請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76168
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 王俊堯 | zh_TW |
dc.date.accessioned | 2021-07-01T08:18:44Z | - |
dc.date.available | 2021-07-01T08:18:44Z | - |
dc.date.issued | 1995 | |
dc.identifier.citation | Ang, D., Liberek, K., Skowyra. D., Zylicz, M. and Georopulos. C. 1991. Biological role and regulation of the universally conserved heat shock proteins. J. Biol. Chem. 266:24233-24241. Teana, L. A.. Brandi. A., Falconi, M., Spurio. R.. Pon. C. L. and Gualerzi. C. O. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleic protein H-NS. Proc. Natl. Acad. Sci. 88:10907-10911. Baldwin, J. and Hochachka. P. W. 1970. Function significance of isoenzymes in thermal acclimatization. Biochem. J. 116:883-887. Birnbaum, M. J., Schultz, J. and Fain, J. N. 1976. Hormone-stimulated glycogenolysis in isolated goldfish hepatocytes. Am. J. Physiol. 23 1:191-197. Block. B. A. 1991. Endothermy in fish: thermogenesis, ecology and and evolution. In: Biochemistry and Molecular Biology of Fishes. vol. I. edited by Hochachka. P. W. and Mommsen. T. Elsevir Science Publishers B. V.. Amersterdam. pp. 269. Cameron. J. N. 1984. Acid-base status of fish at different temperatures. Am. J. Phsiol. 15:R452-459. Carragher. J. F. and Rees, C. M. 1994. Primary and secondary stress responses in golden perch. Macquaria ambigua. Corn. Biochem. Physiol. 107A:49-56. Connors. T. J.. Schneider, M. J., Genoway, R. G. and Barraclough, S. A. 1978. Effects of acclimation temperature on plasma levels of glucose and lactate in rainbow trout Salmo gairdneri. J. Exp. Zool. 206:443-449. Cossins. A. R. and Bowler. K. 1987.Rate compensation and capacity adaptation. In: Temperature Biology of Animal. edited by Cossins. A. R. Chapman and Hall Press. New york. pp.l55-201. Craig, E. A. and Gross, C. A. 1991. Is hsp7o the cellular thermometer TiBS 16:135-140. Crawshaw. L. I. 1980. Temperature regulation in vertebrates. Ann. Rev. Physiol. 42:473-491. Crokford, T. and Johnston, A. 1990. Temperature acclimation and the exepression of contrsctile protein isoform in the skeletal muscles of the common carp (Cyprinus Carpio L.). J. Comp. Physiol. B 160:23-30. Dauncey, M. J. and Ingram, D. L. 1990. Respiratory enzymes in muscle: Interaction between enviromental temperature, nutrition and growth. J. Therm. Biol.3/4:325-328. Ellis, R. J. and Van der Vies, S. M. 1991. Molecular chaperones. Annu. Rev. Biochem. 60: 32 1-347. Ferguson. R. A. and Storey, K. B. 1992. Gluconeogenesis in trout (Oncorhynchus mykiss) white muscle: purification and characterization of fructose-l, 6-bisphosphatase activity in vitro. Fish Physiol. Biochem. 10:201-212. Gelman. A. Cogan. U. and Mokady, S. 1992. The thermal properties of fish enzyme as a possible indicator of the temperature adaptation potential of the fish. Comp. Biochem. Physiol. 101B:295-208. Gerlach. Gerald-F. Turay. L.. Malik. K. T. A.. Lida. J.. Scutt. A. and Goldspink. G. 1990. Mechanisms of temperature acclimation in the carp: a molecular biology approach. Am. J. Physiol. 259:R237-R244. Girard. J. P. and Payan, P. 1980. Ionic exchange through respiratiory and chloride cells in fresh water adapted teleostean: adrenergic control. Am. J. Physiol. 238 :R260-R268. Goldstein. J.. Pollitt, N. S. and Inouye. M. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. 