請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7628
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐瑋勵 | zh_TW |
dc.contributor.advisor | Wei-Li Hsu | en |
dc.contributor.author | 劉沛怡 | zh_TW |
dc.contributor.author | Phooi-Yee Lau | en |
dc.date.accessioned | 2021-05-19T17:48:19Z | - |
dc.date.available | 2023-12-13 | - |
dc.date.copyright | 2018-03-29 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Matz PG. Does nonoperative management play a role in the treatment of cervical spondylotic myelopathy? The Spine Journal. 2006;6(6):S175-S181.
2. Edwards CC, Riew KD, Anderson PA, Hilibrand AS, Vaccaro AF. Cervical myelopathy: current diagnostic and treatment strategies. The Spine Journal. 2003;3(1):68-81. 3. Lee JH, Lee SH, Seo IS. The characteristics of gait disturbance and its relationship with posterior tibial somatosensory evoked potentials in patients with cervical myelopathy. Spine. 2011;36(8):E524-E530. 4. Wu JC, Ko CC, Yen YS, et al. Epidemiology of cervical spondylotic myelopathy and its risk of causing spinal cord injury: a national cohort study. Neurosurgical focus. 2013;35(1):E10. 5. Kadanka Z, Bednarik J, Novotny O, Urbanek I, Dusek L. Cervical spondylotic myelopathy: conservative versus surgical treatment after 10 years. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2011;20(9):1533-1538. 6. Ebersold MJ, Pare MC, Quast LM. Surgical treatment for cervical spondylitic myelopathy. Journal of neurosurgery. 1995;82(5):745-751. 7. Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. The Spine Journal. 2006;6(6):S190-S197. 8. Tracy JA, Bartleson J. Cervical spondylotic myelopathy. The neurologist. 2010;16(3):176-187. 9. Northover J, Wild J, Braybrooke J, Blanco J. The epidemiology of cervical spondylotic myelopathy. Skeletal radiology. 2012;41(12):1543-1546. 10. Kokubun S, Sato T, Ishii Y, Tanaka Y. Cervical myelopathy in the Japanese. Clinical orthopaedics and related research. 1996;323:129-138. 11. Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative Cervical Myelopathy: Epidemiology, Genetics, and Pathogenesis. Spine. 2015;40(12):E675-693. 12. Chien A, Lai D-M, Cheng C-H, Wang S-F, Hsu W-L, Wang J-L. Translation, cross-cultural adaptation, and validation of a Chinese version of the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire. Spine. 2014;39(12):963-970. 13. Bogduk N. The anatomy and pathophysiology of neck pain. Physical medicine and rehabilitation clinics of North America. 2011;22(3):367-382, vii. 14. Woods BI, Hilibrand AS. Cervical radiculopathy: epidemiology, etiology, diagnosis, and treatment. Journal of spinal disorders & techniques. 2015;28(5):E251-259. 15. Radhakrishnan K, Litchy WJ, O'Fallon WM, Kurland LT. Epidemiology of cervical radiculopathy. A population-based study from Rochester, Minnesota, 1976 through 1990. Brain. 1994;117 ( Pt 2):325-335. 16. Schoenfeld AJ, George AA, Bader JO, Caram PM, Jr. Incidence and epidemiology of cervical radiculopathy in the United States military: 2000 to 2009. Journal of spinal disorders & techniques. 2012;25(1):17-22. 17. Winter DA, Patla AE, Frank JS. Assessment of balance control in humans. Medical progress through technology. 1990;16(1-2):31-51. 18. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. Journal of neurophysiology. 1998;80(3):1211-1221. 19. Yoshikawa M, Doita M, Okamoto K, Manabe M, Sha N, Kurosaka M. Impaired postural stability in patients with cervical myelopathy: evaluation by computerized static stabilometry. Spine. 2008;33(14):E460-E464. 20. Massion J. Postural control system. Current opinion in neurobiology. 1994;4(6):877-887. 21. Kogler A, Lindfors J, Ödkvist LM, Ledin T. Postural Stability Using Different Neck Positions in Normal Subjects and Patients with Neck Trauma. Acta Oto-Laryngologica. 