Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorIng-Feng Changen
dc.contributor.author張英峰zh_TW
dc.date.accessioned2021-07-01T08:19:05Z-
dc.date.available2021-07-01T08:19:05Z-
dc.date.issued1996
dc.identifier.citation北條良夫、石塚潤爾。1985。最新作物生理實驗法。農業技術協會,東京。
呂光洋。1982。竹圍紅樹林沼澤生態調查(1)。中華林學季刊15(3):69-76。
周昌弘、楊棋明。1981。紅樹林生態生理之研究。科學農業29(11-12):327-335。
黃元勳.1983.竹圍紅樹林生態系營養物質流轉之動力學研究,國立臺灣大學植物科學研究所碩士論文。
鄭可大。1994。臺灣白茅族群DNA多型性之研究。國立臺灣大學植物科學研究所博士論文。
蔡其助。1994。臺灣地區白茅族群分化之研究。國立臺灣大學植物科學研究所碩士論文。
劉棠瑞。1956。紅樹林。台大林業叢刊第二號:1-25。
Andrews, B.G., M.C. Drew, D.L. Cobb and C.J. Johnson. 1993. Hypoxic and anoxic induction of alcohol dehydrogenase in roots and shoots of seedlings of Zea mays. Plant Physiol. 101: 407-414.
Andrew, D.H. and F.M. Kent. 1992. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol. Biol. 18: 1-11.
Andrew, D.H. and W. Roger. 1982. Biosynthesis, translocation, and accumulation of betaine in sugar beet and its progenitors in relation to salinity. Plant Physiol. 70: 1191-1198.
Baskin, J.M. and C.C. Baskin. 1976. Evidence for metabolic adaptation to flooding in Leavenworthia uniflora. J. Chem. Ecol. 2: 441-447.
Bates, L.S., R.P. Walden and I.D. Teare. 1973. Rapid determination of free proline for water-stress. Plant and Soil 39: 205-207.
Bertani, A., I. Brambilla and F. Menegus. 1980. Effect of anaerobiosis on rice seedlings: growth, metabolic rate, and fate of fermentation products. J. Exp. Bot. 31: 325-331.
Binzel, M.L., P.M. Hasegawa, D. Rhode, S. Handa, A.K. Handa and R.A. Bressan. 1987. Solute accumulation in tobacco cells adapted to NaCl. Plant Physiol. 84: 1408-1415.
Chrominski, A., R.B. Bhat, D.J. Weber and B.N. Smith. 1988. Osmotic stress dependent conversion of ACC to ethylene in the halophyte, Allentolfea occidentals. Envir. Exp. Bot. 28: 171-174.
Chrominski, A., S. Halls, D.J. Weber and B.N. Smith. 1989. Proline affects ACC to ethylene conversion under salt and water stress in the halophyte, Allentolfea occidentals. Envir. Exp. Bot. 29:359-363.
Cobb, B.G. and R.A. Kennedy. 1987. Distribution of alcohol dehydrogenase in roots and shoots of rice (Oryza sativa) and Echinochloa seedlings.1987. Plant Cell Environ. 10: 633-638.
Coughlan, S.J. and R.G. Wyn Jones. 1980. Some response of Spinaceae oleraceae to salt stress. J. Exp. Bot. 31: 883-893.
Crawford, R.M.M. and M. Mcmanmon. 1968. Inductive responses of alcohol and malic dehydrogenase in relation to flooding tolerance in roots. J. Exp. Bot. 19: 435-441.
Davies, D.D.. 1980. Anaerobic metabolism and the productuion of organic acids. In The Biochemistry of Plants: A comprehensive, Vol.2. P.K. Stumpf and E.E. Conn, (eds.). Academic Press, New York. p.581.
Dennis, E.S., W.L. rlach, A.J. Bennetzen, J.L. Pryor, A. Inglis, D. Llewellyn, M.M. Achs, R.J. Ferl and W.J. Peacock. 1984. Molecular analysis of alcohol dehydrogenase (ADH1)gene of maize. Nucleic Acids Res. 12: 3983-4000.
Flowers, T.J., M.A. Hajibagheri and N.J. Clipson. 1986. Halophytes. Q. Rev. Biol. 61: 313-337.
Flowers, T.J., P.F. Troke and A.R. Yeo. 1977. The mechanism of salt tolerance in halophyte. Ann. Rev. Plant Physiol. 28: 89-121.
Fox, T.C., R.A. Kennedy and A.A. Alani. 1988. Biochemical adaptations to anoxia in barnyard grass. In The Ecology and Management of Wetlands, vol.1: Ecology of Wetlands. D.D. Hook, (ed.). Timber Press, Portland, Oregon. pp.359-372.
Francis, C.M., A.C. Devitt and P. Steele. 1974. Influence of flooding on the alcohol dehydrogenase activity of roots of Trifolium subterraneum L. Aust. J. Plant Physiol. 1: 9-13.
Freeling, M.. 1973. Simultaneous induction by anaerobiosis or 2,4-D of multiple enzymes specified by two unliked genes: differential ADH1-ADH2 expression in maize. Mol. Gen. Genet. 127: 215-227.
Hageman, R.H. and D. Flesher. 1960. The effect of anaerobic environment on the activity of alcohol dehydrogenase and other enzymes of corn seedlings. Arch. Biochem. Biophys. 87: 203-209.
Hellebust, J.A.. 1976. Osmoregulation. Ann. Rev. Plant Physiol. 27:485-505.
Hsu, C.C. 1975. Gramineae. In Flora of Taiwan, Vol.6, Li, H.L., T.S. Liu, T.C. Huang, T. Koyama and C.E. Devel, (eds.). Taipei. pp.661-662.
Irish, E.E. and D. Schwartz. 1987. Activation of low and null activity isozymes of maize alcohol dehydrogenase by antibodies. Mol. Gen. Genet. 208:271-278.
Jain, P.K., R.S. Dhawan, D.R. Sharma and J.B. Chowdhury. 1987. Salt-tolerance and proline accumulation: a comparative study in salt-tolerance and wild type cultered cells of eggplant. Plant Cell Rep. 6: 382-384.
John, C.D. and H. Greenway. 1976. Alcoholic fermentation and activity of some enzymes in rice roots under anaerobiosis. Aust. J. Plant Physiol. 3: 325-336.
Kalra, Y.P. and D.G. Maynard. 1991. Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Center, Alberta, 116pp.
Laemmli, U.K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Matsushita, N. and T. Matoh. 1992.Function of the shoot base of salt-tolerant reed (Phragmites communis Trinius) plants for Na exclution from the shoots. Soil Sci. Plant Nutr. 38: 565-571.
Matumura, M., T. Yukimura and S. Shinoda. 1983. Fundamental studies on artificial propagation by seeding useful wild grasses in Japin. IX. Seed fertility and germinatility of the intraspecific two types of chigaya (alang-alang), Imperata cylindrica var. koenigii. J. Jap. Soc. of Grassland Sci. 28: 395-404.
Matumura, M. and A. Akikawa. 1989. Comparative ecology of intraspecific variants of chigaya, imperata cylindrica var. Koenigii (alang-alang). Early types of species under different temperature regimes. Res. Bull. of the Faculty of Agri., Gifu University No. 54:241-250.
Mcmanmon, M. and R.M.M. Crawford. 1971. A metabolic theory of flooding tolerance: the significance of enzyme distribution and behavior. New Phytol. 70: 299-306.
Patterson, D.T.. 1980. Shading effects on growth and partitioning of plant biomass in cogongrass (Imperata cylindrica) from shaded and exposed habitats. Weed Sci. 28: 735-740.
Ridge, I. and I. Amarsinghe. 1981. Ethylene as a stress hormone: it's role in submergence response. In Response of Plants to Environmental Stress and Their Mediation by Plant Growth Substances, Abstr. Br. Plant Growth Regul. Group-Assoc. of Appl.Biol., Wantage. pp.13-14.
Roberts, J.K.M., C. Judy, W. David, W. Virgina and J. Oleg. 1984a. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc. Natl. Acad. Sci. U.S. 81: 3379-3383.
Roberts, J.K.M., C. Judy, J. Oleg, W. Virgina and F. Michael. 1984b. Cytoplasmic acidosis as a determinant of flooding tolerance in plants. Proc. Natl. Acad. Sci. U.S. 81: 6029-6033.
Sachs, M.M., D.M.L. Wong and D.A. Russel. 1990. The anaerobic response of soybean. Plant Physiol. 92: 401-407.
Schwartz, D.. 1969. An example of gene fixation resulting from selective advantage in suboptimal conditions. Am. Nat. 103(933): 479-481.
Schwartz, D. and T. Endo. 1966. Alcohol dehydrogenase polymorphism in maize-simple and compound loci. Genetics 53: 709-715.
Smith, A.M. and T. ap Rees. 1979. Pathways of carbohydrate fermentation in the roots of marsh plants. Planta 146: 327-334.
Smits, A.J.M., R.M.J.C. Kleuker, C.J. Kok. and A.G. van der Velde. 1990. Alcohol dehydrogenase isozymes in the roots of some nymphaeid and isoetid macrophytes. Adaptations to hypoxic sediment conditions Aqu. Bot. 38: 19-27.
Stewart, C.R.. 1980. The mechanism of abscisic acid-induced proline accumulation in barley leaves. Plant Physiol. 66: 230-233.
Stewart, G.R. and J.A. Lee. 1974. The role of proline accumulation in halophytes. Planta 120: 279-289.
Stewart, C.R. and B.B. Michelle. 1983. Effect of NaCl on proline synthesis and utilation in excised barley leaves. Plant Physiol. 72: 664-667.
Stewart, C.R. and G. Voeberg. 1985. Relationship between stress-induced ABA and proline accumulation and ABA and proline accumulation in excised barley leaves. Plant Physiol. 79: 24-27.
Storey, R. and R.G. Wyn Jones. 1975. Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci. Lett. 4:161.
Tanksley, S.D. and R.D. Jones. 1981. Effects of stress on tomato alcohol dehydrogenase activity: description of a second ADH coding gene. Biochem. Genet. 19: 397-409.
Teas, H.J.. 1979. Silviculture with saline water. In The biosaline concept. A. Hohaender, (ed.). Plenum Publishing Corporation.
Walker, J.C., E.A. Howard, E.S. Dennis and W.J. Peacock. 1987. DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Proc. Natl. Acad. Sci. U.S. 84:6624-6628.
Wignarajan, B.K. and H. Greenway. 1976. Effect of anaerobiosis on activity of alcohol dehydrogenase and pyruvate decarboxylase in roots of Zea mays. New Phytol. 77: 575-584.
Wu, S.J., L. Ding and J.K. Zhu. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. The Plant Cell 8:617-627.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76204-
dc.description.abstract在臺灣白茅(Imperata cylindrica var. major)是一種很常見的植物,一屬一種,族群分佈於各地。過去的研究,指出竹圍紅樹林族群與臺灣內陸的其他族群在形態、解剖、DNA結構上有顯著的不同,故竹圍的族群形成一個較特別的生態種(ecotype),然而其適應當地紅樹林環境的機制不明。
前人研究指出植物體之酒精去氫酵素ADH(alcohol dehydrogenase)與淹水有關,而植物體內脯胺酸(proline)及鈉含量與鹽分有關。為探究白茅之酒精去氫酵素、脯胺酸和鈉與鹽分及淹水之關係,作者選取竹圍白茅為研究對象,並比較沙崙及內湖白茅。對採自上述地區之白茅分析其於野外當地環境下葉中酒精去氫酵素的活性、脯胺酸及根、莖和葉中鈉含量。結果顯示竹圍白茅葉中之酒精去氫酵素活性最高,與淹水相關。並於大潮日中午赴竹圍紅樹林於淹水前後採取白茅葉片分析酒精去氫酵素活性之變化,結果顯示淹水後酒精去氫酵素活性升高,此亦與淹水相關。葉中之脯胺酸與根、莖中之鈉含量最高,與土壤鹽度相關。因此作者提出假說,認為竹圍白茅葉中之酒精去氫酵素、脯胺酸及根、莖中之鈉與其對淹水及鹽分之適應有關。
為了驗證酒精去氫酵素、脯胺酸及鈉確實參與竹圍白茅對淹水及鹽分之適應機制,作者設計水耕實驗,分別對各地區白茅做淹水及鹽分之處理,以觀淹水及鹽分對各地區白茅之影響。結果顯示竹圍白茅能生長在1% NaCl鹽水中,淹水加速其生長速率,並且生長不受到抑制。其他地區白茅經淹水及鹽分處理後生長皆受到抑制。
進一步分析各地區白茅幼苗之酒精去氫酵素、脯胺酸及鈉對淹水及鹽分之反應,結果顯示淹水處理三個月後竹圍及沙崙白茅幼苗葉中酒精去氫酵素活性皆升高,但竹圍白茅比較高。淹水處理三天後竹圍白茅幼苗葉中酒精去氫酵素同功酵素活性大增,而沙崙白茅則活性不變。
以不同濃度鹽分處理四天後各族群之白茅幼苗葉中皆累積大量脯胺酸,但竹圍族群累積量比較高。以不同濃度鹽分處理八天後各地區之白茅幼苗根及莖中皆會累積大量鈉,但竹圍白茅累積量顯著比較高。以不同濃度鹽分處理二個月後各地區之白茅幼苗根及莖中皆會累積大量鈉,但竹圍白茅累積量亦顯著比較高。
由於在溫室內水耕試驗中白茅之酒精去氫酵素、脯胺酸及鈉對淹水及鹽分之生理反應與野外所得結果是吻合的,證實竹圍白茅葉中酒精去氫酵素確實與其對淹水之適應相關,而葉中累積之脯胺酸及根、莖中累積之鈉則與其對鹽分之適應相關。
zh_TW
dc.description.abstractImperata cylindrica var. major, one of the commonest weeds, is widespread and distributed in Taiwan area. A previous study indicated that Chuwei population was grouped as an ecotype based on RAPD and anatomic data. The mechanism of physiological adaptation nevertheless remained unknown.
Previous studies indicated that plant ADH (alcohol dehydrogenase) was involved in flooding. Plant proline and sodium contents were involved in saline. In order to identify the relationships of ADH, proline and sodium with flooding and saline, the Chuwei population as well as others from different locations were sampled. The ADH activity and proline content of leaf tissue and sodium content of roots, stems and leaves under native environment were analyzed. The I. cylindrica from Chuwei appeared to have the highest level of ADH activity, which may be respondent to flooding. In addition, the proline content of I. cylindrica from Chuwei is relatively higher than that of from others. The high level of proline may be ascribed to the concentrated salinity in soil.
To clearify roles of ADH in relation to flooding and of proline and sodium in relation to saline, water culture experiment was conducted in greenhouse with flooding and salt treatment. I. cylindrica from Chuwei appeared to be tolerant of high salt with 1% NaCl coentration. Flooding may even have some effect on facilitating plant growth. In contrast, the growth of others was inhibited under saline and flooding treatment.
After three months treatment of flooding and salinity on seedlings, the ADH level in leaf tissue of I. cylindrica from both Chuwei and Sallun becomed higher. Nevertheless, they responded differently. The ADH level increased dramatically in I. cylindrica from Chuwei after three-month flooding treatment. While the Adh level remained unaltered in I. cylindrica from Sallun.
The salinity treatment with different concentrations on seedlings led to the accumulation of proline in leaf tissue and sodium in root and stem. The I. cylindrica from Chuwei appeared to have the highest level of sodium and proline after eight days as well as two months of treatment compared to others.
Thus, there is correlation between ADH and adaptation to flooding of I. cylindrica from Chuwei. Also, there is correlation between proline and sodium and adaptation to saline of I. cylindrica from Chuwei.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:19:05Z (GMT). No. of bitstreams: 0
Previous issue date: 1996
en
dc.description.tableofcontents誌謝……………………………………………………I
中文摘要……………………………………………………II
英文摘要……………………………………………………IV
英文縮寫……………………………………………………VI
目次……………………………………………………VII
表次……………………………………………………IX
圖次……………………………………………………X
前言……………………………………………………1
前人研究……………………………………………………2
材料與方法
一、樣區設立及樣本之採集……………………………………………………8
二、溫室內對白茅植株之淹水及鹽分處理……………………………………………………13
三、各樣區之土壤分析……………………………………………………15
四、植物葉中酒精去氫酵素全活性之分析……………………………………………………16
五、蛋白質之定量……………………………………………………17
六、植物葉中酒精去氫酵素同功酵素之活性染色……………………………………………………17
七、植物體內鈉含量之分析……………………………………………………18
八、植物葉中脯胺酸含量之分析……………………………………………………19
九、植物葉中非變性可溶性蛋白質聚丙烯醯胺膠體電泳之分析……………………………………………………20
十、數據分析……………………………………………………21
結果
一、各樣區土壤之含水量、導電度、鹽度及氧化還原電位比較……………………………………………………22
二、於野外環境下不同地區白茅之葉中酒精去氫酵素全活性、脯胺酸含量及根、莖、葉中鈉含量之比較……………………………………………………24
三、竹圍樣區於大潮日及小潮日白茅葉中酒精去氫酵素全活性之比較……………………………………………………26
四、淹水處理對白茅幼苗生長之影響……………………………………………………30
五、以不同濃度鹽分處理對白茅幼苗生長之影響……………………………………………………34
六、淹水處理三個月對白茅幼苗葉中酒精去氫酵素全活性之影響……………………………………………………42
七、淹水處理四天對白茅幼苗葉中酒精去氫酵素同功酵素活性之影響……………………………………………………44
八、以不同濃度鹽分短期處理對白茅幼苗葉中脯胺酸含量之影響……………………………………………………46
九、以不同濃度鹽分處理八天對白茅幼苗體內鈉含量之影響……………………………………………………50
十、以不同濃度鹽分處理二個月對白茅幼苗體內鈉含量之影響……………………………………………………56
十一、各樣區之白茅葉中非變性可溶性蛋白質之不連續聚丙烯醯胺膠體電泳分析……………………………………………………62
討論……………………………………………………64
參考文獻……………………………………………………71
附錄……………………………………………………80
dc.language.isozh-TW
dc.title不同地區之白茅對鹽分及淹水之生理生態反應zh_TW
dc.titlePhysio-ecological Responses of Imperata cylindrica var. major from Different Habitats to Saline and Floodingen
dc.date.schoolyear84-2
dc.description.degree碩士
dc.relation.page81
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved