請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76144
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 陳峰斌 | zh_TW |
dc.date.accessioned | 2021-07-01T08:18:29Z | - |
dc.date.available | 2021-07-01T08:18:29Z | - |
dc.date.issued | 1994 | |
dc.identifier.citation | 蔡孟君.1994.臭氧對台灣地區植物之影響。國立臺灣大學植物病蟲害學研究所碩士論文。 黃冠博.1993.水稻銅鋅超氧歧化酵素的cDNA選殖與性質研究。國立臺灣大學研究所碩士論文。 魏道行.1991.以五節芒的超氧歧化酵素和過氧化酵素做為環境污染之標的可能性研究。國立臺灣大學植物科學研究所碩士論文。 李澤民.1991.離層酸及多元胺在水稻幼苗耐冷性上之意義。國立臺灣大學農藝學研究所博士論文。 潘素美.1989.水稻澱粉磷解酵素的生化研究。國立臺灣大學農業化學研究所博士論文。 柳中明、林欣慕、沈世宏、李昌衡、劉紹臣、方淑慧.1990.臭氧光化生成與臺北盆地區域性環流。工業污染防治33:28-57。 孫岩章、林文龍.1993.利用開頂式熏氣箱評估綜合空氣污染對作物造成之減產或損害。農業環境品質整體規劃會議論文專集pp.91-101。 孫岩章、蔡孟君.1993.臭氧污染對植物之影響.農業環境品質整體規劃會議論文專集pp.73-89。 Almansa, M.S., L.A. del Rio, C.F. Alcaraz, and F. Sevilla. 1989. Isoenzyme pattern of superoxide dismutase in different varieties of citrus plants. Physiol. Plant. 76: 563-568. Anaka, K., Suda, Y., Kondo, N., Sugahara, K. 1985. O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol. 26: 1425-1431. Aneja, V.P., Yoder, G.T., and Arya S.P. 1992. Ozone in the urban southeastern United States. Environ. Pollut. 75: 39-44. Asada, K. 1980. Formation and scavenging of superoxide in chloroplasts, with relation to injury by sulfur dioxide. In Studies on the Effects of Air Pollutants on Plants and Mechanisms of Phytotoxicity, Research Report No. 11, p.165-179, National Institute for Environmental Studies, Tsukuba. Asada, K., and Takahashi, M. 1987. In Photoinhibition (Kyle, D.J., Osmond, C.B., and Arntzen, C.J., Eds), PP. 227-287, Elsevier, Amsterdam. Athanassious, R. 1980. Ozone effects on radish (Raphanus satiws L. cv. Cherry Belle): Gradent of ultrastructural changes. Z. Pflanzenphysiol. 97: 227-232. Badiani, M., Schenone, G., Paolacci, A.R., and Fumagalli, I. 1993. Daily fluctuations of antioxidants in bean (Phaseolus vulgaris L.) leaves as affected by the presence of ambient air pollutants. Plant Cell Physiol. 34: 271-279. Badiani, M., Schenone, G., Paolacci, A.R. and Fumagalli, I. 1992. Daily fluctuations of antioxidants in bean (Phaseolus vulgaris L.) leaves. The influence of climatic factors. Agro- Chimica (in press). Bannister, J.V., Bannister, W.H. and G. Rotilio. 1987. Aspects of the structure, function and application of superoxide dismutase. CRC. Crit. Rev. Biochem. 22: 111-180. Basaga, H.S. 1990. Biochemical aspects of free radicals. Biochem. Cell. Biol. 68: 989-998. Beauchamp, C., and I. Fridovich. 1971. Superoxide Dismutase: Improved assay and an assay applicable to acrylamide gel. Anal. Biochem. 44: 276-287. Becker, K., Saurer, M., Egger, A., and Fuherer, J. 1989. Sensitivity of white clover to ambient ozone in Switzerland. New Phytol. 112:235-243. Bennett, J.H., Heggestad, H.E., and McNulty, I.B. 1977. Ozone and leaf physiology. Proc. 4th Annu. Plant Growth Regul. Work Group. Agway. Syracuse New York. p.323-330. Bennett, J., Lee, E. Heggestad, H. 1984. Biochemical aspects of plant tolerance to ozone and oxyradicals: superoxide dismutase. In: Gaseous Air Pollutants and Plant Metabollim (Ed. by M. Koziol and F. Whatley), pp. 413-423 Bowler, C., Van Montagu, M., and Inze, D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116. Bowler, C, Alliotte, T. 1989. The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO 8: 31-38. Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., Van, M. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen redicals in transgernic plants. EMBO 10: 1723-1732. Castillo, F.J., Penel, Cl. and Greppin, H. 1984. Peroxidase release induced by ozone in Sedum album leaves. Involvement of Ca2+. Plant Physiol. 4: 846-851. Castillo, F.J. and Greppin, H. 1986. Balance between anionic and cationic extracellular peroxidase activities in Sedum album leaves after ozone exposure. Analysis by higy-perofrmance liquid chromatography. Physiol. Plant. 68: 201-208. Chang, Y.S., Carmichael, G.R., Kurita, H., and Ueda, H. 1989. The transport and formation of photochemical oxidants in central Japan. Atmosph. Environ. 23: 363-393. Chevrier, N., F. Sarhan and Y.S. Chung 1988. Oxidative damages and repair in Euglena gracilis exposed to ozone. I. SH groups and lipids. Plant Cell Physiol. 29: 321-327. Clare, D.A., Duong, M.N., Dare, D., Archibald, F., Fridovich, I. 1984. Effeets of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal. Biochem. 140: 532-537. Curtis, C.R, Howell, R.K. 1971. Increases in peroxidase isoenzyme activity in bean leaves exposed to low doses of ozone. Phytopathology 61: 1306-1307. Decleire, M., Decat, W., Baeten, H. 1984. Changes of peroxidase, catalase and superoxide dismutase activities in ozone-fumigated spinach leaves. J. Plant Physiol. 116: 147-152. Dominy, P.J., Heath, R.L. 1985. Inhibition of the K+-stimulated ATPase of the plasmalemma of Pinto bean leaves by ozone. Plant Physiol. 77: 43-45. Dugger, W.M., and Ting, I.P. 1970a. Physiological and biochemical effect of air pollution oxidants on plants. Recent Adv. Phytochem. 3: 31-58. Dugger, W.M., and Ting, I.P. 1970b. Air pollution oxidants- their effects on metabolic processesin plants. Annu. Rev. Plant Physiol. 21: 215-234. Edward, H. Lee and Jesse H. Bennett. 1982. A possible protective enzyme against ozone injury in shap beans. Plant Physiol. 69: 1444-1449. Endress, A.G., Suarez, S.J., and Taylor, O.C. 1980. Peroxidase activity in plants leaves exposed to gaseous HC1 or ozone. Environ. Pollut. (Ser. A). 22: 47-58. Espelie, K.E., Franceschi, V.R., and Kolattukudy, P.E. 1986. Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol. 81: 487-492. Evans, L.S. and I.P. Ting 1973. Ozone induced membrane permaeability changes. Am. J. Bot. 61: 592-597. Everdeen, D.S., Kiefer, S., Willard, J.J., Muldoon, E.P., Dey, P.M., Li, X.B., and Lamport, D.T.A. 1988. Enzymic cross-linkage of monomeric extensin precursors in vitro. Plant Physiol. 87: 616-621. Frederick, P.E. and R.L. Heath 1975. Ozone-induced fatty acid and viability changes in Chlorella. Plant Physiol. 55: 15-19. Fridovich, I. 1978. The biology of oxygen radicals. Science 201: 875-880. Fridovich, I. 1976. Oxygen radicals, hydrogen peroxide and oxygen toxicity. In Wa Pryor, ed. Free Radicals in Biology, Voll. Acasemic Press, New York. 239-277. Fridovich, I. 1986. Superoxide dismutases. In: Advances in Enzymology (Ed. by A. Meister), pp. 61-97. New York. Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol. 37: 165-186. Gaspar, T., Penel, C., Thorpe, T. and Greppin, H. 1982. A survey of their biochemical and physiological roles in higher plants. University of Geneve. Switzerland. pp. 124-129. Gerloff, E.O., Stahmann, M.A., and Smitth, D. 1967. Soluble proteins in alfalfa roots as related hardiness. Plant Physiol. 42: 895-899. Ghe, A.M., Stefanelli, C., Tsintiki, P. and G. Veschi. 1985. Influence of some metal ions on oxidation of NADH and on formation of the superoxide anion radical during enzymatic catalysis by xanthine oxidase. Talanta. 32: 359-362. Glater, R.B., Solberg, R.A., and Scott F.M. 1962. A developmental study of the leaves of Nicotiana glutinosa as related to their smog-sensitivity. Am. J. Bot. 49: 954-970. Goldsmith, J.R., and Friberg, L.T. 1982. Effects of air pollution on human health. Vol. II, edited by A.C. Stern, Academic Press, NY. Grennfelt, P., and Schjoldager, J. 1984. Photochemical oxidants in the troposphere: A mounting menace. AMBIO 13: 61-67. Greppin, H., Penel, C., and Gaspar, T., eds 1986. Molecular and physiological aspects of plant peroxidases. (Geneva, Switzerland: University of Geneva). Guderian, R. 1970. Untersuchungen uber quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z Pflanzenkrankh Pflanzenschutz. 77: 200-220. Guri, A. 1983. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 63: 733-737. Guzy, M.R., Heath, R.L. 1993. Responses to ozone of varieties of common bean. New Phytol. 124: 617-625. Haber, F. and J. Weiss. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Royal. Soc. London A. 147: 332-351. Heagle, A.S., Letchworth, M.B., and Mitchell, C.A. 1983. Injury and yield responses of peanuts to chronic doses of ozone in open-top field chambers. Phytopathology 73: 551-555. Heagle, A.S. 1989. Ozone and crop yeild. Annu. Rev. Phytopathol. 27: 397-423. Heath, R.L., Chimiklis, P.E., and Frederick, P.E. 1974. Role of potassium and lipids in ozone injury to plant membranes. In: Dugger, W.M. (eds) Air pollution effects on plant growth. A.S.C. Symp. Ser. 3. Am. Chem. Soc. Washington. p.58-75. Heath, R.L. 1980. Initial events in injury to plants by air pollutants. Ann. Rev. Plant Physiol. 31: 395-431. Heck, W.W., and Heagle, A.S. 1970. Measurements of photochemical air pollution with a monitoring plant. J. Air Pollut. Control Assoc. 20: 97-99. Heck, W.W., Philbeck, R.B., and Dunning, J.A. 1978. A continuous stirred tank reactor (CSTR) system for exposing plants to gaseous air contaminants. Principles, specifications, construction, and operation. Agricultural Research Service, U.S. Department of Agriculture, ARS-S-181. Science and Education Administration, P.O. Box 53326, New Orleans, Louisiana 70153, U.S.A.. Heck, W.W., Tayor, O.C., Adams, R., Bingham, G., Miller, J., Preston, E., and Weinstein, L. 1982. Assessment of crop loss from ozone. J. Air Pollut. Control Assoc. 32: 353-361. Heck, W.W., Cure, W.W., Rawlings, J.O., Zaragoza, L.J., Heagle, A.S., Heggestad, H.E., Kohut, R.J., Kress, L.W., and Temple P. J. 1984. Assessing impacks of ozone on agricultural crops: II. Crop yield functions and alternative exposure statistics. J. Air Pollut. Control Assoc. 34: 810-817. Heck, W.W., Heagles, A.S., Shriner, D.S. 1986. Effects on vegetation: Native, crops, forests. In Stern, A.C. (ed.) Air Pollution. Vol. 6. Academic Press. Heck, W.W., Taylor, O.C., and Tingey, O.T. 1988. Assessment of crop loss from air pollutants. Proceeding of an International Conference. Raleigh, North Carolina, U.S.A. October 25-29, 1987. Heggestad, H.E., Middleton, J.T. 1959. Ozone in high concentrations as a cause of tabacco leaf injury. Science 129: 208-210. Heggestad, H.E. 1991. Origin of Bel-W3, Bel-C and Bel-B tobacco varieties and their use as indicators of ozone. Environ. Pollut. 