87:283-287. Hanke. W. and Janssens. P. A. 1983. The role of hormones in regulation of carbohydrate metabolism in the Australian lunfish .Neoceratodus forsteri. Gen. Comp. Endocrinol. 51:364-369. Hattingh. J. 1976. Blood sugar as an indicator of stress in the freshwater fish. Labeo capensis (Smith). J. Fish Biol. 10:191-195. Hazel. J. 1984. Effects of temperature on the structure and metabolism of cell membranes in fish. Am. J. Physiol. 15:R460-R470. Hazel, J. R. and Prosser. C. L. 1974. Molecular mechanisms of temperature compensation in poikiotherms. Physiol. Rev. 54:620-677. Heap, S. P.. Watt. P. W. and Goldspink, G. 1985. Consequences of thermal change on the myofibrillar ATPase of five freshwater teleosts. J. Fish Biol. 26:733-738. Heap. S. P.. Watt, P. W. and Goldspink, G. 1986. Mvofibrillar ATPase activity in the carp Cyprinus carpio: interactions betwween starvation and enviromental temperature. J. Exp. Biol. 123:373-382. Hers. H. G. and Hue. L. 1983. Gluconeogenesis and related aspects of glvcolysis. Ann. Rev. Biochem. 52:617-653. Hochachka. P. W. and Lewis. J. K. 1970. Enzyme variants in thermal acclimation. J. Biol. Chem. 245:6567-6573. Hochachka. P. W. and Somero, G. N. 1984. Biochemical Adaptation. Pinceton University Press. New Jercey. Huber. M. and Guderley, H. 1993. The effect of thermal acclimation and exercise upon the binding of glycolytic enzymes in muscle of the goldfish Carassius Auratus. J. Exp. Biol. 175:195-209. Inui. Y. 1969. Hepatectomy in eels. Its operation technique and effects on blood glucose. Bull. Jap. Soc. Scient. Fish 39:975-978. Inui. Y. S. A. and Yokote. M. 1975. Gluconeogenesis in the eel-IV. Effect of hepatectomy. alloxan and mammalian insulin on the behaviour of plasma amino acids. Bull. Jap. Soc. Scient. Fish 41:1105-1111. Jaenicke. R. 1990. Protein structure and function at low temperature. Phil. Trans. R. Soc. Lond. B 326:535-553. Jankowsky, D.. Hotopp. W. and Seibert, H. 1984. Influence of thermal acclimation on glucose production and ketogenesis in isolated eel hepatocytes. Am. J. Physiol. 246:R471-R478. Johnston I. A.. Fleming, J. D. and Crockford. T. 1990. Thermal acclimation and muscle contractile properties in cyprinid fish. Am. J. Phsiol. 259:R231-R236. Johnston. I. A., Sidell. D. B. and Driedzic. W. R. 1985. Force-velocity charcteristics and metabolismof carp musclt fibers following temperature acclimation.. J. Fxp. Biol. 119:196-206. Johnston. I. A. 1990. Cold adaptation in marine organisms. Phil. Trans. R. Soc. Lond. B 326:655-667. Jones. P. G. and Inouye, M. 1994. The cold-shock response-a hot topic. Mol. Microbil. 11:811-818. Jones. P. G., Vanbogelen. R. A. and Neidhardt. F. C. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169:2092-2095. Jones, P. L. and Sidell, B. D. 1982. Metabolic responses of striped bass (Morone saxatilis) to temperature acclimation. II. Alterations of fiber types in locomotory muscle. J. Exp. Zool. 219:163-171. Kondo. K. and Inouye, M. 1991. TIP 1, a cold shock-inducible gene of Saccharomyces cerevisiae. J. Biol. Chem. 266:17537-17544. Kent. J.. Koban, M. and Prosser, L. 1988. Cold-acclimation-induced protein hypertrophy in channel catfish and green sunfish. J. Comp. Physiol. B 158:185-198. Kindle. K. R. and Whitmore. D. H. 1986. Biochemical indicators of thermal stress in Tilapia aurea (Steindachner). J. Fish Biol. 29:243-255. Koban. M. 1986. Can cultured teleost hepatocytes show temperature acclimation Am. J. Physiol. 19:R21 1-R220. Koban. M.. Yup. A. A.. Agellon. L. B. and Powers. D. A. 1991. Molecular adaptation to enviromental temperature: heat-shock response of the eurythermal teleost Fundulus heteroclitus. Mol. Mar. Biol. Biotech. 1: 1-17. Krebs. E. El. 1989. Role of cyclic AMP-dependent kinase in signal transduction. J. Am. Med. Ass. 262:1815-1818. Kurnst. A., Draeger, B. and Ziegenhorn, J. 1974. Colometric methods with glucose oxidase and peroxidase. In: Methods of Enzymatic Analysis. edited by Bergmeyer. H. U., 2nd edn, pp. 178-185. Leach. El. J. and Taylor, M. H. 1980. The role of cortisol in stress-induced metabolic changes in Fundulus heteroclitus. Gen. Comp. Endocrinol. 42:219-227. Lee. S. J.. Xie. A.. Jiang, W.. Etchegaray. J. P., Jones. P. El. and Inouye. M. 1994. Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coil. whose members show a high sequence similsrity with the eukaryotic Y-box binding proteins. Mol. Microbil. 11:833-839. Levitzki. A 1988. From epinephrine to cyclic AMP. Science 241:800-806. Lin. J. J. and Somero, G. N. 1995. Thermal adaptation of cytoplasmic malate dehydrogenase of Eastern Pacific barracuda (Sphyraena spp): the role of differential isoenzyme expression. J. Exp. Biol. 198:551-560. Lindquist. S. 1986. The heat-shock response. Ann. Rev. Biochem. 55:1151-1191. Lindquist. S. and Craig, E. A. 1988. Heat-shock proteins. Annu. Rev. Genet. 22:631-677. Love. R. M. 1980. The Chemical Biology of Fish. Vol. 2. Academic Press. New York and London. pp, 230-242. Matty. A. J. 1985. Fish Endocrinology. Crom. Helm. Ltd.. London and Sidney. pp. 130-13 7. Mazeaud. M. M. 1971. Epinephrine biosynthesis in Petromzon marrinus (Cyclostoma) and Salmo gairdneri (Teleost). Comp. Gen. Pharmacol. 3:457-468. Mazeaud, M. M. and Mazeaud, F. 1981. Adrenergic responses to stress in fish. In: Stress and Fish. edited by A. D. Pickering, Academic Press. London. pp. 49-75. Mazeaud, M. M.. Mazeaud. F. and Donaldson. F. M. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Trans. Am. Fish. Soc. 106:201-202. Mckinley, S. J. and Hazel, J. R. 1993. Eppinephrine stimulation of glucose release from perfused trout liver: effect of assay and acclimation temperature. J. Exp. Biol. 177:51-62. Mommsem, T. P. 1986. Comparative gluconeogenesis in hepayocytes from salmonid fishes. Can. J. Zool. 64:1110-1115. Moon. T. W. and Hochachka, P.W. 1971. Temperature and enzyme activity in poikilotherms. Biochem. J. 123:695-705. Morata. P.. Vargas. A. M.. Pita. M. L. and Sanchez-Medina. F. 1982b. Involvement of gluconeogenesis in the hyperglycemia induced by glucagon, adrenaline and cyclic A in Rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. A 73 :3 79-381. Nakano. T. and Tomlin, N. 1967. Catecholamine and carbohydrate concentration in rainbow trout (Salmo gairdneri) in relation to phsical disturbance. J. Fisf. Res. Bd. Can. 24:1701-1715. Ottolenghi. C.. Puviani. A. C., Gavioli. M. E. and Brighenti. L. 1986. Epinephrine effect on glycogen phosphorylase activity in catfish liver and muscle. Gen. Comp. Endocrinol. 61:469-475. Pamela. G. J.. Krasf, R., Tafuri. S. R. and Wolffe. A. P. 1992. DNA gyrase, CS7.4. and the cold shock response in Escherichia coli. J. Bacteriol. 