2000;120(2):151-155. 22. al-Mefty O, Harkey HL, Marawi I, et al. Experimental chronic compressive cervical myelopathy. Journal of neurosurgery. 1993;79(4):550-561. 23. Rao R. Neck pain, cervical radiculopathy, and cervical myelopathy. The Journal of Bone & Joint Surgery. 2002;84(10):1872-1881. 24. Wada E, Ohmura M, Yonenobu K. Intramedullary changes of the spinal cord in cervical spondylotic myelopathy. Spine. 1995;20(20):2226-2232. 25. Carlson GD, Gorden CD, Oliff HS, Pillai JJ, LaManna JC. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. JBJS. 2003;85(1):86-94. 26. Kaneko K, Taguchi T, Morita H, Yonemura H, Fujimoto H, Kawai S. Mechanism of prolonged central motor conduction time in compressive cervical myelopathy. Clinical neurophysiology. 2001;112(6):1035-1040. 27. Nakanishi K, Tanaka N, Fujiwara Y, Kamei N, Ochi M. Corticospinal tract conduction block results in the prolongation of central motor conduction time in compressive cervical myelopathy. Clinical neurophysiology. 2006;117(3):623-627. 28. Gruener G, Biller J. Spinal cord anatomy, localization, and overview of spinal cord syndromes. CONTINUUM: Lifelong Learning in Neurology. 2008;14(3, Spinal Cord, Root, and Plexus Disorders):11-35. 29. Winter DA. Biomechanics and motor control of human movement. John Wiley & Sons; 2009. 30. Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE transactions on bio-medical engineering. 1996;43(9):956-966. 31. Nardone A, Galante M, Grasso M, Schieppati M. Stance ataxia and delayed leg muscle responses to postural perturbations in cervical spondylotic myelopathy. Journal of rehabilitation medicine. 2008;40(7):539-547. 32. Ross RT. Dissociated loss of vibration, joint position and discriminatory tactile senses in disease of spinal cord and brain. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques. 1991;18(3):312-320. 33. Sampath P, Bendebba M, Davis JD, Ducker TB. Outcome of patients treated for cervical myelopathy. A prospective, multicenter study with independent clinical review. Spine. 2000;25(6):670-676. 34. Singh A, Tetreault L, Casey A, Laing R, Statham P, Fehlings MG. A summary of assessment tools for patients suffering from cervical spondylotic myelopathy: a systematic review on validity, reliability and responsiveness. European Spine Journal. 2013;24(2):209-228. 35. King JT, Jr., Moossy JJ, Tsevat J, Roberts MS. Multimodal assessment after surgery for cervical spondylotic myelopathy. Journal of neurosurgery. Spine. 2005;2(5):526-534. 36. Furlan JC, Kalsi-Ryan S, Kailaya-Vasan A, Massicotte EM, Fehlings MG. Functional and clinical outcomes following surgical treatment in patients with cervical spondylotic myelopathy: a prospective study of 81 cases: clinical article. Journal of Neurosurgery: Spine. 2011;14(3):348-355. 37. Seng C, Tow BP, Siddiqui MA, et al. Surgically treated cervical myelopathy: a functional outcome comparison study between multilevel anterior cervical decompression fusion with instrumentation and posterior laminoplasty. The spine journal : official journal of the North American Spine Society. 2013;13(7):723-731. 38. Tetreault LA, Karpova A, Fehlings MG. Predictors of outcome in patients with degenerative cervical spondylotic myelopathy undergoing surgical treatment: results of a systematic review. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015;24 Suppl 2:236-251. 39. Fehlings MG, Wilson JR, Kopjar B, et al. Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: results of the AOSpine North America prospective multi-center study. J Bone Joint Surg Am. 2013;95(18):1651-1658. 40. Kuhtz-Buschbeck J, Jöhnk K, Mäder S, Stolze H, Mehdorn M. Analysis of gait in cervical myelopathy. Gait & posture. 1999;9(3):184-189. 