Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7611
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林頌然
dc.contributor.authorWei-Hung Wangen
dc.contributor.author王維宏zh_TW
dc.date.accessioned2021-05-19T17:47:50Z-
dc.date.available2023-03-02
dc.date.available2021-05-19T17:47:50Z-
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-19
dc.identifier.citationAdam, R. C., H. Yang, S. Rockowitz, S. B. Larsen, M. Nikolova, D. S. Oristian, L. Polak, M. Kadaja, A. Asare, D. Zheng and E. Fuchs (2015). 'Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice.' Nature 521(7552): 366-370.
Affara, N. I., C. S. Trempus, B. L. Schanbacher, P. Pei, S. R. Mallery, J. A. Bauer and F. M. Robertson (2006). 'Activation of Akt and mTOR in CD34+/K15+ keratinocyte stem cells and skin tumors during multi-stage mouse skin carcinogenesis.' Anticancer Res 26(4B): 2805-2820.
Alexander, A., S. L. Cai, J. Kim, A. Nanez, M. Sahin, K. H. MacLean, K. Inoki, K. L. Guan, J. Shen, M. D. Person, D. Kusewitt, G. B. Mills, M. B. Kastan and C. L. Walker (2010). 'ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS.' Proc Natl Acad Sci U S A 107(9): 4153-4158.
Alonso, L. and E. Fuchs (2006). 'The hair cycle.' J Cell Sci 119(Pt 3): 391-393.
Avci, P., G. K. Gupta, J. Clark, N. Wikonkal and M. R. Hamblin (2014). 'Low-level laser (light) therapy (LLLT) for treatment of hair loss.' Lasers Surg Med 46(2): 144-151.
Balcazar, N., A. Sathyamurthy, L. Elghazi, A. Gould, A. Weiss, I. Shiojima, K. Walsh and E. Bernal-Mizrachi (2009). 'mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability.' J Biol Chem 284(12): 7832-7842.
Bandhakavi, S., Y. M. Kim, S. H. Ro, H. Xie, G. Onsongo, C. B. Jun, D. H. Kim and T. J. Griffin (2010). 'Quantitative nuclear proteomics identifies mTOR regulation of DNA damage response.' Mol Cell Proteomics 9(2): 403-414.
Bentzen, S. M. (2006). 'Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology.' Nat Rev Cancer 6(9): 702-713.
Bentzinger, C. F., K. Romanino, D. Cloetta, S. Lin, J. B. Mascarenhas, F. Oliveri, J. Xia, E. Casanova, C. F. Costa, M. Brink, F. Zorzato, M. N. Hall and M. A. Ruegg (2008). 'Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy.' Cell Metab 8(5): 411-424.
Blanpain, C. and E. Fuchs (2014). 'Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration.' Science 344(6189): 1242281.
Botchkarev, V. A., E. A. Komarova, F. Siebenhaar, N. V. Botchkareva, P. G. Komarov, M. Maurer, B. A. Gilchrest and A. V. Gudkov (2000). 'p53 is essential for chemotherapy-induced hair loss.' Cancer Res 60(18): 5002-5006.
Bowman, C. J., D. E. Ayer and B. D. Dynlacht (2014). 'Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs.' Nat Cell Biol 16(12): 1202-1214.
Bragado, M. J., G. E. Groblewski and J. A. Williams (1998). 'Regulation of protein synthesis by cholecystokinin in rat pancreatic acini involves PHAS-I and the p70 S6 kinase pathway.' Gastroenterology 115(3): 733-742.
Brewis, I. A. and P. Brennan (2010). 'Proteomics technologies for the global identification and quantification of proteins.' Adv Protein Chem Struct Biol 80: 1-44.
Brill, L. M., W. Xiong, K. B. Lee, S. B. Ficarro, A. Crain, Y. Xu, A. Terskikh, E. Y. Snyder and S. Ding (2009). 'Phosphoproteomic analysis of human embryonic stem cells.' Cell Stem Cell 5(2): 204-213.
Calne, R. Y., D. S. Collier, S. Lim, S. G. Pollard, A. Samaan, D. J. White and S. Thiru (1989). 'Rapamycin for immunosuppression in organ allografting.' Lancet 2(8656): 227.
Castilho, R. M., C. H. Squarize, L. A. Chodosh, B. O. Williams and J. S. Gutkind (2009). 'mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging.' Cell Stem Cell 5(3): 279-289.
Chang, C. Y., H. A. Pasolli, E. G. Giannopoulou, G. Guasch, R. M. Gronostajski, O. Elemento and E. Fuchs (2013). 'NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche.' Nature 495(7439): 98-102.
Chang, J., Y. Kim and H. J. Kwon (2016). 'Advances in identification and validation of protein targets of natural products without chemical modification.' Nat Prod Rep 33(5): 719-730.
Chang, J. Y. and S. N. Sehgal (1991). 'Pharmacology of rapamycin: a new immunosuppressive agent.' Br J Rheumatol 30 Suppl 2: 62-65.
Chase, H. B. (1954). 'Growth of the hair.' Physiol Rev 34(1): 113-126.