74: 2264-291. Hinnman, R.L., and Lang, J. 1965. Peroxidase catalyzed oxidation of indole-3-acetic acid. Biochemistry 4: 144-158. Jablonski, P.P. & Anderson, J. W. 1982. Light-dependent reduction of hydrogen peroxide by ruptured pea chloroplases. Plant. Physiol. 69: 1407-1413. Jacobson, J.S., and Hill, A.C., eds. 1970. Recognition of air pollution injury to vegetation: A pictorial atlas. Air Pollution Control Association, Pittsburgh, PA. Karpinski S, Wingsle G, Karpinska B, Hallgren J-E (1992a) Differ- ential expression of CuZn-superoxide dismutases in Pinus sylvestris needles exposed to SO2 and NO2. Physiol. Plant. 85: 689-696. Kasana, M.S. 1991. Sensitivity of three leguminous crops to O3 as influenced by different stages of growth and development. Environ. Pollut. 69: 131-149. Keen, N.T., and Taylor, O.C. 1975. Ozone injury in soybean. Isoflavonoid accumulation is related to necrosis. Plant Physiol. 55: 731-733. Krupa, S.V., and Manning, W.J. 1988. Atmospheric ozone: formation and effects on vegetation. Environ. Pollut. 50: 101-137. Krupa, S.V., Manning, W.J., and Nosal, M. 1993. Use of tabacco cultivars as biological indicators of ambient ozone pollution: an analysis of exposure-response relationships. Environ. Pollut. 81: 137-146. Kuno, H. 1989. Characteristics of spinach leaf injury by photochemical oxidants and mechanisms of ozone resistance in spinach cultivars. J. Jpn. Soc. Air. Pollut. 24: 259-263. Ledbetter, M.C., Zimmerman, P.W., and Hitchcock, A.E. 1959. The histological effects of ozone on plant foliage. Contrib. Boyce Thompson Inst. 20: 275-282. Lee, E.H, Jersey, J.A, Gifford, C., Bennett, J. 1984. Differential ozone tolerance in soybean and snapbeans: analysis of ascorbic acid in O2-susceptible and O3-resistant cultivars by high- performance liquid chromatography. Environmental and Exp. Bot. 24: 331-341. Leopold, A.C. 1964. Plant growth and development. McGrow-Hill Book Company. New York. Liu, C.M., Liu, S.C., and Shen, S.H. 1990. A study of Taipei ozone problem. Atmosph. Environ. 24A: 1461-1472. Liu, C.M., Huang, C.Y., Shieh, S.L., and Wu, C.C. 1994. Important meteorological parameters for ozone episodes experienced in the Taipei Basin. Atmosph. Environ. 28A: 159-173. Long, R.P., Davis, D.D. 1991. Black cherry growth response to ambient ozone and EDU. Environ. Pollut. 70: 241-254. Lubert, Stryer. 1988. Biochemistry. Third edition. pp 406. Macdowall, F.D.H. 1965b. Stages of ozone damage to respiration of tobacco leaves. Can. J. Bot. 43: 419--427. Mackay, C.E., T. Senaratnaa, B.D. McKersie and R.A. Fletcher 1987. Ozone induced injury to cellular membranes in Triticum aestivum L. and protection by the triazole S-3307. Plant Cell Physiol. 28: 1271-1278. Mader, M., Ungemach, U. and Schloss, P. 1980. The role of peroxidase isoenzyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta 147: 467-470. Matters, G. and Scandalios, J. 1987. Synthesis of isozymes of superoxide dismutase in maize leaves in response to O3, SO2 and elevated O2. J. Exp. Bot. 38: 842-852. Matters, G.L, Scandalios, J.G. 1986. Effect of the free radical generating herbicide paraquat on the expression of the superoxide dismutase genes in maize. Biochim. Biopphys. Acta. 882: 29-38. McKendry, I.G. 1993. Grounc-level ozone in Montreal, Canada. Atmosph. Environ. 27(B): 93-103. McKersie, B.D, Beversdorf, W.D. 1982. The relationship between ozone insensitivity, lipid-soluble antioxidants, and superoxide dismutase in Phaseolus vulgaris. Can. J. Bot. 60: 2686-2691. Mckersie, B.D, Yurong. Chen, 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa. Plant Physiol. 103: 1155-1163. Miyake, H., A. Furukawa, T. Totsuka and E. Maeda 1984. Differential effects of ozone and sulfur dioxide on the fine structure of spinach leaf cells. New Phytol. 96: 215-228. Monk, L., Fagerstedt, K. and Crawford, R. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 456-459. Mudd, J.B. 1982. Effects of oxidants on metabolic function. In: Unsworth MH. Ormrod DP, eds. Effests of gaseous air pollution in agriculture and horticulture. Cambridge: University Press. 189-203. Mulchi, C. L., Tuthill, E. L. K., and Olinick, E. V. 1988. Influence of ozone stress on growth processes, yields and grain quality characteristics among soybean cultivar. Environ. Pollut. 53: 151-169. Nouchi, I., Mayumi, H., and Yamazoe, F. 1984. Foliar injury response of petunia and kidney bean to simulaneous and alternate exposures to ozone and PAN. Atmosph. Environ. 18: 453-460. Nouchi, I., Ito, O., Harazono, Y., and Kobayashi, K. 1991. Effects of chronic ozone exposure on growth, root respiration and nutrient uptake of rice plants. Environ. Pollut. 74: 149-164. Nouchi, I. 1993. Changes in antioxidant levels and activities of related enzymes in rice leaves exposed to ozone. Soil Science and Plant Nutrition 39: 309-320. Pell, E.J., and Weissberger, W.C. 1976. Histopathological characterization of ozone injury to soybean foliage. Phytopathology 66: 856-861. Perl, A., Perl, T.R., Galili, G., Aviv, D., Shalgi, E., Malkin, S., Galun, E. 1993. Enhanced oxidave stress defense in transgenic potato expressing tomato Cu-Zn superoxide dismutases. Theor. App. Genet 85: 568-576. Peters, J.L, Casttillo, F.J, Heath, R.L. 1989. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants. ozone and sulfur dioxide. Plant Physiol. 89: 159-164. Pitcher, L.H., Brennan, E., and Zilinskas, B.A. 1992. The antiozonant ethylenediurea does not act via superoxide dimutase induction in bean. Plant Physiol. 99: 1388-1392. Rappengluck, B., Kourtidis, K., and Fabian, P. 1993. Measurements of ozone and peroxyacetyl nitrate (PAN) in Munich. Atmosph. Environ. 27B(3): 293-305. Reinert, R.A., Sanchez, B., Salleras, M.J., Bermejo, V., Ochoa, M.J., Tarruel, A. 1992. Ozone effects on watermelon plants at the Ebro Delta (Spain): Symptomology. Agric. Ecosystems Environ. 38: 41-49. Richards, B.L., Middleton, J.T., and Hewitt, W.B. 1958. Air pollution with relation to agronomic crops: V. Oxidant stipple to grape. Agron. J. 50: 559-561. Richardson, J.S., Thomas, K.A., Rubin, B.H. and Richardson. D.C. (1975) Crystal structure of bovine Cu/Zn superoxide dismutase at 3A resolution: chain tracing and metal ligands. Proc. Natl. Acad. Sci. USA. 72: 1349-1352. Rotilio, G., 1986. Superoxide and superoxide dismutase in chemistry, biology and medicine. Elsevier Science Publishers, Amsterdam, New York, Oxford. Rusting, R.L. 1992. Why do we age Trends in biology. Scientific American December. 131-141. Sakaki, T., Kondo, N., and Sugahara, K. 1983. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: Role of active oxygens. Physiol. Plant. 59: 28-34. Sakamoto, A., Nosaka, Y., Tanaka, K. 1993. Cloning and sequencing analyysis of a complementary DNA for manganese superoxide dismutase from rice. Plant Physiol. 