 References 20 Appendix A. Mean temperatures of our collection sites 66 | |
dc.language.iso | en | |
dc.title | 溫度上升與二氧化碳濃度增加對跨海拔植食性昆蟲的直接與間接影響 | zh_TW |
dc.title | Direct and indirect effects of elevated temperature and CO2 on herbivore performance across altitudes | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李承叡,謝志豪,郭奇芊,黃淑萍 | |
dc.subject.keyword | 直接與間接效應,暖化,二氧化碳濃度增加,海拔,緣點白粉蝶,葶藶, | zh_TW |
dc.subject.keyword | Direct & Indirect effects,Elevated temperature,Elevated carbon dioxide concentration,Altitude,Pieris canidia,Rorippa indica, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU201802543 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-06 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-21 | - |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R03b44001-1.pdf | 2.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。