174:5798-5802. Perry. S. F. and Reid. S. G. 1994. The effects of acclimation temperature on the dynamics of catecholamines release during acute hypoxia in the rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 186:289-307. Pic. P.. Mayer-Gostan. N. and Maetz. J. 1974. Branchial effects of epinephrine in the seawater-adapted mullet. I. Water permeability. Am. J. Physiol. 226:698-702. Pickford, G. E.. Srivastava. A. K.. Slicher, A. M. and Pang, P. K. 1971. The stress response in the abundance of circulating leucocytes in the killifish. Fundulus heteroclitus. J. Exp. Zool. 177:89-108. Pickering. A. D. 1981. Stress and Fish. Acadeic Press. London. Plisetskaya. E. M. 1975. Hormonal regulation of carbohydrate metabolism in lower vertebrates. Leningrad: Nauka. pp.215. Plisetskaya. E. M., Pollock, H. G., Rouse. J. B., Hamilton. J. W.. Kimmel, J. R. and Gorbman. A. 1986b. Isolation and structures of coho salmon (Oncorhvnchus kisutch) glucagon and glucagon-like peptide. Regul. Pept. 14:57-67. Prosser, C. L. and Heath. J. E. 1991. Temperature. In: Environmental and metabolic animal physiology, edited by C. L. Prosser. Wiley-Liss Press. USA. pp. 109-165. Reeves. R. B. 1977. The interaction of body temperature and acid-base balance in ectothermic vertebrates. Ann. Rev. Phsiol. 59:559-586. Ross. E. M. 1989. Signal sorting and amplification throgh G protein-coupled receptors. Neuron 3:141-152. Sauer. D. M. and Haider. G. 1977. Enzyme activities in the serum of rainbow trout. Salmo gairdneri Richardson: the effect of water temperature. J. Fish Biol. 11:605-612. Schlesinger, M. J. 1990. Heat shock proteins. J. Biol. Chem. 265:12111-12114. Shaklee, J.. Christiansen, J. A. and Sidell. B. D. 1977. Molecular aspects of temperature acclimation in fish: contribution of changes in enzyme activites and isozyme patterns to metabolic reorganisation in the green sunfish. J. Exp. Zool. 201: 1-20. Sidell. B. D. and Hazel. J. R. 1987. Temperature affects the diffusion of small molecules through cytosol of fish muscle. J. Exp. Biol. 129:191-203. Smit. G. L., Hattingh. J. and Ferreira J. T. 1981. The phsiological responses of blood during thermal adaptation in three freshwater fish species. J. Fish Biol. 19:147-160. Specker. J. L. and Schreck. C. B. 1980. Stress response to transportation and fitness for marine survival in cohol salmon (Oncorhynchus kisutch) smolts. Can. J. Fish. Aquat. Sci. 37:765-769. Stevens. E. D. and Godt, R. E. 1990. Effects of temperature and concomitant change in pH on muscle. Am. J. Phsiol. 259:R204-R209. Stone. B. B. and Sidell. S. D. 1981. Metabolic responses of striped bass Morone saxatilis to temperature acclimation. I. Alterations in carbon sources for hepatic energy metabolism. J. Comp. Physiol. 155:333-337. Suarez. R. and Mommsen, T. P. 1987. Gluconeogenesis in teleost fishes. Can. J. Zool. 65:1869-1882. Ungell. A. L. and Nilson, S. 1979. Metabolic degradation of [3H]-adrenaline in the Atlantic cod. Gadus morhua. Comp. Biochem. Physiol. 51C:111-l15. Willims. E. E. and Hazel. J. R. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical enviroment. Prog. Lipid Res. 29:167-227. Willimsky. G.. Bang, H., Fischer. G. and Marahiel. M. A. 1992. Characterization of cspB. a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperature. J. Bacteriol. 174:6326-6335. Wistow. G. 1990. Cold shock and DNA binding. Science 344:823-824. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76168 | - |