Chase, H. B., W. Montagna and J. D. Malone (1953). 'Changes in the skin in relation to the hair growth cycle.' Anat Rec 116(1): 75-81.
Chen, C. C., L. Wang, M. V. Plikus, T. X. Jiang, P. J. Murray, R. Ramos, C. F. Guerrero-Juarez, M. W. Hughes, O. K. Lee, S. Shi, R. B. Widelitz, A. D. Lander and C. M. Chuong (2015). 'Organ-level quorum sensing directs regeneration in hair stem cell populations.' Cell 161(2): 277-290.
Chen, X., L. J. Ko, L. Jayaraman and C. Prives (1996). 'p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells.' Genes Dev 10(19): 2438-2451.
Chen, X., S. Wei, Y. Ji, X. Guo and F. Yang (2015). 'Quantitative proteomics using SILAC: Principles, applications, and developments.' Proteomics 15(18): 3175-3192.
Chen, Y., N. Sasai, G. Ma, T. Yue, J. Jia, J. Briscoe and J. Jiang (2011). 'Sonic Hedgehog dependent phosphorylation by CK1alpha and GRK2 is required for ciliary accumulation and activation of smoothened.' PLoS Biol 9(6): e1001083.
Chou, M. F. and D. Schwartz (2011). 'Using the scan-x Web site to predict protein post-translational modifications.' Curr Protoc Bioinformatics Chapter 13: Unit 13 16.
Claudinot, S., M. Nicolas, H. Oshima, A. Rochat and Y. Barrandon (2005). 'Long-term renewal of hair follicles from clonogenic multipotent stem cells.' Proc Natl Acad Sci U S A 102(41): 14677-14682.
Coschi, C. H. and F. A. Dick (2012). 'Chromosome instability and deregulated proliferation: an unavoidable duo.' Cell Mol Life Sci 69(12): 2009-2024.
Cotsarelis, G., T. T. Sun and R. M. Lavker (1990). 'Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis.' Cell 61(7): 1329-1337.
Delaney, G., S. Jacob, C. Featherstone and M. Barton (2005). 'The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines.' Cancer 104(6): 1129-1137.
Deng, Z., X. Lei, X. Zhang, H. Zhang, S. Liu, Q. Chen, H. Hu, X. Wang, L. Ning, Y. Cao, T. Zhao, J. Zhou, T. Chen and E. Duan (2015). 'mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.' J Mol Cell Biol 7(1): 62-72.
Dennis, M. D., N. K. McGhee, L. S. Jefferson and S. R. Kimball (2013). 'Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1).' Cell Signal 25(12): 2709-2716.
Ding, X., W. Bloch, S. Iden, M. A. Ruegg, M. N. Hall, M. Leptin, L. Partridge and S. A. Eming (2016). 'mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation.' Nat Commun 7: 13226.
Dowling, R. J., I. Topisirovic, T. Alain, M. Bidinosti, B. D. Fonseca, E. Petroulakis, X. Wang, O. Larsson, A. Selvaraj, Y. Liu, S. C. Kozma, G. Thomas and N. Sonenberg (2010). 'mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs.' Science 328(5982): 1172-1176.
Ellis, T., L. Gambardella, M. Horcher, S. Tschanz, J. Capol, P. Bertram, W. Jochum, Y. Barrandon and M. Busslinger (2001). 'The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle.' Genes Dev 15(17): 2307-2319.
Foster, K. G., H. A. Acosta-Jaquez, Y. Romeo, B. Ekim, G. A. Soliman, A. Carriere, P. P. Roux, B. A. Ballif and D. C. Fingar (2010). 'Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation.' J Biol Chem 285(1): 80-94.
Fujiwara, H., M. Ferreira, G. Donati, D. K. Marciano, J. M. Linton, Y. Sato, A. Hartner, K. Sekiguchi, L. F. Reichardt and F. M. Watt (2011). 'The basement membrane of hair follicle stem cells is a muscle cell niche.' Cell 144(4): 577-589.
Gafter-Gvili, A., B. Sredni, R. Gal, U. Gafter and Y. Kalechman (2003). 'Cyclosporin A-induced hair growth in mice is associated with inhibition of calcineurin-dependent activation of NFAT in follicular keratinocytes.' Am J Physiol Cell Physiol 284(6): C1593-1603.
Gan, B. and R. A. DePinho (2009). 'mTORC1 signaling governs hematopoietic stem cell quiescence.' Cell Cycle 8(7): 1003-1006.
Gangloff, Y. G., M. Mueller, S. G. Dann, P. Svoboda, M. Sticker, J. F. Spetz, S. H. Um, E. J. Brown, S. Cereghini, G. Thomas and S. C. Kozma (2004). 'Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development.' Mol Cell Biol 24(21): 9508-9516.
Genander, M., P. J. Cook, D. Ramskold, B. E. Keyes, A. F. Mertz, R. Sandberg and E. Fuchs (2014). 'BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages.' Cell Stem Cell 15(5): 619-633.
Greco, V., T. Chen, M. Rendl, M. Schober, H. A. Pasolli, N. Stokes, J. Dela Cruz-Racelis and E. Fuchs (2009). 'A two-step mechanism for stem cell activation during hair regeneration.' Cell Stem Cell 4(2): 155-169.
