請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7636
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡明哲 | |
dc.contributor.author | Wen-Yao Liu | en |
dc.contributor.author | 劉文堯 | zh_TW |
dc.date.accessioned | 2021-05-19T17:48:37Z | - |
dc.date.available | 2023-02-23 | |
dc.date.available | 2021-05-19T17:48:37Z | - |
dc.date.copyright | 2018-02-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-01-26 | |
dc.identifier.citation | 1. 米倉亮三、廖洪鈞、林英堂 (2002),“恆久性灌漿材料與其灌漿砂土之動態行為”,地工技術,第93期:5-12頁。
2. 地基處理手冊編寫委員會,1988,地基處理手冊,中國建築工業出版社。 3. 行政院環保署,2008,土壤及地下水受比水重非水相液體污染場址之整治技術選取、系統設計要點與注意事項參考手冊。 4. 郭育嘉,2013,應用現地乳化油生物屏障處理受含氯有機物污染之地下水,國立中山大學環境工程研究所,博士論文。 5. 陳逸明,2009,以乳化型基質處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所,碩士論文。 6. 劉嘉庭,2011,利用乳化型釋碳基質提昇三氯乙烯污染地下水之生物降解效率:現地模場試驗,國立中山大學環境工程研究所,碩士論文。 7. Akbulut, S. and Saglamer, A. (2002). “Estimating the Groutability of Granular Soil: A New Approach.” Tunnelling and Underground Space Technology, Elsevier, Vol. 17, No. 4, pp. 371-380. DOI: 10.1016/S0886-7798(02)00040-8. 8. ASTM D421-85 (2002). “Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants.” ASTM International, West Conshohocken, PA. 9. ASTM D422-63 (2002). “Standard Test Method for Particle-Size Analysis of Soils.” ASTM International, West Conshohocken, PA. 10. ASTM D854-02 (2002). “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.” ASTM International, West Conshohocken, PA. 11. Axelsson, M., Gustafson G., and Fransson, A. (2009). “Stop Mechanism for Cementitious Grouts at Different Water-to-cement Ratio.” Tunnelling and Underground Space Technology, Elsevier, Vol. 24, No. 4, pp.390-397. DOI: 10.1016/j.tust.2008.11.001. 12. Borden, R. C. (2007). “Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.” Journal of Contaminant Hydrology, Elsevier, Vol. 94, No. 1-2, pp. 13-33. DOI: 10.1016/j.jconhyd.2007.06.002. 13. Burwell, E. B. (1985). “Cement and clay grouting of foundations: Practice of the corps of engineering.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 84, No. 1, pp. 1551/1-1551/22. 14. Chadi, S. E. M., Jisuk, Y., May, E. K. (2015). “Experimental study on penetration of bentonite grout through granular soils.” Canadian Geotechnical Journal, Vol. 52, No.11, pp.1850-1860. https://doi.org/10.1139/cgj-2014-0422. 15. Chang, S. C., Chiang, P. Y., Yu, Y. H., Chen, T. W., Luo, Y. S., Tsai, L. C., and Yu, K. C. (2014). “Soybean oil nanoemulsion and magnetite nanoparticle as remediation enhancers for river sediment: from lab to field.” Journal of Soil and Groundwater Remediation, Taiwan Association of Soil and Groundwater Environmental Protection, Vol. 1, No. 2, pp. 141-163. DOI: 10.6499/JSGR.2014.0102.004. 16. Chang, Y. I., and Yang, C. C. (2007). “Treatment of Trichloroethylene in Aqueous Solution Using Nanoscale Zero-valent Iron Emulsion.” Unpublished master’s thesis. Kaohsiung Taiwan: Institute of Environmental Engineering of National Sun Yat-sen University. 17. Chun, B. S., Lee, Y. J., and Chung, H. I. (2006). “Effectiveness of leakage control after application of permeation grouting to earth fill dam.” KSCE Journal of Civil Engineering, KSCE, Vol. 10, No. 6, pp. 405-414. DOI: 10.1007/BF02823979. 18. Clarke, W.J., Boyd, M.D., and Helal, M. (1992). “Ultrafine cement tests and dam test grouting.” Grouting, Soil Improvement and Geosynthetics, Geotechnical Special Publication, ASCE, No. 30, pp. 626-638. 19. Dano, C., Hicher, P. Y., and Taillez, S. (2004). “Engineering Properties of Grouted Sands.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 328-338. DOI: 10.1061/(ASCE)1090-0241(2004)130:3(328). 