103: 1477-1478. Schenone, G., Botteschi, G., Fumagalli, I., and Montinaro, F. 1992. Effects of ambient air pollution in open-top chembers on bean (phaseolus vulgaris L.) I. Effects on growth and yield. New Phytol. 122: 689-697. Schenone, G., and Lorenzini, G. 1992. Effects of regional air pollution on crops in Italy. Agric. Ecosystems Environ. 38: 51-59. Schmid, P.S., and Feucht, W. 1980. Tissue-specific oxidation browning of polyphenols by peroxidase in cherry shoots. Garten-bauwissenschaft. 45: 68-73. Schoper, P. 1994. Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol. 104: 1269-1275. Sen, G.A., Heinen, J.L., Holoday, A.S., Burke, J.J., Allen, R.D.1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90: 1629-1633. Sheng, W.S., Chevone, B.I., and Hess, J.L. 1993. Photosynthetic inhibition and superoxide dismutase activity in soybean cultivars expoosed to short-term ozone fumigations. Environ. Pollut. 80: 45-52. Shepson, P.B., Hastie, D.R., So, K.W., and Schiff, H.I. 1992. Relationships between PAN, PPN and O3 at urban and rural sites in Ontario. Atmosph. Environ. 26A(7): 1259-1270. Singer, S.T., Nicolson, G.L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720-731. Smith, I.K., Vierheller, T.L. and Thorne, C.A. 1989. Properties and functions of glutathione reductase in plants. Physiol. Plant. 77: 449-456. Smith, G., Neyra, C. and Brennan, E. 1990. The relationship between foliar injury, nitrogen metabolism, and growth parameters in ozonated soybeans. Environ. Pollut. 63: 79-93. Storz, G., Tartaglia, L.A. and B.N. Ames. (1990) Transcription regulator of oxidative stress-inducible genes activation by oxidation. Science 248: 189-194. Street, O.E., Sung, C.H., Wu, H.Y., Menser, H.A. 1971. Studies on weather flick of tobacco in Taiwan. Tobacco Science 15: 128-131. Sun, E.J. 1994a. Air pollution injuries to vegetation in Taiwan. Plant Disease 70(5): 436-440. Sutton, R. and Ting, I.P. 1977. Evidence for the repair of ozone induced membrane injury. Am. J. Bot. 64: 404-411. Swanson, E.S., W.W. Thomson and J.B. Mudo 1973. The effect of ozone on leaf cell membrane. Can. J. Bot. 51: 1213-1219. Tanaka, K., Suda, Y., Kondo, N., and Sugahara, K. 1985. 03 tolerance and the ascorbate-dapendent H202 decomposing system in chioroplasts. Plant Cell Physiol. 26: 1425-143 1. Tanaka, K., Saji, H., and Kondo, N. 1988. Immunological properties of spinach glutathione reductase and inductive bioosynthesis of the enzyme with ozone. Plant Cell Physiol. 29: 687-642. Ting, I.P., and Mukerji, S.K. 1971. Leaf ontogeny as a factor in susceptibility to ozone: amino acid and carbohydrate changes during expansion. Am. J. Bot.58: 497-504. Tingey, D.T, Taylor, G.E. 1982. Variation in plant response to ozone: a conceptual model of physiological events. In: Unsworth MH. Ormrod DP, eds. Effects of gaseous air pollution in agriculture and horticulture.Cambndge: University Press. 113-138. Tingey, D.T., Fites, R.C., and Wickliff, C. 1975. Activity changes in selected enzymes from soybean leaves following ozone exposure. Physiol. Plant. 33:3 16-320. Tingey, D.T., Fites, R.C., and Wickliff, C. 1973b. Foliar sensitivity of soybeans to ozone as related to several leaf parameters. Environ. Pollut. 