Guertin, D. A., D. M. Stevens, C. C. Thoreen, A. A. Burds, N. Y. Kalaany, J. Moffat, M. Brown, K. J. Fitzgerald and D. M. Sabatini (2006). 'Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1.' Dev Cell 11(6): 859-871.
Hara, K., Y. Maruki, X. Long, K. Yoshino, N. Oshiro, S. Hidayat, C. Tokunaga, J. Avruch and K. Yonezawa (2002). 'Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action.' Cell 110(2): 177-189.
Hoeck, J. D., B. Biehs, A. V. Kurtova, N. M. Kljavin, E. M. F. de Sousa, B. Alicke, H. Koeppen, Z. Modrusan, R. Piskol and F. J. de Sauvage (2017). 'Stem cell plasticity enables hair regeneration following Lgr5(+) cell loss.' Nat Cell Biol 19(6): 666-676.
Holz, M. K., B. A. Ballif, S. P. Gygi and J. Blenis (2005). 'mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events.' Cell 123(4): 569-580.
Hsu, Y. C., L. Li and E. Fuchs (2014). 'Transit-amplifying cells orchestrate stem cell activity and tissue regeneration.' Cell 157(4): 935-949.
Hsu, Y. C., H. A. Pasolli and E. Fuchs (2011). 'Dynamics between stem cells, niche, and progeny in the hair follicle.' Cell 144(1): 92-105.
Hutchins, A. P. and P. Robson (2009). 'Unraveling the human embryonic stem cell phosphoproteome.' Cell Stem Cell 5(2): 126-128.
Inoki, K., H. Ouyang, T. Zhu, C. Lindvall, Y. Wang, X. Zhang, Q. Yang, C. Bennett, Y. Harada, K. Stankunas, C. Y. Wang, X. He, O. A. MacDougald, M. You, B. O. Williams and K. L. Guan (2006). 'TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth.' Cell 126(5): 955-968.
Ito, M. and K. Kizawa (2001). 'Expression of calcium-binding S100 proteins A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration.' J Invest Dermatol 116(6): 956-963.
Ito, M., K. Kizawa, K. Hamada and G. Cotsarelis (2004). 'Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen.' Differentiation 72(9-10): 548-557.
Ito, M., K. Kizawa, M. Toyoda and M. Morohashi (2002). 'Label-retaining cells in the bulge region are directed to cell death after plucking, followed by healing from the surviving hair germ.' J Invest Dermatol 119(6): 1310-1316.
Jahoda, C. A., K. A. Horne and R. F. Oliver (1984). 'Induction of hair growth by implantation of cultured dermal papilla cells.' Nature 311(5986): 560-562.
Jensen, U. B., X. Yan, C. Triel, S. H. Woo, R. Christensen and D. M. Owens (2008). 'A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus.' J Cell Sci 121(Pt 5): 609-617.
Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein and R. W. Craig (1991). 'Participation of p53 protein in the cellular response to DNA damage.' Cancer Res 51(23 Pt 1): 6304-6311.
Kastan, M. B., Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein and A. J. Fornace, Jr. (1992). 'A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.' Cell 71(4): 587-597.
Kaufman, C. K., P. Zhou, H. A. Pasolli, M. Rendl, D. Bolotin, K. C. Lim, X. Dai, M. L. Alegre and E. Fuchs (2003). 'GATA-3: an unexpected regulator of cell lineage determination in skin.' Genes Dev 17(17): 2108-2122.
Kellenberger, A. J. and M. Tauchi (2013). 'Mammalian target of rapamycin complex 1 (mTORC1) may modulate the timing of anagen entry in mouse hair follicles.' Exp Dermatol 22(1): 77-80.
Kim, D. H., D. D. Sarbassov, S. M. Ali, J. E. King, R. R. Latek, H. Erdjument-Bromage, P. Tempst and D. M. Sabatini (2002). 'mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery.' Cell 110(2): 163-175.
Krause, K. and K. Foitzik (2006). 'Biology of the hair follicle: the basics.' Semin Cutan Med Surg 25(1): 2-10.
Kretzschmar, M., F. Liu, A. Hata, J. Doody and J. Massague (1997). 'The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase.' Genes Dev 11(8): 984-995.
Kurek, D., G. A. Garinis, J. H. van Doorninck, J. van der Wees and F. G. Grosveld (2007). 'Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles.' Development 134(2): 261-272.
Lai, K. P., W. F. Leong, J. F. Chau, D. Jia, L. Zeng, H. Liu, L. He, A. Hao, H. Zhang, D. Meek, C. Velagapudi, S. L. Habib and B. Li (2010). 'S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response.' EMBO J 29(17): 2994-3006.
Lan, S., F. Liu, G. Zhao, T. Zhou, C. Wu, J. Kou, R. Fan, X. Qi, Y. Li, Y. Jiang, T. Bai, P. Li, L. Liu, D. Hao, L. Zhang, Y. Li and J. Y. Liu (2015). 'Cyclosporine A increases hair follicle growth by suppressing apoptosis-inducing factor nuclear translocation: a new mechanism.' Fundam Clin Pharmacol 29(2): 191-203.