20. Dayaker, P., Venkat Raman, K., Raju, K.V.B., (2012). “Study on permeation grouting using cement grout in sandy soils.” IOSR Journal of Mechanical and Civil Engineering, Vol. 4, No. 4, pp.5-10. DOI: 10.9790/1684-0440510. 21. Engineer Manual (1995), “Engineering and Design-Chemical Grouting”, Washington, DC: U.S. Army Corps of Engineers. 22. Hayashi, S., Chai, X., Matsunaga, K., and Toki, A. (2006). “Drip injection of chemical grouts: A new apparatus.” Geotechnical Testing Journal, ASTM, Vol. 29, No. 2, pp. 108-116. DOI: 10.1520/GTJ12643. 23. Helal, M. and Krizek, R. J. (1992). “Preferred orientation of pore structure in cement-grouted sand.” In R. H. Borden, R. D. Holtz, & I. Juran (Eds.), Geotechnical Special Publication, ASCE, 30 ed., Vol. 1, pp. 526-540, Publ by ASCE. 24. Henn, R.W. (1996), “Practical Guide to Grouting of Underground Structures,” New York: ASCE Press, pp. 6-49. 25. Herndon, J. and Lenahan, T. (1976). “Grouting in Soils.” Vol. 2: Design and Operations Manual, Federal Highway Administration, Halliburton Services, Duncan, Oklahoma, Technical Report. 26. Huang, C. L., Fan, J. C., Liao, K. W., and Lien, T. S. (2013). “A methodology to build a groutability formula via a heuristic algorithm.” KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 1, pp. 106-116. DOI: 10.1007/s12205-013-1847-y. 27. Huang, C. L., Fan, J. C., and Yang, W. J. (2007). “A study of applying micro-fine cement grout to sandy silt soil.” Sino-Geotech, Sino-Geotechnics Research and Development Foundation, Vol. 111, No. 1, pp. 71-82. 28. Huang, Y. L. and Kao, C. M. (2012). “Application of Long Lasting Substrate to Remediate Trichloroethylene Contaminated Groundwater.” Unpublished master’s thesis. Kaohsiung Taiwan: Institute of Environmental Engineering of National Sun Yat-sen University. 29. Incecik, M. and Ceren, I. (1995). “Cement grouting model tests.” Bulletin of The technical University of Istanbul, Vol. 48, No. 2, pp. 305-317. 30. Ioannis N. M., Dimitrios N. C., Basil K. P., (2015). “Penetrability of microfine cement grouts: experimental investigation and fuzzy regression modeling.” Canadian Geotechnical Journal, Vol. 52, No. 7, pp. 868-882. https://doi.org/10.1139/cgj-2013-0297. 31. Ishihara, K., (1993). “Liquefaction and flow failure during earthquakes.” Geotechnique, ICE, Vol. 43, No. 3, pp: 629-644. DOI: 10.1680/geot.1993.43.3.351. 32. Jan, C. D., Kuo, F. H., and Chang, L. Y. (2011). “An experimental study on the time-dependent rheological parameters for kaolin slurries.” Journal of Chinese Soil and Water Conservation, CSWCS, Vol. 42, No. 3, pp. 196-206. 33. Jian, H. Y. and Kao, C. M. (2009). “Use of In-situ Bioremediation to Treat Trichloroethylene Contaminated Groundwater.” Unpublished doctoral dissertation. Kaohsiung Taiwan: Institute of Environmental Engineering of National Sun Yat-sen University. 34. Jung, Y., Coulibaly, K. M., and Borden, R. C. (2006). 'Transport of edible oil emulsions in clayey sands: 3D sandbox results and model validation.' Journal of Hydrologic Engineering, ASCE, Vol. 11, No. 3, pp. 238-244. DOI: 10.1061/(ASCE)1084-0699(2006)11:3(238). 35. Kao, C. M., Chen, S. C., Wang, J. Y., Chen, Y. L., and Lee, S. Z. (2003). “Remediation of PCE-contaminated aquifer by an in situ two-layer bio-barrier: laboratory batch and column studies.” Water Research, Elsevier, Vol. 37, No. 1, pp. 27–38. DOI: 10.1016/S0043-1354(02)00254-3. 36. Kim, G. H. and Kim, J. H. (2004). “Sustainability of the in situ bio-barriers for contaminant containment in residual soils.” KSCE Journal of Civil Engineering, KSCE, Vol. 8, No. 2, pp. 189-195. DOI: 10.1007/BF02829119. 