4: 183-192. Tingey, D.T., and Taylor, G.E. 1982. Variation in plant response to ozone: a conceptual model of physiological events. In Effecfs of Gaseous Air Pollution in Agriculture and Horticulture, Ed. ME. Unsworth and D.P. Oremrod, pp. 113-13 8, Butterworths Scientific, London. Toyama, S.,Yoshida, M. 1989. Studies on ultrastructure and function of photosynthetic apparatus in rice. Japanese Journal of Crop Science 58: 664-672. Toyama, S. 1975. Effects of photo chemical oxidants on the fine structure of chioroplases. Saibo. 7: 5 19-530. (In Japanese.) Tsang, E.W.T., Bowler, C., Herouart, D., Van, C. W., Villarroel, K., Genetello, C., Van, M.M., Inze, D. 1991. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3: 783-792. Van Huystee, R.B. 1987. Some molecular aspects of plant peroxidase biosynthetic studies. Ann. Rev. Plant Physiol. 38: 205-217. Varshney, S.R.K.and Varshney, C.K. 1985. Response of peroxidase to low levels of S02. Environ. Exp. Bot. 25: 107-114. Wang, C. Y. 1982. Physiological and biochemical responses of plants to chilling injury. Hort-Science 17: 173-186. White, J.A. and J.G. Scandalios. 1989. Deletion analysis of the maize mitochondrial superoxide dismutase transit peptide. Proc. Nat!. Acad. Sci.USA 86: 3534-3538. White, J.A., Scandalios, J.G. 1988. Isolation and characterization of a cDNA for niitochondrial manganse superoxide dismutase (SOD-3) of maize and its relation to other manganese superoxide dismutase. Biochim. Biophys. Acta. 951: 61-70. Williamson, J.D, Scandalios, J.G. 1992. Differential response of maize catalases and superoxide dismutases to the photoactivated fungal toxin cercosporin. Plant J.2: 351-358. Wiltshire, J.J.J., Wright, C.J., Unsworth, M.H., and Craigon, J. 1993. The effects of ozone episodes on autumn leaf fall in apple. New Phytol. 124:433-437. Wunderli, S., and Gehrig, R. 1991. Influence of temperanture on formation and stability of surface PAN and ozone. A two year field study in Switzerland. Atmosph. Environ. 24: 1509-1608. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76144 | - |
dc.description.abstract | 臭氧對植物的為害除了可從葉部病徵探討外,亦可就植物內部生理、生化反應進行評估。本論文選取?稻台農67號(TNG. 67)及秈稻台中在來1號(TCN. 1)兩種水稻品種,利用連續攪拌熏氣箱系統,以臭氧熏氣處理;觀察外表傷害程度、電解質滲漏率、失水度及測定葉部抗氧化酵素活性的增加量等,以此比較品種間感受度之差異。 以臭氧處理後的水稻,葉子外表最先會有白色細點斑的急性病徵,進而褐斑、黃化、枯萎等現象且葉子會有失水、電解質滲漏發生,為瞭解組織內酵素活性改變情況,分別以臭氧濃度之變化、熏氣時間的長短、及不同株齡、葉齡、品種間差異性之比較。數據顯示臭氧處理過的水稻,葉子的superoxide dismutase及peroxidase活性皆明顯增加,所增加的SOD活性,以Mn-SOD最明顯,而所增加的peroxidase活性,ascorbate peroxidase只是其中的部分;而臭氧濃度較高、熏氣時間較長者SOD、peroxidase活性之增加量較高,株齡較低者有較敏感的反應,而同一植株上的成熟葉亦較頂端的年輕葉敏感,外表型的傷害和酵素活性之提升,均以成熟葉較明顯;然根部卻無似葉子般的酵素活性改變情形。在蛋白質的變化上,經臭氧處理後之樣品,顯示在大約28 KD處,其量有增加的趨勢,TCN. 1尤其明顯。以tissue printing assay之方法,測定葉部H2O2之量,結果實驗組與對照組皆不呈現顏色之差異。 本研究的試驗條件下,TNG. 67與TCN. 1兩者對臭氧之敏感度差異並不明確,TNG. 67外部形態有較嚴重的受傷程度,電解質與含水量也有較大的漏失程度;然而TCN. 1卻有較快的病徵出現,以及額外的catalase活性、及蛋白質含量之提升。而兩者的抗氧化酵素SOD、peroxidase活性的變化情形也相似,所以在本文中所使用的處理條件、比較項目下,似乎難以界定TNG. 67與TCN. 1何者對臭氧是較具感受性的。 | zh_TW |
dc.description.abstract | Some antioxidant enzymes attributed by plants, such as superoxide dismutase (SOD), peroxidase and catalase, metaboblize superoxide and hydrogen peroxide individually. These enzymes may offer plants resistance to the enviromental stress. In this study, two strains of rice (Oryza sativa L.), Tainung 67 (TNG. 67) and Taichung Native 1 (TCN. 1) are fumigated with ozone under continuous stirred tank reactors system. Sensitivity differences between these two strains were compared according to the increase in