Langenfeld, E. M., Y. Kong and J. Langenfeld (2005). 'Bone morphogenetic protein-2-induced transformation involves the activation of mammalian target of rapamycin.' Mol Cancer Res 3(12): 679-684.
Leblond, C. P. (1951). 'Histological structure of hair, with a brief comparison to other epidermal appendages and epidermis itself.' Ann N Y Acad Sci 53(3): 464-475.
LeBoeuf, M., A. Terrell, S. Trivedi, S. Sinha, J. A. Epstein, E. N. Olson, E. E. Morrisey and S. E. Millar (2010). 'Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells.' Dev Cell 19(6): 807-818.
Li, H., J. Lee, C. He, M. H. Zou and Z. Xie (2014). 'Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids.' Am J Physiol Endocrinol Metab 306(2): E197-209.
Li, L. and H. Clevers (2010). 'Coexistence of quiescent and active adult stem cells in mammals.' Science 327(5965): 542-545.
Li, S., R. L. Thangapazham, J. A. Wang, S. Rajesh, T. C. Kao, L. Sperling, J. Moss and T. N. Darling (2011). 'Human TSC2-null fibroblast-like cells induce hair follicle neogenesis and hamartoma morphogenesis.' Nat Commun 2: 235.
Lien, W. H., X. Guo, L. Polak, L. N. Lawton, R. A. Young, D. Zheng and E. Fuchs (2011). 'Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage.' Cell Stem Cell 9(3): 219-232.
Lin, S. J., J. Foley, T. X. Jiang, C. Y. Yeh, P. Wu, A. Foley, C. M. Yen, Y. C. Huang, H. C. Cheng, C. F. Chen, B. Reeder, S. H. Jee, R. B. Widelitz and C. M. Chuong (2013). 'Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge.' Science 340(6139): 1442-1445.
Luong, M. X., C. M. van der Meijden, D. Xing, R. Hesselton, E. S. Monuki, S. N. Jones, J. B. Lian, J. L. Stein, G. S. Stein, E. J. Neufeld and A. J. van Wijnen (2002). 'Genetic ablation of the CDP/Cux protein C terminus results in hair cycle defects and reduced male fertility.' Mol Cell Biol 22(5): 1424-1437.
Ma, L., J. Liu, T. Wu, M. Plikus, T. X. Jiang, Q. Bi, Y. H. Liu, S. Muller-Rover, H. Peters, J. P. Sundberg, R. Maxson, R. L. Maas and C. M. Chuong (2003). ''Cyclic alopecia' in Msx2 mutants: defects in hair cycling and hair shaft differentiation.' Development 130(2): 379-389.
Magnuson, B., B. Ekim and D. C. Fingar (2012). 'Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks.' Biochem J 441(1): 1-21.
Malkinson, F. D., M. L. Griem and R. Marianovic (1973). 'Effects of hydroxyurea and radiation on hair matrix cells.' Cell Tissue Kinet 6(4): 395-405.
Malkinson, F. D. and J. T. Keane (1981). 'Radiobiology of the skin: review of some effects on epidermis and hair.' J Invest Dermatol 77(1): 133-138.
Matsumura, H., Y. Mohri, N. T. Binh, H. Morinaga, M. Fukuda, M. Ito, S. Kurata, J. Hoeijmakers and E. K. Nishimura (2016). 'Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis.' Science 351(6273): aad4395.
Metri, K., H. Bhargav, P. Chowdhury and P. S. Koka (2013). 'Ayurveda for chemo-radiotherapy induced side effects in cancer patients.' J Stem Cells 8(2): 115-129.
Mills, A. A., B. Zheng, X. J. Wang, H. Vogel, D. R. Roop and A. Bradley (1999). 'p63 is a p53 homologue required for limb and epidermal morphogenesis.' Nature 398(6729): 708-713.
Mills, J. R., Y. Hippo, F. Robert, S. M. Chen, A. Malina, C. J. Lin, U. Trojahn, H. G. Wendel, A. Charest, R. T. Bronson, S. C. Kogan, R. Nadon, D. E. Housman, S. W. Lowe and J. Pelletier (2008). 'mTORC1 promotes survival through translational control of Mcl-1.' Proc Natl Acad Sci U S A 105(31): 10853-10858.
Moore, K. A. and I. R. Lemischka (2006). 'Stem cells and their niches.' Science 311(5769): 1880-1885.
Morris, R. J., Y. Liu, L. Marles, Z. Yang, C. Trempus, S. Li, J. S. Lin, J. A. Sawicki and G. Cotsarelis (2004). 'Capturing and profiling adult hair follicle stem cells.' Nat Biotechnol 22(4): 411-417.
Muller-Rover, S., B. Handjiski, C. van der Veen, S. Eichmuller, K. Foitzik, I. A. McKay, K. S. Stenn and R. Paus (2001). 'A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages.' J Invest Dermatol 117(1): 3-15.
Murakami, M., T. Ichisaka, M. Maeda, N. Oshiro, K. Hara, F. Edenhofer, H. Kiyama, K. Yonezawa and S. Yamanaka (2004). 'mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells.' Mol Cell Biol 24(15): 6710-6718.