37. Khayat, K. H., Ballivy, G., and Gaudreault, M. (1997). “High-performance cement grout for underwater crack injection.” Canadian Journal of Civil Engineering, NRC Research Press, Vol. 24, No. 3, pp. 405-418. DOI: 10.1139/l96-129. 38. Krizek, R. J., Liao, H. J., and Borden, R. H. (1992). “Mechanical properties of microfine cement/sodium silicate grouted sand.” In R. H. Borden, R. D. Holtz, & I. Juran (Eds.), Geotechnical Special Publication, 30 ed., Vol. 1, pp. 688-699. Publ by ASCE. 39. Kutzner, C. (1996). “Grouting of Rock and Soil.” A. A. Balkema, Rotterdam. 40. Ladd, R. S. (1978). 'Preparing Test Specimens Using Undercompaction.' Geotechnical Testing Journal, ASTM, Vol. 1, No. 1, pp. 16-23, DOI: 10.1520/GTJ10364J. ISSN 0149-6115. 41. Liao, K.W., Fan, J.C., and Huang, C.L. (2011). 'An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts.' Computers and Geotechnics, Elsevier, Vol. 38, No. 8, pp. 978-986. DOI: 10.1016/j.compgeo.2011.07.008. 42. Lin, C. H., Kuo, M. C., Tom., Su, C. Y., Liang, K. F., and Han, Y. L. (2012). “A nutrient injection scheme for in situ bioremediation.” Journal of Environmental Science and Health, Taylor & Francis Online, Part A, Vol. 47, No. 2, pp. 280-288. DOI: 10.1080/10934529.2012.640907. 43. Lin, C. L. and Lin, M. D. (2010). “Transport Assessment of Applying Nano-scale Zero-valent Iron Emulsion in Groundwater.” Unpublished master’s thesis. Taichung Taiwan: Institute of Environmental Engineering of National Chung Hsing University. 44. Magg, E. (1938), “Ueber die Verfestigung und Dictung des Bangrundes (injektionen)”, Course on soil mech., Zurich Tech. School. 45. Markou, I. N. and Atmatzidis, D. K. (2002). “Properties and performance of a pulverized fly ash grout.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 8, pp. 682-691. DOI: 10.1061/(ASCE)1090-0241(2002)128:8(682). 46. Markou, I. N. and Atmatzidis, D. K. (2003). “Mechanical behavior of a pulverized fly ash grouted sand.” Geotechnical Testing Journal, ASTM, Vol. 26, No. 4, pp. 450-460. DOI: 10.1520/GTJ11252J. 47. Ni, C. K., James, and Lin, J. F. (2006). “The study of permeation grouting with microfine cement grout.” Scholarly Journal of National Taipei University of Technology, Vol. 39, No. 2, pp.77-94. 48. Nyer E. K. and Geogory B. P. (2004). “Treatment Technology: Special delivery.” Groundwater Monitoring and Remediation, Wiley, Vol. 24, No. 1, pp. 34-40. DOI: 10.1111/j.1745-6592.2004.tb00701.x. 49. Ozgurel, H. G. and Vipulanandan, C. (2005) “Effect of Grain Size and Distribution on Permeability and Mechanical Behavior of Acrylamide Grouted Sand.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 12, pp.1457-1465. DOI: 10.1061/(ASCE)1090-0241(2005)131:12(1457). 50. Perret, S., Khayat, K. H., Gagnon, E., and Rhazi, J. (2002). “Repair of 130-year old masonry bridge using high-performance cement grout.” Journal of Bridge Engineering, ASCE, Vol. 7, No. 1, pp. 31-38. DOI: 10.1061/(ASCE)1084-0702(2002)7:1(31). 51. Rangeard, D., Phan, P. T., Martinez, J., and Lambert, S., (2016). “Mechanical Behavior of Fine-Grained Soil Reinforced by Sand Columns: An Experimental Laboratory Study.” Geotechnical Testing Journal, ASTM, Vol. 39, No. 4, 2016, pp. 648-657. DOI: 10.1520/GTJ20150152. 52. Saiyouri, N., Bouasker, M., and Khelidj, A. (2008). “Gas Permeability Measurement on Injected Soils with Cement Grout.” Cement and Concrete Research, Elsevier, Vol. 38, No.1, pp.95-103. DOI: 10.1016/j.cemconres.2007.08.015. 53. Schwarz, L.G. and Chirumalla, M. (2007). “Effect of injection pressure on permeability and strength of microfine cement grouted sand.” Grouting for Ground Improvement: GSP 168 Geo-Denver 2007: New Peaks in Geotechniques. 