請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76282
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Jen-Feng Yang | en |
dc.contributor.author | 楊政峰 | zh_TW |
dc.date.accessioned | 2021-07-01T08:19:50Z | - |
dc.date.available | 2021-07-01T08:19:50Z | - |
dc.date.issued | 1997 | - |
dc.identifier.citation | 王俊能。1995。南仁山區亞熱帶季風雨林植物葉片水份狀態在不同生育地反應的研究。國立臺灣大學植物科學研究所碩士論文。
王鑫。1985。墾丁國家公園史前文化及生態資源。[王德琦編],內政部營建署墾丁國家公園管理處,25-39。 江斐瑜。1991。南仁山區環境對土壤性質及化育作用的影響。國立臺灣大學農業化學研究所碩士論文。 郭耀綸。1994。從生理和形態上比較共存之相思樹與蒲薑對乾旱環境的適應。中華林學季刊27(2): 37-54。 郭耀綸。1997。南仁山熱帶雨林森林冠層白榕及灌木層九節木的光合作用。行政院國家科學委員會專題研究報告。 楊嘉政。1994。南仁山熱帶季節性森林的組成、結構、歧異度及分佈類型的關係。國立臺灣大學植物科學研究所碩士論文。 謝長富、孫義方、謝宗欣、王國雄。1991。墾丁國家公園熱帶雨林永久樣區之調查。墾丁國家公園管理處保育研究報告第76號。 謝長富、孫義方、王國雄、蘇夢淮。1993。墾丁國家公園熱帶雨林永久樣區之調查。墾丁國家公園管理處保育研究報告第87號。 謝長富、廖啟政、賴宜鈴。1996。墾丁國家公園熱帶雨林永久樣區之調查。墾丁國家公園管理處保育研究報告第94號。 蘇鴻傑、蘇中原。1988。墾丁國家公園植群多變量的分析。中華林學季刊21: 17-32。 Bacone, J., F. A. Bazzaz, and W. R. Boggess. 1976. Correlated photosynthetic responses and habitat factors of two successional tree species. Oecologia 23: 63-74. Bazzaz, F.A., and J. S. Boyer. 1972. A compensating method for measuring carbon dioxide exchange, transpiration, and diffusive resistances of plants under controlled environmental conditions. Ecology 53: 343-349. Bazzaz, F. A. 1979. The physiological ecology of plant succession. Ann. Rev. Ecol. Syst. 10: 351-371. Bazzaz, F. A. 1980. Physiological ecology of tropical succession: a comparative review. Ann. Rev. Ecol. Syst. 11: 287-310. Bazzaz, F.A., and S. T. A. Pickett. 1980. The physiological ecology of tropical succession: a comparative review. Ann. Rev. Ecol. Syst. 11: 287-310. Bunce, J. A. 1992. Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant Cell Environ. 15: 541-549. Campbell, 1993. Biology, 3rd. The Benjamin and Cummings Publishing Company, Inc, Redwood City, California. Chazdon, R. L., and N. Fetcher. 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J. Ecol. 72: 553-564. Constale J. V. H., E. George, Jr. Taylor, J. A. Laurence, and J. A. Weber. 1996. Climatic change effects on the physiology and growth of Pinus ponderosa: expectations from simulation modeling. Can. J. For. Res. 26: 1315-1325. Corney, J. P., P. J. Milham, M. Mazur, and E. W. R. Barlow. 1990. Growth, dry weight partitioning and wood properties of Pinus radiata D. Don after 2 years of CO2 enrichment. Plant Cell Environ. 13: 329-337. Dixon, M., and J. Grace. 1984. Effect of wind on the transpiration of young trees. Ann. Bot. 53: 811-819. Drake, B. G., K. Raschke, and F. B. Salibury. 1970. Temperature and transpiration resistance of Xantium leaves as effected by air temperature, humidity, and wind speed. Plant Physiol. 46: 324-330. Drake, B. G., and P. W. Leadley. 1991. Canopy photosynthesis of crops and native plant communities exposed to long-term elevated CO2. Plant Cell Environ. 14: 853-860. Evans, G. C. 1939. Ecological studies on the rain forest of southern Nigeria. II. The atmospheric environment conditions. J. Ecol. 27: 432-482. Farquhar, G. D., and T. D. Sharkey. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33: 317-345. Fredericksen, T. S., Steiner, K. C., Skellly, J. M., Joyce, B. J., Kolb, T. E., Kouterick, K. B., and J. A. Ferdinand. 1996. Diel and seasonal patterns of leaf gas exchange and xylem water potentials of different-sized Prunus serotina Ehrh. trees. Forest Science 42: 359-365. Grace, J. 1974. The effect of wind on gresses. J. Exp. Bot. 25: 542-551. Grace, J. 1977. Plant Response to Wind. Academic Press. p204. Jaffe, M. J. 1980. Morphogenetic responses of plants to mechanical stimuli or stress. BioScience 30: 239-243. Kapos, V., and E. V. Tanner. 1985. Water relations of jamaican upper montane rain forest trees. Ecology. 66: 241-250. Knoerr, K. R. 1967. Contrasts in energy balances between individual leaves and vegetated surfaces. Pergamon, Oxford. Kozlowski, T. T., P. J. Kramer, and S. G. Pallardy. 1991. The Physiological Ecology of Woody Plants. Academic Press, Inc. California. Kramer, P. J., and J. P. Decker. 1944. Relation between light intensity and rate of photosynthesis of loblolly pine and certain hardwoods. Plant Physiol. 19: 350-358. Larcher, W. 1983. Physiological Plant Ecology. 2nd ed. Spriger-Verlag, New York. Langenheim, J. H., C. B. Osmond, and P. J. Ferrar. 1984. Photosynthesis response to light in seedlings of selected Amazonian and Australian rain forest tree species. Oecologia 63: 215-24. Lawton, R. O. 1982. Wind stress and elfin stature in a mountane rain forest tree: a adaptive explanation. Amer. J. Bot. 69: 1224-1230. Lee, D.W. 1987. The spectral distribution of radiation in two neotropical rain forest. Biotropica 19: 161-166. Legge, N. J. 1985. Relating water potential gradients in mountain Ash to transpiration rate Aust. J. Plant Physiol. 12: 89-96. Lipscomb, M. V., and E. T. Nilsen. 1990. Environmental and physiological factors influencing the natural distribution of evergreen and deciduous ericaceous shrubs on northeast- and southwest-facing slopes of the southern appalachin mountains. II. water relations. Amer. J. Bot. 77: 517-526. Mabberleg, D. J. 1992. Tropical Rain Forest Ecology, 2nd ed. Chapman and Hall, New York. Marler, T. E., and Y. Zozor. 1992. Carambola growth and leaf gas-exchange responses to seismic or wind stress. Hortscience 27: 913-915. McBurney, T. A. and P. A. Costigan. 1984. The relationship between plant water potential and transpiration in young Cabbage plants growing in wet soil. J. Exp. Bot. 35: 1032-1038. Mooney, H. A. 1972. The carbon balance of plants. Ann. Rev. Ecol. Syst. 3: 315-346. Nobel, P. S. 1983. Biophyical Plant Physiology and Ecology. W. H. Freeman and Company, New York. Orwig, D. A., and M. D. Abrams. 1995. Dendroecological and ecophysiological analysis of gap environments in mixed-oak understoreys of northern Virginia. Functional Ecol. 9: 799-806. Owems, M. K. 1996. The role of leaf and canopy-level gas exchange in the replacement of Quercus virginiana (Fagaceae) by Juniperus ashei (Cupressaceae) in semiarid savannas. Amer. J. Bot. 83:617-623. Powles, S. B. 1984. Photoinhibition of photosynthesis induced by visible light. Ann. Rev. Plant Physiol. 35: 15-44. Regehr, D. L., F. A., Bazzaz, and W. R. Boggess. 1975. Photosynthesis, transpiration, and leaf conductance of Populus deltoides in relation to flooding and drought. Photosynthetica 9: 52-61. Sato, T., H. Tanouchi, and K. Takeshita. 1994. Initial regenerative processes of Distylium racemosum and Persea thunbergii in an evergreen broad-leaved forest. J. Plant Res. 107: 331-337. Schulze, E. D., O. L. Lange, U. Buschbom, and L. Kappen. 1972. Stomatal responses to change in humidity in plant growing in the desert. Planta 108: 259-270. Sipe, T. W., and F. A. Bazzaz. 1994. Gap partitioning among maples (Acer) in central New England: shoot architecture and photosynthesis. Ecol. 75: 2318-2332. Taiz, L., and E. Zeiger. 1991. Plant Physiology. The Benjamin and Cummings Publishing Company, Inc. Redwood City, California. Teskey, R. O., J. A., Fites, L. J., Samuelson, and B. C. Bongarten.1986. Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L. Under different environmental conditions. Tree Physiol. 2: 131-142. Thiec, D. L., and M. Dixon. 1996. Acclimation of photosynthesis in Norway spruce and red oak grown in open-top chambers and subjected to natural drought and to elevated CO2. Can. J. For. Res. 26: 87-94. Whitehead, D., N. J. Livingston, F. M. Kelliher, K. P Hogan, S. Pepin, T. M. Mcseveny, and J. N. Byers. 1996. Response of transpiration and photosynthesis to a transient change in illuminated foliage area for a Piuns radiata D. Don tree. Plant Cell Environ. 19: 949-957. Zotz, G., and K. Winter. 1993. Short-term photosynthesis measurements predict leaf carbon balance in tropical rain forest canopy plants. Planta 191: 409-412. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76282 | - |
dc.description.abstract | 位於屏東縣滿州鄉欖仁溪上源的南仁山三公頃永久樣區,全年氣候可明顯分為兩個季節。十月至翌年三月之冬季受東北季風吹拂,寒冷低溫,並有短暫乾旱發生,是屬於南仁山的風季。其餘月份高溫多雨,則為非風季。本研究目的在探討南仁山區不同種植物之間生理特性的差異,及其在不同季節的生理反應。
本研究以南仁山區四種具有代表性的植物為實驗樹種。大頭茶(Gordonia axillaris (Roxb.) Dietr.)及台灣柯(Pasania formosana (Skan) Schottky)為迎風坡分佈種;紅花八角(Illicium arborescens Hayata)與奧氏虎皮楠(Daphniphyllum glauescens Blume ssp. Oldhamii (Hemsl.) Huang)為廣泛分佈種。測定各樹種的淨光合作用、蒸散作用、氣孔導度以及黎明前與中午的葉片水勢。 所有實驗數據經由鄧肯新多變域分析。結果發現,無論在風季或非風季期間,迎風坡分佈種的淨光合作用率皆高於廣泛分佈種。大頭茶在風季時淨光合作用率較非風季高,是四種樹種中最高的。台灣柯的黎明前與中午的葉片水勢,無論在風季或非風季皆低於其他樹種。紅花八角的蒸散作用率低於其他三種樹種,但紅花八角和大頭茶一樣,皆能維持較其他二種樹種為高的用水效率。奧氏虎皮楠的用水效率最低,蒸散作用卻比其他樹種高,但在幾個日變化測定日當中,皆未發生強光造成的午休現象。在四種樹種中,除了紅花八角風季時氣孔導度會增加之外,其餘三種樹種氣孔導度並不因季節不同而有所改變,大頭茶則具有相當高的光合作用潛力。 四種樹種的生理特性各有不同,淨光合作用生產力以大頭茶和台灣柯最高,紅花八角有較高的用水效率,奧氏虎皮楠淨光合作用不易遭受到因強光引起的午休現象。雖然四種樹種的分佈優勢度不同,但都可以適應生長於南仁山區受東北季風強烈影響的環境中。 | zh_TW |
dc.description.abstract | The 3-ha study area of a subtropical rain forest is located in Nanjenshan, southern Taiwan. The climate is markedly seasonal. The study area is subject to strong northeasterly monsoon winds, low temperature and short period of drought in winter season, while it is hot and rainy during the summer months. The purpose of this study is to understand and compare the physiological activities of four plant species between monsoon season and non-monsoon season.
Four plant species were selected in this study. Gordonia axillaris and Pasania formosana are dorminant species on windward sites (windward specialists). Illicium arborescens and Daphniphyllum glauescens are dorminated both on windward and leeward sites (generalist). The physiological factor studies included net photosynthetic rate, transpiration, stomatal conductance, predawn as well as midday leaf water potential. The results of Duncan's new multiple range test and multiple regression analysis showed that the net photosynthetic rate of the windward specialists was higher than the generalists whether in monsoon or in non-monsoon season. The net photosynthetic rate of Gordonia axillaris was higher in monsoon season than in non-monsoon season and it was the highest among these four species during monsoon season. However, the predawn and midday leaf water potential of Pasania formosana is lowest both in monsoon season and non-monsoon season. For transpiration Illicium arborescens was lowest all the time, but it could maintain a higher water-use efficiency than other study species such as Gordonia axillaris. The water-use efficiency of Daphniphyllum glauescens was the lowest and the transpiration the highest among the study species. During the measure of diurnal course of physiological activities, the phenomenon of midday depression of photosynthesis did not occur in Daphniphyllum glauescens. The stomatal conductance was higher during monsoon season than non-monsoon season in Illicium arborescens, and was lower during non-monsoon than monsoon season in Gordonia axillaris. The stomatal conductance was not significantly different between monsoon and non-monsoon seasons in these species except Illicium arborescens. There was a higher net photosynthetic potential for Gordonia axillaris. The physiological activities were different among the four species. The net productivities of Gordonia axillaris and Pasania formosana were higher than other species. The water-use efficiency of Illicium arborescens was the highest among the study species. The phenomenon of midday depression of photosynthesis was not found in Daphniphyllum glauescens. Although different distribution pattern occurring among the four species, we suggest that all of them can adapt well to the windy environment of Nanjenshan. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:19:50Z (GMT). No. of bitstreams: 0
Previous issue date: 1997 | en |
dc.description.tableofcontents | 致謝……………………………………………………I
摘要……………………………………………………III Abstract……………………………………………………V 目錄……………………………………………………VII 圖目錄……………………………………………………IX 表目錄……………………………………………………X 壹、前言……………………………………………………1 本篇研究的目的……………………………………………………8 貳、研究區域概述……………………………………………………9 一、地理位置……………………………………………………9 二、氣候環境因數……………………………………………………9 三、樣區植被概況……………………………………………………12 參、研究方法……………………………………………………14 一、樣區實驗樹種的選取及實驗平臺的搭建……………………………………………………14 二、葉片的取樣及生理活動的測定……………………………………………………15 三、資料處理……………………………………………………18 肆、結果……………………………………………………22 一、不同樹種間淨光合作用、蒸散作用、氣孔導度及葉片水勢的比較……………………………………………………22 二、同一樹種在風季與非風季期間淨光合作用、蒸散作用、氣孔導度及葉片水勢的比較……………………………………………………24 三、四種樹種生理反應與環境因數的關係……………………………………………………28 四、四種樹種的其他生理特性……………………………………………………36 伍、討論……………………………………………………47 一、四種樹種間生理的差異與各樹種在不同季節的生理反應……………………………………………………47 二、生理反應與環境因數的關係……………………………………………………49 三、最大淨光合作用率及最大蒸散作用率……………………………………………………51 四、與其他樹種在生態生理學研究結果的比較……………………………………………………52 陸、參考文獻……………………………………………………56 附錄、……………………………………………………62 | - |
dc.language.iso | zh-TW | - |
dc.title | 南仁山亞熱帶雨林四種優勢種林木生態生理學研究 | zh_TW |
dc.date.schoolyear | 85-2 | - |
dc.description.degree | 碩士 | - |
dc.relation.page | 61 | - |
dc.rights.note | 未授權 | - |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。