dc.description.abstract | 虱目魚為本省傳統養殖魚類,但其為狹溫性魚種,每當寒流過境,虱目魚往往因不耐低溫而大量死亡。本篇論文之研究目的係探討虱目魚在急性低溫刺激下,醣類能量代謝之酵素活性和代謝物含量之變化情形,並與較耐寒之草魚比較能量代謝調節的差異。 將在25℃馴化下之虱目魚施予急速的降溫,分別降至15℃及12℃。在15℃的刺激下,虱目魚之腎臟均質液及血清中 norepinephrine含量有增加的現象,但腦中的含量在壓迫初期為升高,但隨後即呈下降。而草魚與虱目魚在低溫壓迫期間,血液滲透壓均較平常為低,然而虱目魚在低溫致死的階段甚至出現大幅滑落的現象。在血糖濃度方面,虱目魚與草魚在低溫壓迫階段,血液中葡萄糖含量有顯著增加,又以虱目魚所增加的幅度為大。顯示出虱目魚在低溫下產生葡萄糖的代謝機制上,受到相當大程度的激發。本研究中顯示,虱目魚血液中葡萄糖的來源主要是經由糖質新生作用產生的,而肝糖分解在低溫刺激下有增高的現象,但與血糖濃度之增加無必然結果。虱目魚在15℃低溫壓迫的後期,以及12℃的刺激下,血糖濃度呈現大幅下降的現象,顯示出在低溫壓迫之致死階段,葡萄糖的供應上有所阻礙。而在糖解作用以產生能量的代謝途徑上,經由測定虱目魚及草魚的肝臟與肌肉的lactate dehydrogenase, pyruvate kinase, citrate synthase和G6PDH之活性,發現草魚在低溫刺激下主要是增強有氧糖解作用以獲得較多的能量,以及五碳糖的代謝途徑以產生NADPH而有利於脂質的生合成。而虱目魚在低溫下這些代謝途徑的增強效果並不顯著,甚至有降低的趨勢,顯示出虱目魚對葡萄糖的利用率並不高,這可能是其無法在低溫下長期存活的原因。 另一方面探討離體培養之虱目魚肝組織,在溫度與壓迫激素-catechloamines的作用下,對於肝組織葡萄糖產生與釋放的影響。研究發現在12℃低溫培養下的肝組織,在葡萄糖的釋放量以及糖質新生和肝糖分解之酵素活性,均較25℃下培養為高。同時catecholamines對促進葡萄糖釋放及肝糖分解的效果極為顯著,其中又以norepinephrine較epinephrine效果為佳。然而catecholamine對糖質新生的增強效果並不顯著。這些結果顯示catecholamine在某種程度上參與了調節葡萄糖的產生與釋放。然而在無外界因數參與下,細胞本身單純受到低溫的刺激,也能激發特殊的調節機制,以增強葡萄糖的產生。 | zh_TW |
dc.description.abstract | also studied to compare energy production and utilization of these two spicies at low temperature. Milkfish and grass carp were acclimated at 25°C for one month. Milkfish under 15°C cold shock treatment. the blood glucose content increased 5 folds, and both the activities of gluconeogenicc and glycogenolytic enzymes increased. The blood glucose content of grass carp had less increase than milkfish under cold shock. But in 12°C cold treated milkfish and the late period of 15°C cold shock. the blood glucose content decreased. It showed the glucose supply were shorted under extreme or prolong cold shock. To estimate the activitiees of glycolytic. pentose phosphate. anaerobic and aerobic pathway, the activities of PK. G6PDH. LDH. and CS in the liver and muscle of milkfish and grass carp under cold shock were measured. The results indicated that milkfish had enhanced aerobic glycolysis to produce more ATP under cold shock, grass carp favored in aerobic glycolysis and enhanced the pentose phosphate pathway to produce NAPDH for lipid biosynthesis. In addition. in vitro cultured milkfish liver was used to study how low temperature ane catecholamines influence glucose production. The results showed that 12℃-cultured liver tissue releasd more glucose and had higher enzyme activitties of glycogenolysis and gluconeogenesis than 25-cultured liver tissue. The effects of norepinephrine on the increae of hepatic glucose release were significant. Epinephrine reduced the glucose release, but it activated glycogenolysis. Norepinephrine affected the increased of gluconeogenesis more significantly than epinephrine. These suggested that except of stress hormones, liver cells themself. could regulate hepatic glucogenolysis and gluconeogenesis. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:18:44Z (GMT). No. of bitstreams: 0 Previous issue date: 1995 | en |
dc.description.tableofcontents | 摘要…………………………………1 前言…………………………………4 材料方法……………………………11 結果…………………………………20 討論…………………………………34 參考文獻……………………………45 圖表…………………………………53 | |
dc.language.iso | zh-TW | |
dc.title | 低溫刺激對於虱目魚和草魚醣類代謝調控之探討 | zh_TW |
dc.title | Regulation of Carbohydrate Metabolism in Milkfish (Chanos chanos) and Grass Carp (Ctenopharyngodon idella) under Cold Shock Treatments | en |
dc.date.schoolyear | 83-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 101 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。