54. Sze, K. L. and Fan, J. C. (2008). “A Study on Permeation Grouting and Quantity of Injection with Microfine Cement Grout.” Unpublished master’s thesis. Taipei, Taiwan. Graduate Institute of Bioenvironmental Systems Engineering of Nation Taiwan University. 55. Tekin, E. and Akbas, S. O. (2011). 'Artificial neural networks approach for estimating the groutability of granular soils with cement-basis grouts.' Bulletin of Engineering Geology and the Environment, IAEG, Vol. 70, No. 1, pp. 153-161. DOI: 10.1007/s10064-010-0295-x. 56. Terzaghi, K. and Peck, R.B. (1948), “Soil Mechanics in Engineering Practice”, 1st edition, John Wiley & Sons, Inc, N.Y. 57. Zebovitz, S., Krizek, R. J., and Atmatzidis, D. K. (1989). “Injection of fine sands with very fine cement grout.” Journal of Geotechnical Engineering, ASCE, Vol. 155, No. 12, pp. 1717-1733. DOI: 10.1061/(ASCE)0733-9410(1989)115:12(1717). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7636 | - |
dc.description.abstract | 本研究設計模擬滲透灌漿技術之實驗室設備進行試驗砂柱之灌注試驗,以渥太華標準砂依不同比例配製成8種不同粒徑分佈之試驗砂柱,再以市面上常用之3種不同基質進行灌注。由灌注試驗結果顯示,當試驗砂粒徑越大、基質黏滯度越小,則灌注效果越好;若試驗砂含5%以上之細料則對灌注結果有明顯影響。
36組滲透灌注試驗結果以Spearman等級相關係數計算及參數廻歸,得到試驗砂有效粒徑(D10)與基質黏滯度(μ)對灌注高度、灌注時間及流失率之關係式。研究結果對於擬應用滲透灌漿技術於地下水現地生物整治,在現場進行中細砂地層基質灌注試驗提供可預測性之灌注結果。 | zh_TW |
dc.description.abstract | This study design the sand column tests in the laboratory to evaluate permeability and efficiency of substrates by using permeation grouting technology. The results show, the coarser the test sand and the lower the substrates viscosity, the better the grouting effect. If more than 5% fines added will affect the grouting results significantly. Spearman’s rank correlation coefficient and stepwise regression method were applied to analysis 36 sets of sand columns testing results. The relationships among the effective size of test sand (D10), the viscosity of substrates (μ)and grouting height, grouting time, grouting rate and outflow rate were obtained. The results of this study might be helpful for applying the permeation grouting technology to remedy the contaminated groundwater in the field. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:48:37Z (GMT). No. of bitstreams: 1 ntu-107-D00622003-1.pdf: 3913107 bytes, checksum: f5fa25669185a55ee7374dc468f60ce4 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 摘要 III Abstract IV 圖目錄 VIII 表目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2.1 滲透灌漿工法 3 2.1.1 灌漿材料的選擇 7 2.1.2 室內滲透灌漿試驗 9 2.1.3滲透灌漿方式 14 2.2 滲透灌漿可灌性評估方法 18 2.3現地生物整治技術 24 2.3.1生物整治技術原理與反應機制 24 2.3.2常見市售生物基質 27 2.3.3常用之基質注入工法 29 2.4砂柱試體製作與準備 31 2.5基質管柱滲透試驗 32 第三章 研究方法 34 3.1 試驗材料 34 3.1.1 試驗砂及其性質 34 3.1.2 試驗砂土基本性質試驗 36 3.1.3 基質材料及其性質 39 3.1.4 試驗砂柱使用之濾材 42 3.2 滲透灌注管柱試驗 43 3.2.1灌注試驗設計 43 3.2.2滲透灌漿模擬試驗設備 45 3.3滲透灌漿模擬試驗步驟 50 第四章 結果與討論.……………………………………………………..56 4.1基質於砂柱試體中之滲透性試驗 56 4.1.1滲透性試驗之結果 56 4.1.2滲透性試驗之綜合討論 58 4.2基質於砂柱試體中之持續性試驗 60 4.2.1重量烘乾濃度之結果 60 4.2.3 試體中殘留率之結果 62 4.3 試驗砂及基質特性與灌注結果關係式分析 65 第五章 結論與建議 71 5.1結論……. 71 5.2建議……. 72 第六章 參考文獻 75 附錄A 滲透灌漿模擬砂柱試驗結果 80 | |
dc.language.iso | zh-TW | |
dc.title | 應用滲透灌漿技術於地下水現地生物整治基質注入之研究 | zh_TW |
dc.title | The Study of Applying Permeation Grouting Technology for Substrates Injection of In-situ Groundwater Bioremediation | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 范正成 | |
dc.contributor.oralexamcommittee | 張尊國,李達源,高志明,林宏達 | |
dc.subject.keyword | 滲透灌漿,基質,滲透性,地下水生物整治, | zh_TW |
dc.subject.keyword | Permeation grouting,Substrate,Permeability,Groundwater bioremediation, | en |
dc.relation.page | 99 | |
dc.identifier.doi | 10.6342/NTU201800181 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-01-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 3.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。