41. Maezawa Y, Uchida K, Baba H. Gait analysis of spastic walking in patients with cervical compressive myelopathy. Journal of orthopaedic science. 2001;6(5):378-384. 42. Malone A, Meldrum D, Bolger C. Three-dimensional gait analysis outcomes at 1 year following decompressive surgery for cervical spondylotic myelopathy. European Spine Journal. 2015;24(1):48-56. 43. Vernon H. The Neck Disability Index: state-of-the-art, 1991-2008. Journal of manipulative and physiological therapeutics. 2008;31(7):491-502. 44. Cleland JA, Childs JD, Whitman JM. Psychometric properties of the Neck Disability Index and Numeric Pain Rating Scale in patients with mechanical neck pain. Archives of physical medicine and rehabilitation. 2008;89(1):69-74. 45. Cleland JA, Fritz JM, Whitman JM, Palmer JA. The reliability and construct validity of the Neck Disability Index and patient specific functional scale in patients with cervical radiculopathy. Spine. 2006;31(5):598-602. 46. MacDermid JC, Walton DM, Avery S, et al. Measurement properties of the neck disability index: a systematic review. The Journal of orthopaedic and sports physical therapy. 2009;39(5):400-417. 47. Saltychev M, Mattie R, McCormick Z, Laimi K. Psychometric properties of the neck disability index amongst patients with chronic neck pain using item response theory. Disability and rehabilitation. 2017:1-6. 48. Wu S, Ma C, Mai M, Li G. Translation and validation study of Chinese versions of the neck disability index and the neck pain and disability scale. Spine. 2010;35(16):1575-1579. 49. Young IA, Cleland JA, Michener LA, Brown C. Reliability, construct validity, and responsiveness of the neck disability index, patient-specific functional scale, and numeric pain rating scale in patients with cervical radiculopathy. American journal of physical medicine & rehabilitation. 2010;89(10):831-839. 50. Tanaka N, Konno S, Takeshita K, et al. An outcome measure for patients with cervical myelopathy: the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ): an average score of healthy volunteers. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 2014;19(1):33-48. 51. Benzel EC, Lancon J, Kesterson L, Hadden T. Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. Journal of spinal disorders. 1991;4(3):286-295. 52. Yonenobu K, Abumi K, Nagata K, Taketomi E, Ueyama K. Interobserver and intraobserver reliability of the japanese orthopaedic association scoring system for evaluation of cervical compression myelopathy. Spine. 2001;26(17):1890-1894; discussion 1895. 53. Kopjar B, Tetreault L, Kalsi-Ryan S, Fehlings M. Psychometric properties of the modified Japanese Orthopaedic Association scale in patients with cervical spondylotic myelopathy. Spine. 2015;40(1):E23-28. 54. Nurick S. The pathogenesis of the spinal cord disorder associated with cervical spondylosis. Brain. 1972;95(1):87-100. 55. Singh A, Crockard HA. Comparison of seven different scales used to quantify severity of cervical spondylotic myelopathy and post-operative improvement. Journal of outcome measurement. 2001;5(1):798-818. 56. Revanappa KK, Rajshekhar V. Comparison of Nurick grading system and modified Japanese Orthopaedic Association scoring system in evaluation of patients with cervical spondylotic myelopathy. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2011;20(9):1545-1551. 57. Singh A, Crockard HA, Platts A, Stevens J. Clinical and radiological correlates of severity and surgery-related outcome in cervical spondylosis. Journal of neurosurgery. 2001;94(2 Suppl):189-198. 58. Numasawa T, Ono A, Wada K, et al. Simple foot tapping test as a quantitative objective assessment of cervical myelopathy. Spine. 2012;37(2):108-113. 59. Buatois S, Miljkovic D, Manckoundia P, et al. Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65 and older. Journal of the American Geriatrics Society. 2008;56(8):1575-1577. 60. Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Physical therapy. 2005;85(10):1034-1045. 61. Bohannon RW. Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Perceptual and motor skills. 2006;103(1):215-222. 62. Yukawa Y, Kato F, Ito K, et al. “Ten second step test” as a new quantifiable parameter of cervical myelopathy. Spine. 2009;34(1):82-86. 63. Portney LG, Watkins MP. Foundations of Clinical Research: Application to Practice. 3rd ed. Harlow: Pearson Education Limited; 2014. 64. Le Clair K, Riach C. Postural stability measures: what to measure and for how long. Clinical biomechanics (Bristol, Avon). 1996;11(3):176-178. 65. Swanenburg J, de Bruin ED, Favero K, Uebelhart D, Mulder T. The reliability of postural balance measures in single and dual tasking in elderly fallers and non-fallers. BMC musculoskeletal disorders. 2008;9:162. 66. Hoeksma HL, Van Den Ende CH, Ronday HK, Heering A, Breedveld FC. Comparison of the responsiveness of the Harris Hip Score with generic measures for hip function in osteoarthritis of the hip. Annals of the rheumatic diseases. 2003;62(10):935-938. 67. Auffinger BM, Lall RR, Dahdaleh NS, et al. Measuring surgical outcomes in cervical spondylotic myelopathy patients undergoing anterior cervical discectomy and fusion: assessment of minimum clinically important difference. PloS one. 2013;8(6):e67408. 68. Hughes MA, Duncan PW, Rose DK, Chandler JM, Studenski SA. The relationship of postural sway to sensorimotor function, functional performance, and disability in the elderly. Archives of physical medicine and rehabilitation. 1996;77(6):567-572. 69. Lehmann JF, Boswell S, Price R, et al. Quantitative evaluation of sway as an indicator of functional balance in post-traumatic brain injury. Archives of physical medicine and rehabilitation. 1990;71(12):955-962. 70. Lichtenstein MJ, Burger MC, Shields SL, Shiavi RG. Comparison of biomechanics platform measures of balance and videotaped measures of gait with a clinical mobility scale in elderly women. Journal of gerontology. 1990;45(2):M49-54. 71. Kaufman KR, Brey RH, Chou LS, Rabatin A, Brown AW, Basford JR. Comparison of subjective and objective measurements of balance disorders following traumatic brain injury. Medical engineering & physics. 2006;28(3):234-239. 72. Gill-Body KM, Beninato M, Krebs DE. Relationship among balance impairments, functional performance, and disability in people with peripheral vestibular hypofunction. Physical therapy. 2000;80(8):748-758. 73. Thapa PB, Gideon P, Fought RL, Kormicki M, Ray WA. Comparison of clinical and biomechanical measures of balance and mobility in elderly nursing home residents. Journal of the American Geriatrics Society. 1994;42(5):493-500. 74. Takayama H, Muratsu H, Doita M, Harada T, Yoshiya S, Kurosaka M. Impaired joint proprioception in patients with cervical myelopathy. Spine. 2005;30(1):83-86. 75. Roijezon U, Bjorklund M, Djupsjobacka M. The slow and fast components of postural sway in chronic neck pain. Manual therapy. 2011;16(3):273-278. 76. Manor B, Li L. Characteristics of functional gait among people with and without peripheral neuropathy. Gait & posture. 2009;30(2):253-256. 77. Bean JF, Kiely DK, Herman S, et al. The relationship between leg power and physical performance in mobility-limited older people. Journal of the American Geriatrics Society. 2002;50(3):461-467. 78. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF. Unified theory regarding A/P and M/L balance in quiet stance. Journal of neurophysiology. 1996;75(6):2334-2343. 