Nakatsumi, H., M. Matsumoto and K. I. Nakayama (2017). 'Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages.' Cell Rep 21(9): 2471-2486.
Nguyen, H., B. J. Merrill, L. Polak, M. Nikolova, M. Rendl, T. M. Shaver, H. A. Pasolli and E. Fuchs (2009). 'Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia.' Nat Genet 41(10): 1068-1075.
Nowak, J. A., L. Polak, H. A. Pasolli and E. Fuchs (2008). 'Hair follicle stem cells are specified and function in early skin morphogenesis.' Cell Stem Cell 3(1): 33-43.
Ohyama, M., A. Terunuma, C. L. Tock, M. F. Radonovich, C. A. Pise-Masison, S. B. Hopping, J. N. Brady, M. C. Udey and J. C. Vogel (2006). 'Characterization and isolation of stem cell-enriched human hair follicle bulge cells.' J Clin Invest 116(1): 249-260.
Olsen, J. V., B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen and M. Mann (2006). 'Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.' Cell 127(3): 635-648.
Oshimori, N. and E. Fuchs (2012). 'Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation.' Cell Stem Cell 10(1): 63-75.
Panteleyev, A. A., N. V. Botchkareva, J. P. Sundberg, A. M. Christiano and R. Paus (1999). 'The role of the hairless (hr) gene in the regulation of hair follicle catagen transformation.' Am J Pathol 155(1): 159-171.
Paus, R. (1998). 'Principles of hair cycle control.' J Dermatol 25(12): 793-802.
Paus, R. and K. Foitzik (2004). 'In search of the 'hair cycle clock': a guided tour.' Differentiation 72(9-10): 489-511.
Paus, R., I. S. Haslam, A. A. Sharov and V. A. Botchkarev (2013). 'Pathobiology of chemotherapy-induced hair loss.' Lancet Oncol 14(2): e50-59.
Perez-Riverol, Y., R. Wang, H. Hermjakob, M. Muller, V. Vesada and J. A. Vizcaino (2014). 'Open source libraries and frameworks for mass spectrometry based proteomics: a developer's perspective.' Biochim Biophys Acta 1844(1 Pt A): 63-76.
Plikus, M. V. and C. M. Chuong (2008). 'Complex hair cycle domain patterns and regenerative hair waves in living rodents.' J Invest Dermatol 128(5): 1071-1080.
Polak, P., N. Cybulski, J. N. Feige, J. Auwerx, M. A. Ruegg and M. N. Hall (2008). 'Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration.' Cell Metab 8(5): 399-410.
Rauniyar, N. and J. R. Yates, 3rd (2014). 'Isobaric labeling-based relative quantification in shotgun proteomics.' J Proteome Res 13(12): 5293-5309.
Rendl, M., L. Lewis and E. Fuchs (2005). 'Molecular dissection of mesenchymal-epithelial interactions in the hair follicle.' PLoS Biol 3(11): e331.
Renninger, S. L., H. B. Schonthaler, S. C. Neuhauss and R. Dahm (2011). 'Investigating the genetics of visual processing, function and behaviour in zebrafish.' Neurogenetics 12(2): 97-116.
Rhee, H., L. Polak and E. Fuchs (2006). 'Lhx2 maintains stem cell character in hair follicles.' Science 312(5782): 1946-1949.
Richardson, R. J., J. Dixon, S. Malhotra, M. J. Hardman, L. Knowles, R. P. Boot-Handford, P. Shore, A. Whitmarsh and M. J. Dixon (2006). 'Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch.' Nat Genet 38(11): 1329-1334.
Rompolas, P., E. R. Deschene, G. Zito, D. G. Gonzalez, I. Saotome, A. M. Haberman and V. Greco (2012). 'Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration.' Nature 487(7408): 496-499.
Rompolas, P., K. R. Mesa and V. Greco (2013). 'Spatial organization within a niche as a determinant of stem-cell fate.' Nature 502(7472): 513-518.
Ruzankina, Y., C. Pinzon-Guzman, A. Asare, T. Ong, L. Pontano, G. Cotsarelis, V. P. Zediak, M. Velez, A. Bhandoola and E. J. Brown (2007). 'Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss.' Cell Stem Cell 1(1): 113-126.
Saxton, R. A. and D. M. Sabatini (2017). 'mTOR Signaling in Growth, Metabolism, and Disease.' Cell 168(6): 960-976.
Schwartz, D., M. F. Chou and G. M. Church (2009). 'Predicting protein post-translational modifications using meta-analysis of proteome scale data sets.' Mol Cell Proteomics 8(2): 365-379.
Sharov, A. A., G. Z. Li, T. N. Palkina, T. Y. Sharova, B. A. Gilchrest and V. A. Botchkarev (2003). 'Fas and c-kit are involved in the control of hair follicle melanocyte apoptosis and migration in chemotherapy-induced hair loss.' J Invest Dermatol 120(1): 27-35.
Shimizu, H. and B. A. Morgan (2004). 'Wnt signaling through the beta-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells.' J Invest Dermatol 122(2): 239-245.
Shortt, J., B. P. Martin, A. Newbold, K. M. Hannan, J. R. Devlin, A. J. Baker, R. Ralli, C. Cullinane, C. A. Schmitt, M. Reimann, M. N. Hall, M. Wall, R. D. Hannan, R. B. Pearson, G. A. McArthur and R. W. Johnstone (2013). 'Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas.' Blood 121(15): 2964-2974.
Stenn, K. S. and R. Paus (2001). 'Controls of hair follicle cycling.' Physiol Rev 81(1): 449-494.
Stenn, K. S. and R. Paus (2001). 'Controls of hair follicle cycling.' Physiological Reviews 81(1): 449-494.
Szklarczyk, D., J. H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. Santos, N. T. Doncheva, A. Roth, P. Bork, L. J. Jensen and C. von Mering (2017). 'The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.' Nucleic Acids Res 45(D1): D362-D368.
Tominaga, H., S. Kodama, N. Matsuda, K. Suzuki and M. Watanabe (2004). 'Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation.' J Radiat Res 45(2): 181-188.
Trempus, C. S., R. J. Morris, C. D. Bortner, G. Cotsarelis, R. S. Faircloth, J. M. Reece and R. W. Tennant (2003). 'Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34.' J Invest Dermatol 120(4): 501-511.
Tsai, M., R. H. Chen, S. Y. Tam, J. Blenis and S. J. Galli (1993). 'Activation of MAP kinases, pp90rsk and pp70-S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine kinase or Fc epsilon RI: rapamycin inhibits activation of pp70-S6 kinase and proliferation in mouse mast cells.' Eur J Immunol 23(12): 3286-3291.
Tumbar, T., G. Guasch, V. Greco, C. Blanpain, W. E. Lowry, M. Rendl and E. Fuchs (2004). 'Defining the epithelial stem cell niche in skin.' Science 303(5656): 359-363.
van der Poel, H. G. (2004). 'Mammalian target of rapamycin and 3-phosphatidylinositol 3-kinase pathway inhibition enhances growth inhibition of transforming growth factor-beta1 in prostate cancer cells.' J Urol 172(4 Pt 1): 1333-1337.
Van Hoof, D., J. Munoz, S. R. Braam, M. W. Pinkse, R. Linding, A. J. Heck, C. L. Mummery and J. Krijgsveld (2009). 'Phosphorylation dynamics during early differentiation of human embryonic stem cells.' Cell Stem Cell 5(2): 214-226.
Van Mater, D., F. T. Kolligs, A. A. Dlugosz and E. R. Fearon (2003). 'Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice.' Genes Dev 17(10): 1219-1224.
Vanhoutteghem, A., B. Delhomme, F. Herve, I. Nondier, J. M. Petit, M. Araki, K. Araki and P. Djian (2016). 'The importance of basonuclin 2 in adult mice and its relation to basonuclin 1.' Mech Dev 140: 53-73.
Vanscott, E. J., T. M. Ekel and R. Auerbach (1963). 'Determinants of Rate and Kinetics of Cell Division in Scalp Hair.' J Invest Dermatol 41: 269-273.
Vignard, J., G. Mirey and B. Salles (2013). 'Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up.' Radiother Oncol 108(3): 362-369.
Wagers, A. J. and I. L. Weissman (2004). 'Plasticity of adult stem cells.' Cell 116(5): 639-648.
Wang, W., X. Li, M. Lee, S. Jun, K. E. Aziz, L. Feng, M. K. Tran, N. Li, P. D. McCrea, J. I. Park and J. Chen (2015). 'FOXKs promote Wnt/beta-catenin signaling by translocating DVL into the nucleus.' Dev Cell 32(6): 707-718.
Wilanowski, T., J. Caddy, S. B. Ting, N. R. Hislop, L. Cerruti, A. Auden, L. L. Zhao, S. Asquith, S. Ellis, R. Sinclair, J. M. Cunningham and S. M. Jane (2008). 'Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.' EMBO J 27(6): 886-897.
Wu, X., Q. T. Shen, D. S. Oristian, C. P. Lu, Q. Zheng, H. W. Wang and E. Fuchs (2011). 'Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3beta.' Cell 144(3): 341-352.
Xu, L., Y. G. Chen and J. Massague (2000). 'The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation.' Nat Cell Biol 2(8): 559-562.
Xue, Y., J. Ren, X. Gao, C. Jin, L. Wen and X. Yao (2008). 'GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy.' Mol Cell Proteomics 7(9): 1598-1608.
Zhang, H., H. A. Pasolli and E. Fuchs (2011). 'Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin.' Proc Natl Acad Sci U S A 108(6): 2270-2275.
Zhu, K., C. Xu, M. Liu and J. Zhang (2017). 'Hairless controls hair fate decision via Wnt/beta-catenin signaling.' Biochem Biophys Res Commun 491(3): 567-570.