antioxidant enzyme activity, the level of dehydration, electrolyte leakage rate and injury symptom in their morphology of treated leaves. After ozone fumigation, the appearance of rice leaves first showed tiny white stipples as an acute injury symptom, and subsequently showed red-purple stipples, chlorosis and wilting. In the meantime, there were loss of water and leakage of electrolytes. In the leaves of fumigated rice, there were increases of SOD and peroxidase activity. Among these increases of SOD enzyme activities, Mn-SOD activity appeared to be the most pronounced and ascorbate peroxidase was just a minor part of the increase peroxidase activity. A higher ozone concentration or a longer fumigation duration brought SOD and peroxidase activities much greater. Young plants were more sensitive than old ones. Within the same plant, mature leaves were more sensitive than young leaves on the apex. The external injury and the increases of enzyme activity were more obvious with the mature leaves, too. However, there were no changes of these enzyme activities in the roots. In the aspects of protein, samples taken after ozone fumigation showed an increase in the polypeptide having MW. about 28 KDa, and the increase in TCN. 1 was much pronouced Tissue printing assay was used to measure endogenous H2O2 amount in leaves, and which showed no difference between the experiments and the control. Under conditions designed in this study, TNG. 67 was much seriousely damaged on morphology, and the leakage of both eletrolytes and water content were higher in TNG. 67 than in TCN. 1. While the injury symptoms appeared earlier in TCN. 1, the elevated catalase activity and enhanced amount of 28 KDa polypeptide were also higher in TCN 1. The enhanced enzyme activity of SOD and peroxidase showed similarity in both strains. Consequently, it seems difficult to conclude which one of TNG. 67 and TCN. 1 is more sensitive to ozone treatments. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:18:29Z (GMT). No. of bitstreams: 0 Previous issue date: 1994 | en |
dc.description.tableofcontents | 壹、縮寫表……………………………………………………1 貳、中文摘要……………………………………………………2 參、英文摘要……………………………………………………4 肆、前言與文獻回顧……………………………………………………6 伍、材料與方法……………………………………………………16 一、試驗材料……………………………………………………16 二、水稻幼苗栽培……………………………………………………16 三、電導度之測定……………………………………………………16 四、含水量之測定……………………………………………………16 五、連續攪拌熏氣箱設備……………………………………………………17 六、聚丙烯醯胺膠體電泳分析法……………………………………………………17 (一)膠片鑄造……………………………………………………18 (二)電泳……………………………………………………20 (三)酵素活性染色……………………………………………………21 (四)蛋白質電泳分析……………………………………………………25 七、植物組織內,過氧化氫濃度之測定……………………………………………………25 陸、結果與討論……………………………………………………26 一、不同品種對臭氧感受性之比較……………………………………………………27 (一)葉子之外部形態……………………………………………………27 (二)含水量……………………………………………………29 (三)電導度……………………………………………………29 (四)抗氧化酵素活性……………………………………………………30 (五)細胞內H2O2濃度之測定……………………………………………………34 (六)蛋白質變化……………………………………………………35 二、臭氧處理時間對酵素活性之影響……………………………………………………35 三、臭氧濃度對酵素活性之影響……………………………………………………36 四、株齡、葉齡對酵素活性之影響……………………………………………………36 柒、結論……………………………………………………38 捌、展望……………………………………………………41 玖、圖表……………………………………………………42 拾、參考文獻……………………………………………………64 | |
dc.language.iso | zh-TW | |
dc.title | 臭氧對水稻抗氧化酵素影響的研究 | zh_TW |
dc.title | The Effect of Ozone on the Activity of Antioxidant Enzyme in Rice | en |
dc.date.schoolyear | 83-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 76 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。