79. Riemann BL, Myers JB, Lephart SM. Comparison of the ankle, knee, hip, and trunk corrective action shown during single-leg stance on firm, foam, and multiaxial surfaces. Archives of physical medicine and rehabilitation. 2003;84(1):90-95. 80. Horak FB, Nashner LM, Diener HC. Postural strategies associated with somatosensory and vestibular loss. Experimental brain research. 1990;82(1):167-177. 81. Gross MM, Stevenson PJ, Charette SL, Pyka G, Marcus R. Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait & posture. 1998;8(3):175-185. 82. Pai YC, Rogers MW. Control of body mass transfer as a function of speed of ascent in sit-to-stand. Med Sci Sports Exerc. 1990;22(3):378-384. 83. Mong Y, Teo TW, Ng SS. 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Archives of physical medicine and rehabilitation. 2010;91(3):407-413. 84. Shum GL, Crosbie J, Lee RY. Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. Spine. 2005;30(17):1998-2004. 85. Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. The journals of gerontology. Series A, Biological sciences and medical sciences. 2002;57(8):M539-543. 86. Alexander NB. Postural control in older adults. Journal of the American Geriatrics Society. 1994;42(1):93-108. 87. Kuh D, Bassey EJ, Butterworth S, Hardy R, Wadsworth ME. Grip strength, postural control, and functional leg power in a representative cohort of British men and women: associations with physical activity, health status, and socioeconomic conditions. The journals of gerontology. Series A, Biological sciences and medical sciences. 2005;60(2):224-231. 88. Henry SM, Fung J, Horak FB. Effect of stance width on multidirectional postural responses. Journal of neurophysiology. 2001;85(2):559-570. 89. Barthelemy D, Willerslev-Olsen M, Lundell H, et al. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. Journal of neurophysiology. 2010;104(2):1167-1176. 90. Abbed KM, Coumans JV. Cervical radiculopathy: pathophysiology, presentation, and clinical evaluation. Neurosurgery. 2007;60(1 Supp1 1):S28-34. 91. Gribble PA, Hertel J. Effect of hip and ankle muscle fatigue on unipedal postural control. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2004;14(6):641-646. 92. Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Experimental neurology. 2001;171(1):153-169. 93. Archer KR, Wegener ST, Seebach C, et al. The effect of fear of movement beliefs on pain and disability after surgery for lumbar and cervical degenerative conditions. Spine. 2011;36(19):1554-1562. 94. van der Putten JJ, Stevenson VL, Playford ED, Thompson AJ. Factors affecting functional outcome in patients with nontraumatic spinal cord lesions after inpatient rehabilitation. Neurorehabilitation and neural repair. 2001;15(2):99-104. 95. Peterka RJ, Loughlin PJ. Dynamic regulation of sensorimotor integration in human postural control. Journal of neurophysiology. 2004;91(1):410-423. 96. Peterka RJ. Sensorimotor integration in human postural control. Journal of neurophysiology. 2002;88(3):1097-1118. 97. Baba H, Maezawa Y, Uchida K, Furusawa N, Wada M, Imura S. Plasticity of the spinal cord contributes to neurological improvement after treatment by cervical decompression. A magnetic resonance imaging study. Journal of neurology. 1997;244(7):455-460. 98. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain research. 2015;1619:1-11. 99. Winter DA. Human balance and posture control during standing and walking. Gait & posture. 1995;3(4):193-214. 100. Matsuda Y, Miyazaki K, Tada K, et al. Increased MR signal intensity due to cervical myelopathy. Analysis of 29 surgical cases. Journal of neurosurgery. 1991;74(6):887-892. 101. Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and mri of the spinal cord. Spine. 2001;26(11):1238-1245. 102. Ohshio I, Hatayama A, Kaneda K, Takahara M, Nagashima K. Correlation between histopathologic features and magnetic resonance images of spinal cord lesions. Spine. 1993;18(9):1140-1149. 103. Yagi M, Ninomiya K, Kihara M, Horiuchi Y. Long-term surgical outcome and risk factors in patients with cervical myelopathy and a change in signal intensity of intramedullary spinal cord on Magnetic Resonance imaging. Journal of neurosurgery. Spine. 2010;12(1):59-65. 104. Zhou FQ, Tan YM, Wu L, Zhuang Y, He LC, Gong HH. Intrinsic functional plasticity of the sensory-motor network in patients with cervical spondylotic myelopathy. Scientific reports. 2015;5:9975. 105. Holly LT, Dong Y, Albistegui-DuBois R, Marehbian J, Dobkin B. Cortical reorganization in patients with cervical spondylotic myelopathy. Journal of neurosurgery. Spine. 2007;6(6):544-551. 106. Dong Y, Holly LT, Albistegui-Dubois R, et al. Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy. Journal of neurosurgery. Spine. 2008;9(6):538-551. 107. Pao JL, Yang RS, Hsiao CH, Hsu WL. Trunk Control Ability after Minimally Invasive Lumbar Fusion Surgery during the Early Postoperative Phase. J Phys Ther Sci. 2014;26(8):1165-1171. 108. Wang TY, Pao JL, Yang RS, Jang JS, Hsu WL. The adaptive changes in muscle coordination following lumbar spinal fusion. Hum Mov Sci. 2015;40:284-297. 109. Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nature reviews. Neuroscience. 2001;2(4):263-273. 110. Kowalczyk I, Duggal N, Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain. 2012;135(Pt 2):461-468. 111. Comerford M, Mottram S. Kinetic control: the management of uncontrolled movement. Elsevier Australia; 2012. 112. Bloem BR, Allum JH, Carpenter MG, Verschuuren JJ, Honegger F. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Experimental brain research. 2002;142(1):91-107. 113. Dobkin BH. Fatigue versus activity-dependent fatigability in patients with central or peripheral motor impairments. Neurorehabilitation and neural repair. 2008;22(2):105-110. 114. Maluf KS, Enoka RM. Task failure during fatiguing contractions performed by humans. Journal of applied physiology (Bethesda, Md. : 1985). 2005;99(2):389-396. 115. Fehlings MG, Skaf G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine. 1998;23(24):2730-2737. 116. Deyo RA, Centor RM. Assessing the responsiveness of functional scales to clinical change: an analogy to diagnostic test performance. Journal of chronic diseases. 1986;39(11):897-906. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7628 | - |
dc.description.abstract | 背景:頸椎脊髓神經病變是近年來常見的退化性疾病,其會造成姿勢控制能力受損。而頸部減壓手術為針對頸椎脊髓神經病變的治療之一,其以侵入性方式直接去除造成脊髓壓迫的組織。然而,針對頸椎脊髓神經病變之功能性評估及站立時的姿勢控制之間的關係仍很少被探討,此外,過去也無研究探討頸椎脊髓神經病變患者在減壓手術前後之站立姿勢控制變化。
研究目的:(1)確立頸椎脊髓神經病變患者之功能性表現和站立姿勢控制能力的相關性,並比較不同程度之頸椎脊髓神經病變患者、頸椎神經根病變患者及健康對照者的平衡能力;(2)評估並追蹤頸椎脊髓神經病變患者接受減壓手術後之功能性表現及站立姿勢控制能力,並確立何種功能性評估最能反映出減壓手術後站立姿勢控制變化。 研究設計:觀察性研究 研究方法:在實驗一中,參與者會被分成為脊髓病變組(63名受試者),神經根病變組(24名受試者)和健康對照組(19名受試者)。脊髓神經病變組和神經根病變組會進行日常功能性評估,其包括功能性問卷(頸部失能量表(NDI)、日本骨科學會頸椎脊隨病變評估問卷(JOACMEQ)之下肢功能分數、Nurick量表以及改良式日本骨科學會(JOA)量表之下肢運動功能障礙分數)和功能表現(腳踏測試、五次坐到站測試和10秒原地踏步測試)。再者,三組的參與者皆會以自然站姿及雙腳併攏站姿站立於力板上,並分別在睜眼和閉眼情況下紀錄其壓力中心之前後側和左右側位移。在實驗二中,參與者被分成脊髓病變組(53名受試者)和健康對照組(22名受試者)。脊髓病變組會在術前與術後3個月、術後6個月和術後1年進行日常功能性表現評估(包括NDI,JOACMEQ下肢功能和10秒步進測試)以及在睜眼和閉眼下站立於力板上的姿勢控制評估。而對照組僅需參與站立姿勢控制評估。 結果:在實驗一中,日常功能性測試中的JOACMEQ下肢功能分數與站立時壓力中心參數(center of pressure variables)之間的有顯著的一般相關性(r < 0.5,p < 0.05)。以Nurick量表分數進行嚴重程度分組的兩組脊髓病變組之壓力中心參數在閉眼站立的情況下有顯著性差異(p < 0.05)。在Nurick量表分數為“2或3”的脊髓病變組之壓力中心參數明顯地比神經根病變組和健康對照組高(p < 0.05)。在實驗二中,脊髓病變組的NDI分數(p = 0.036)和JOACMEQ之下肢功能分數(p = 0.036)在減壓手術後均有顯著地改善,而在睜眼自然站立時,在壓力中心的95%置信橢圓面積(p = 0.022)、平均速度(p = 0.019)、前後向範圍(p = 0.007)、前後向均方根距離(p = 0.023)等壓力中心參數在術後有顯著地改善。然而,在所有的情況下,脊髓病變組之壓力中心參數在手術前後均顯著地高於健康對照組(p < 0.05)。若將術前之測量結果設置為基準,術後三個時間點的效應值和標準化反應平均值皆在-0.49至0.03的範圍內。以受試者工作特徵(Receiver operating characteristic,ROC)曲線方法分析並以JOACMEQ之下肢功能部分的第一題分數為依據,只有在術後3個月的壓力中心之95%置信區橢圓形區域、前後側範圍、左右側範圍和左右側均方根距離(面積> 0.70 )的最小臨床重要差異能被計算出來。 結論:Nurick量表適合被用於分類頸椎脊髓病變患者之姿勢不穩定的程度,Nurick分數較高之頸椎脊髓神經病變患者相比於神經根病變患者或健康對照組,其姿勢控制有較明顯地受損。此外,在減壓手術後,主觀功能性評估問卷的分數和睜眼時前後方向相關的壓力中心參數皆有顯著地進步,然而站立壓力中心參數卻不適合作為評估減壓手術後短期變化的工具。 | zh_TW |
dc.description.abstract | Background: Cervical spondylotic myelopathy, which is a common degenerative disorder, may lead to impairment of upright postural control. The cervical decompression surgery is an invasive treatment for cervical myelopathy to remove the cord compression. However, there are few studies conducted on the relationship between functional outcomes and upright postural control, as well as effect of decompression surgery on upright postural control.
Purpose: (1) To determine the association between functional assessment with upright postural control of patients with myelopathy and to compare the upright postural control among patients with different severity of cervical myelopathy, patients with radiculopathy and healthy age-matched control; (2) To evaluate functional outcomes and upright postural control of patients with myelopathy after cervical decompression surgery and determine which statistical methods that reflect the clinically meaningful measure in upright postural control following cervical decompression surgery Design: Observational study Methods: In Experiment 1, participants were be recruited for myelopathy (63 subjects), radiculopathy (24 subjects) and age-matched control group (19 subjects). Only myelopathy and radiculopathy group were assessed by functional outcome measures, (i.e Neck Disability Index (NDI), Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ)-lower extremity function, Nurick scale, and modified Japanese Orthopaedic Association (JOA) scale-motor dysfunction of lower extremity (mJOA-MDLE)), and functional performances (i.e. foot taping test, five-times-sit-to-stand test and 10 second step test). Meanwhile, force platform was used to record the anteroposterior (AP) and mediolateral (ML) COP displacement of all participants in neutral and narrow stance with eyes-open and eyes-closed respectively. In Experiment 2, participants were recruited for myelopathy (53 subjects) and age-matched control group (22 subjects). The functional assessments, including NDI and JOACMEQ-lower extremity function and 10 second step test, were performed in myelopathy group at four phase: preoperative phase together with postoperative 3 months, 6 months and 1 year respectively. The standing balance assessment using force platform was performed in in myelopathy group at four phases and in age-matched control group only at recruitment day. Results: In Experiment 1, the correlations between JOACMEQ-lower extremity function and COP variables were significantly fair (r < 0.5, p < 0.05). The COP variables of myelopathy group classify with Nurick score showed significant differences (p < 0.05) in all eyes-closed condition. The myelopathy group with Nurick score ‘2 or 3’ demonstrated significantly increased COP variables than radiculopathy and age-matched control group (p < 0.05). In Experiment 2, the NDI score (p = 0.036) and JOACMEQ-lower extremity function score of myelopathy group (p = 0.036) improved after decompression surgery. Significant improvement was shown in 95% confidence ellipse area (p = 0.022), mean velocity (p = 0.019), range-AP (p = 0.007), and RMS distance-AP (p = 0.023) in neutral stance with eyes-opened. However, the COP variables was significantly instable than healthy age-matched control (p < 0.05) before and after surgery in all standing condition. The effect size and standard response mean of all three postoperative phases ranged from -0.49 to 0.03 if the preoperative phase was set as baseline. Only minimally clinically important difference (MCID) for 95% confidence ellipse area, range-AP, range-ML, root mean square (RMS) distance ML (area > 0.7) in eyes-closed condition at postoperative 3 months were determine with first question of JOACMEQ-lower extremity function as anchor by receiver operating characteristic (ROC) curve analysis. Conclusion: The Nurick scale may reflect severity of postural instability in patients with myelopathy. The myelopathy patients with higher Nurick score had obviously impaired upright postural control compared to patients with radiculopathy or healthy age-matched control. Besides, the subjective functional outcomes and COP variables in eyes-open condition significantly improved after decompression surgery. The COP variables were more suitable to reflect long-term change after decompression surgery. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:48:19Z (GMT). No. of bitstreams: 1 ntu-107-R04428004-1.pdf: 15828750 bytes, checksum: 5ebaeaf3bb64f7e3473e04e25d1d535b (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT vi CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xiv Chapter 1 Introduction 1 Chapter 2 Literature Review 2 2.1 Background and Epidemiology 2 2.2 Postural Control System in Upright Position 4 2.3 Pathological Change in Spinal Cord of Patients with Cervical Myelopathy 6 2.4 Standing Balance in Patients with Cervical Myelopathy 8 2.5 Functional Outcomes after Cervical Decompression Surgery 9 2.6 Research Question 12 2.7 Study Objective 13 2.8 Hypotheses 13 Chapter 3 Study Method 15 3.1 Experiment 1 15 3.1.1 Study Design 15 3.1.2 Study Procedure 15 3.1.3 Participants 15 3.1.4 Data Collection 17 3.1.5 Statistical Analysis 22 3.2 Experiment 2 24 3.2.1 Study Design 24 3.2.2 Study Procedure 25 3.2.3 Participants 25 3.2.4 Data Collection and Data Analysis 26 3.2.5 Statistical Analysis 29 Chapter 4 Study Results 33 4.1 Experiment 1 33 4.1.1 Demographic Data 33 4.1.2 Association between Center of Pressure Variables and Results of Functional Assessment in Myelopathy Group 33 4.1.3 Comparison COP Variables among Myelopathy Subgroup, Radiculopathy Group and Age-matched Control Group 35 4.2 Experiment 2 36 4.2.1 Demographic Data 36 4.2.2 Functional Outcomes after Decompression Surgery 36 4.2.3 COP Variables after Decompression Surgery 37 4.2.4 Responsiveness of COP variables 38 Chapter 5 Discussion 39 5.1 Experiment 1 39 5.2 Experiment 2 46 Chapter 6 Conclusion 56 REFERENCES: 58 APPENDICES 88 Appendix 1:臨床實驗/研究許可書 89 Appendix 2: 臨床試驗/研究受試者說明暨同意書 90 Appendix 3: 頸部失能量表 (Neck Disability Index, NDI) 97 Appendix 4: 日本骨科學會脊髓型頸椎病評估問卷 (Japanese Orthopaedic Association Myelopathy Evaluation Questionnaire, JOACMEQ) 99 Appendix 5: The Modified Japanese Orthopaedic Association Scale and Grading of Nurick Scale 103 | - |
dc.language.iso | en | - |
dc.title | 頸椎脊髓神經病變患者之站立姿態控制研究 | zh_TW |
dc.title | Study of the Upright Postural Control in Patients with Cervical Spondylotic Myelopathy | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王淑芬;王兆麟;鄭智修;賴達明;簡?原 | zh_TW |
dc.contributor.oralexamcommittee | Shwu-Fen Wang;Jaw-Lin Wang;Chih-Hsiu Cheng;Dar-Ming Lai;Andy Chien | en |
dc.subject.keyword | 頸椎脊髓神經病變,減壓手術,功能性表現,站立姿勢控制,壓力中心, | zh_TW |
dc.subject.keyword | Cervical myelopathy,decompression surgery,functional assessment,upright postural control,center of pressure (COP), | en |
dc.relation.page | 103 | - |
dc.identifier.doi | 10.6342/NTU201800337 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2018-02-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 物理治療學研究所 | - |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 15.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。