Zuckermann, A., E. Osorio-Jamillio and A. Z. Aliabadi-Zuckermann (2018). 'mTOR Inhibition and Clinical Transplantation: Heart.' Transplantation 102(2S Suppl 1): S27-S29.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7611-
dc.description.abstract對再生醫學而言,如何調控器官其內的幹細胞以維持器官的恆定或是快速修復受損的組織,是非常重要的課題。成體幹細胞廣泛分佈人體各個器官,這些幹細胞往往分佈於組織器官的某個特定環境或部位(niche),以利接受外來環境所給予的訊號並做出反應。目前已知同一個器官內的幹細胞,可以是具備不同的性質,根據組織恆定或受傷後再生修補的需要,做出適當的反應。毛囊是一個迷你器官,在一生中不斷週期性再生,目前已知其內具有性質不同的幹細胞且具有其特殊的活化及再生能力。裝備態幹細胞(primed stem cell)以及靜態幹細胞(quiescent stem cell) ,分別座落於毛囊內的次級毛胚(secondary hair germ)及突部(bulge)。相較於靜態幹細胞,裝備態幹細胞較容易快速活化,以加速毛囊再生,並負責分化出生長期毛囊的結構。而靜態幹細胞則較不容易活化及分化,主要負責維持幹細胞數量上的恆定。這樣的特性使毛囊成為研究不同族群幹細胞調控的重要模型。而蛋白質分子的磷酸化是調控細胞活性的重要途徑,這種磷酸化的過程(phosphorylation cascade)最後將會影響到細胞核內表觀遺傳學(epigenetics)或是轉錄(transcription)上的變化。
在我們的研究當中,我們先利用毛囊幹細胞中特異性表現之表面抗原分選並純化出裝備態幹細胞以及靜態幹細胞,再透過蛋白質譜與磷酸化蛋白質譜的方法分析在休止期和生長期早期的毛囊幹細胞的表現量與磷酸化程度。透過這些蛋白質分子表現量與磷酸化程度之差異,我們可以得知這兩群細胞在休止及活化時,是否因其訊息調控的不同,而造成這兩群細胞在行為上的差異。我們發現裝備態幹細胞在從休止期到活化期的過程當中,蛋白質表現量與磷酸化差異的程度比靜態幹細胞大。藉由分析這些磷酸化分子之間的交互作用,我們發現促使毛囊生長的Wnt signaling其下游分子與mTORC1之間可能有所關聯。而從組織染色上來看,mTORC1的活化與毛囊幹細胞的動態在時間上之重疊性非常的高。因此我們假設mTORC1可能是調控毛囊幹細胞活化的重要途徑。
為了證實mTORC1在毛囊幹細胞活化之角色,我們利用mTORC1的小分子抑制劑進行功能性的分析,結果發現在毛囊幹細胞活化前抑制mTORC1的活性會延後毛囊幹細胞活化的時程,若是在毛囊幹細胞活化了之後再給予mTORC1的抑制劑則不會對於毛髮的生長產生結構性的影響。利用基因剃除鼠進行功能性分析時也可以得到延遲毛囊幹細胞活化的效果。因此我們證實mTORC1在活化毛囊幹細胞扮演一個很重要的角色,讓毛囊幹細胞可以在適當的時間上活化。這個功能性的分析也同時證實了磷酸化蛋白體可以為幹細胞研究提供更多有用的資訊。
雖然mTORC1並不會抑制進入生長期的毛髮生長,但我們發現mTORC1的抑制會增強γ射線對生長期毛囊所造成的輻射傷害。使得生長期內的毛囊發生更大量的細胞凋亡,並且對於修復性的增生也有抑制的作用。在這雙重影響之下,造成毛囊分化結構的破壞以及生長期落髮。因此mTORC1在毛囊中扮演著非常重要的角色: 1. 調控毛囊幹細胞的活化 2. 調控細胞對於輻射傷害的修復。
zh_TW
dc.description.abstractHow an organ regulates its stem cells to maintain homeostasis or to quickly regenerate damaged tissues is vital to the maintenance of organ functions. Adult stem cells are often located in designated niches and their behavior is tightly regulated by the niche environment. It has been demonstrated that stem cells of an organ are not identical and can be composed of heterogeneous cellular populations of cells to meet to specific needs for homeostasis maintenance or for repair of damaged tissues. Hair follicle, a miniorgan with life-long cyclic regeneration, provides an excellent model to study the behaviors of stem cells during tissue regeneration. Specifically, it harbors primed stem cells and quiescent stem cells in secondary hair germ and bulge, respectively. Compared with quiescent stem cells, primed stem cells are activated faster and they regenerate the most part of the growing follicles. In contrast, quiescent stem cells are shown to be activated slowly and are responsible for the long-term maintenance of stem cells. There properties make HF as an important model for investigating the regulation of HFSC heterogeneity. The modulation of instructive or repressive signals is depended on protein phosphorylation toward downstream targets, and the phosphorylation cascade would finally affect the epigenetics or transcription.
In our study, we sorted out the pSCs and qSCs by the specific expressed surface marker by FACS. Then, with the help of mass spectrometry technique, we can analyze the degree of protein abundance and protein phosphorylation in different HFSC populations and in different hair cycle stages. Via the proteome and phosphoproteome analysis, we can reveal if the signaling molecules could lead to the difference in behavior during the activation of the two HFSCs population. We found that the difference in protein abundance and phosphorylation were dramatically increased in pSCs, and the downstream of wnt signaling might have the correlation with mTORC1 signaling. From histology, the activation of mTORC1 is correlated with the dynamic of activation of HFSCs. Thus, we hypothesize mTORC1 might play an important role in regulating the activation of HFSCs.
To address the possible role of mTORC1 in HFSCs, we use the mTORC1 inhibitor for further investigation. Activation of HFSCs could be hampered and delayed with mTORC1 inhibition. Once HFSCs were activated and the HF entered the growing phase, the mTORC1 inhibitor was unable to affect hair growth in this stage. The genetic ablation of raptor gene yielded to similar results. Thus, we can concluded that mTORC1 has an influence on activation of HFSCs in a timely dependent manner. Besides, our data showed that the proteome and phosphoproteome analysis could shed light on further stem cell research.
Although the inactivation of mTORC1 did not perturb the hair growth in anagen, but we found that the mTORC1 inhibition increased the sensitivity of damage form r-ray irradiation, leading to more extensive apoptosis and less regenerative proliferation. Therefore, mTORC1 suppression aggravated radiation-induced anagen effluvium. Taken together, our study revealed that mTORC1 plays an important role in activating HFSCs and attenuating irradiation-induced follicular damage.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:47:50Z (GMT). No. of bitstreams: 1
ntu-107-F98548028-1.pdf: 7147437 bytes, checksum: 111c3ab20efa3fbbef66e6c5291b6182 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 1
ABSTRACT 3
LIST OF ABBREVIATIONS 6
CONTENTS 8
LIST OF FIGURES 12
Chapter 1 Introduction 15
1.1 Hair follicle structure and hair cycle 16
1.1.1 Structure of the hair follicle 16
1.1.1.1 Interfollicullar epidermis 17
1.1.1.2 Bulge: the niche of quiescent HFSCs 17
1.1.1.3 Hair bulb 18
1.1.1.4 Dermal papilla cells 18
1.1.2 Hair Cycling 21
1.1.2.1 Anagen 21
1.1.2.2 Catagen 22
1.1.2.3 Telogen 22
The quiescent stem cells and primed stem cells in HFs 24
1.1.3 Label retention properties 25
1.1.4 Differential expression of surface marker 25
1.1.5 Clonogenicity and trichogenic capacity 26
1.1.6 Transcription factors play important roles in maintaining HFSCs 27
1.2 The response of hair follicle cells toward genotoxic stress 29
1.3 The phosphoproteome research in stem cells biology 32
1.4 mTORC1 signaling and its function 35
1.4.1 mTORC1 signaling 35
1.4.2 mTORC1 function in development, tissue homeostasis, and repair in HFs 36
1.4.3 The role of mTORC1 in genotoxic stress 37
Chapter 2 Materials and Methods 40
2.1 Animals 40
2.2 HFSCs isolation by FACs 41
2.3 Mass Spectrometry work flow 41
2.3.1 Sample preparation for proteomic analysis 41
2.3.2 Tandem-Mass-Tag (TMT) label 42
2.3.3 Phosphopeptide enrichment 43
2.3.4 LC-MS/MS Analysis 44
2.3.5 Proteome Data Processing and Identification 44
2.4 Pharmaceutical mTORC1 inhibition 45
2.5 Irradiation treatment 45
2.6 Histology examination 46
2.7 Immunofluorescent staining and microscopy 46
2.8 Statistical analysis 47
Chapter 3 Results 48
3.1 Isolation of pSCs and qSCs of HFs in telogen and early anagen 48
3.2 Comparing the phosphoproteome between each population 53
3.3 The phosphoproteome varied dramatically during the transition from telogen to anagen 63
3.4 The kinase prediction shows the possibility to regulate activation process of hair cycle. 72
3.5 Reactome reveals more confidential result for mTORC1 signaling in the early anagen. 75
3.6 Validation of the mTORC1 signaling of pSCs in the onset of early anagen 79
3.7 Rptor is required for pSC activation in the early anagen 81
3.8 IR induces dystrophic change of hair bulb whose regeneration is associated with activation of mTORC1 activity 85
3.9 mTORC1 inhibition does not affect normal anagen progression but inhibits regeneration after IR injury 90
3.10 Inhibition of mTORC1 signaling increases cell apoptosis and suppresses regenerative proliferation after IR-induced injury 92
3.11 mTORC1 inhibition delayed the recovery of Wnt/β-catenin signaling in hair matrix after IR injury 96
Chapter 4 Discussion 98
Chapter 5 Conclusions 107
Chapter 6 REFERENCE 108
dc.language.isoen
dc.title利用質譜技術研究毛囊幹細胞的磷酸化蛋白質體zh_TW
dc.titleInvestigation of phosphoproteome of hair follicle stem cells via mass spectrometry techniqueen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee曹伯年,陳志強,潘思樺,陳玉如
dc.subject.keyword毛髮週期,裝備態幹細胞,磷酸化蛋白質體,mTORC1,輻射傷害,zh_TW
dc.subject.keywordhair cycle,primed stem cells,phosphoproteome,mTORC1,radiation damage,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201800580
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-02-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf6.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved