請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76058
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yu-Chung Chiang | en |
dc.contributor.author | 江友中 | zh_TW |
dc.date.accessioned | 2021-07-01T08:17:39Z | - |
dc.date.available | 2021-07-01T08:17:39Z | - |
dc.date.issued | 1993 | |
dc.identifier.citation | 北條良夫、石塚潤爾.1985.最新作物生理實驗法.農業技術協會.東京.400p.。 呂世宗、張嵩林、李澤民、洪正中、劉志仁、陳嘉裕、易國禎、黃平志、許宇鵬、杜明進、鍾仁棋、蘇月熿、曾珠香、孫宏仁、黃士敏.1985.臺灣地區高速公路土壤鉛污染調查研究(Study on lead pollution of Taiwan area national freeway).臺灣省環境保護局編印.33p.。 周昌弘.1988.植物分子生態學:五節芒及高山芒之族群研究(Plant molecular ecology: A population study of Miscanthus floridulus and M. transmorrisonensis).植物分子生物學—慶祝中央研究院六十週年院慶研討會論文集臺北.pp.103-113。 周昌弘、李瑞宗.1991.陽明山國家公園芒草生態之研究.內政部營建署陽明山國家公園管理處委託中央研究院植物研究所研究.200p.。 涉穀政夫、小山鐵夫和渡邊久男.1978.重金屬測定法—土壤污染元素與定量法的解說.博友社.東京.331p.。 許建昌.1975.臺灣的禾草下冊.臺灣省教育會.臺北.pp.739-740。 許福星.1985.溫度對菅草種子發芽之影響.畜產研究18:143-157。 許福星.1986.臺灣牧草及野草種子發芽能力之研究.畜產研究19:87-97。 許福星.1988.水份逆境對芒草種子發芽及幼苗生長之影響畜產研究21:37-52。 許福星.1989.光質與光照時間對芒草種子發芽之影響(1).畜產研究22:21-37。 魏道行.1991.以五節芒的超氧歧化?和過氧化氫?作為環境污染之指標的可行性研究.國立臺灣大學理學院植物科學研究所碩士論文。 Antonovics, J.. 1968. Evolution in closely adjacent plant populations VI. Manifold effects of gene flow. Heredity 23:507-524. Antonovics, J. and A. D. Bradshaw. 1970. Evolution in closely adjacent plant populations VIII. Clinal patterns at a mine boundary. Heredity 25:349-356. Ayres, R. U.. 1992. Toxic heavy metals: materials cycle optimization. Proc. Natl. Acad. Sci. (USA) 89:815-820. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analy. Biochem. 44:276-287. Bell, R. and A. H. Teramura. 1991. Soil metal effects on the germination and surival of Quercus alba L. and Q. prinus L., Environ. and Experi. Bot. 31:145-152. Breckle, S. W. 1991. Growth under stress: heavy metals. Chap. 17, pp.351-373 in Plant Roots - The Hidden Half. Waisel, Y., U. Kafkafi and A. Eshel eds.. Marcel Dekker, Inc. New York. Brown, M. T. and D. A. Wilkins. 1985. Zinc tolerance in Betula New Phytol. 99:91-100. Chapco, W., N. W. Ashton, P. K. B. Martel and N. Antonishyn. 1992. A feasibility study of the use of random amplified polymorphic DNA in the population genetics and systematics of grasshoppers. Genome 35:569-574. Chou, C. H.. 1975. The ecological functions of leaching metabolites in Miscanthus floridulus. pp.30-40 in The Proc. of the 4th Panpacific Conference of Regional Science. Tamkang University. Taiwan. Chou, C. H. and F. C. Chang. 1988. Popoulation study of Miscanthus floridulus (Labill.) Warb. II. Ecotypic variation of M. floridulus and M. transmorrisonensis as affected by altitude in Nantou, Taiwan. Bot. Bull. Academia Sinica 29:301-314. Chou, C. H. and Y. Y. Chen. 1990. Population study of Miscanthus floridulus III. population variation of M. floridulus in Green and Orchid Islets of Taiwan. Bot. Bull. Academia Sinica 31:223-233. Chou, C. H. and Y. T. Chung. 1974. The allelopathic potential of Miscanthus floridulus. Bot. Bull. Academia Sinica 15:14-27. Chou, C. H., S. Y. Hwang and F. C. Chang. 1987. Population study of Miscanthus floridulus (Labill.) Warb. I. Variation of peroxidase and esterase in 27 populations in Taiwan. Bot. Bull. Academia Sinica 28:247-281. Chou, C. H., Y. F. Lee, C. Y. Chiu, Y. C. Wang and F. H. Hsu. 1991. Population study of Miscanthus IV. Growth performance of M. floridulus and M. transmorrisonensis and their acclimation to temperature and water stresses. Bot. Bull. Academia Sinica 32:87-96. Chou, C. H. and C. H. Muller. 1972. Allelopathic mechanism of Archtostaphylous glandulosa var. zacaensis. Amer. Midi. Nat. 88:324-347. Chou, C. H., S. S. Sheen and Y. H. Hwang. 1984. A biochemical aspect of phylogenetic study of Bambusaceae in Taiwan II. The genus Bambusa. Bot. Bull. Academia Sinica 25:177-189 Chou, C. H. and J. J. Ueng. 1992. Phylogenetic relationship among species of Miscanthus population in Taiwan. Bot. Bull. Academia Sinica 33:63-73. Chou, C. H., C. C. Young and C. Huang. 1975. Quality of leaf protein concentrates in Miscanthus floridulus. Bot. Bull. Academia Sinica 16:191-199. Cox, R. M. and T. C. Hutchinson. 1979. Metal-co-tolerances in the grass Deschampsia cepitosa. Nature (London) 279:231-233. Cox, R. M. and T. C. Hutchinson. 1980. Multiple tolerance in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol. 84:631-647. Denny, H. J. and D. A. Wilkins. 1987a. Zinc tolerance in Betula spp. I. Effect of external concentration of zinc on growth and uptake. New Phytol. 106:517-524. Denny, H. J. and D. A. Wilkins. 1987b. Zinc tolerance in Betula spp. I. Microanalytical studies of zinc uptake into root tissue. New Phytol. 106:525-534. De Treville, F. 1964. Natural occurrence of lead. Arch. Environ. Health 8:212-221. Elstner, E. F.. 1982. Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. 33:73-96. Elstner, E. F. and A. Heupel. 1976. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Analy. Biochem. 70:616-620. Fridovich, I.. 1978. The biology of oxygen radicals: the superoxide dismutase provide an important defense. Science 201:875-880. Foy, C. D., R. L. Chaney and M. C. White. 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29:511-566. Garland, C. J. and D. A. Wilkins. 1981. Effect of calcium on the uptake and toxicity of lead in Hordeum vulgare L. and Festuca ovina L.. New Phytol. 87:581-593. Giamopolitis, C. N. and A. K. Ries. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59:309-314. Goodwin, P. H. and S. L. Annis. 1991. Rapid indentification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl. and Environ. Micro. 157:2482-2486. Gregory, E. M. and I. Fridovich. 1974. Visualization of catalase on acrylamide gels. Analy. Biochem. 58:57-62. Hadrys, H., M. Balick and B. Schierwater. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1:55-63. Homer, F. A., R. S. Morrison, R. R. Brooks, J. Clemens and R. D. Reeves. 1991. Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant and Soil 138:195-205. Hsu, F. H. and C. H. Chou. 1992. Inhibition effects of heavy metals on seed germination and seedling growth of Miscanthus species. Bot. Bull. Academia Sinica 33:335-342. Humphreys, M. O. and M. K. Nicholls. 1984. Relationships betwen tolerance to heavy metals in Agrostis capillaris L.. New Phytol. 98:177-190. Jain, S. K. and A. D. Bradshaw. 1966. Evolutionary divergence among adjacent plant populations I. the evidence and its theoretical analysis. Heredity 21:407-441. Koppe, D. E. and R. J. Miller. 1970. Lead effects on corn mitochondrial respiration. Science 167:1376-1378. Lane, S. D. and E. S. Martin. 1980. An evalution of the effect of lead on the grass morphology of Raphanus sativus. J. of Plant Physiol. 98:437-452. Lee, K. C., B. A. Cunningham, G. M. Chung, G. M. Paulsen and G. H. Liang. 1976. Lead effects on several enzymes and nitrogenous compounds in soybean leaf. J. Environ. Qual. 5:357-359. Malmberg, R. M. and I. Sussex. 1985. Molecular Biology of Plants: A Laboratory Course Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor N.Y.. pp.84 Martin, M. H. and P. J. Coughtrey. 1982. Biological Monitoring of Heavy Metal Pollution: Land and Air. Applied Science Publishers. London and New York. 475p. McNaughton, S. G., T. C. Folsom, F. Lee, F. Park, C. Price, D. Roeder, J. Schmitz and C. Stockwell. 1974. Heavy metal tolerance in Typhan latifolia without the evolution of tolerance races. Ecology 55:1163-1165. McNeilly T.. 1968. Evolution in closely adjacent plant populations III. Agrostis tenuis on a small copper mine. Heredity 23:99-108. McNeilly T. and J. Antonovics. 1968. Evolution in closely adjacent plant population IV. Barriers to gene flow. Heredity 23:205-218. McNeilly T. and A. D. Bradshaw. 1968. Evolutionary process in population of copper tolerant Agrostis tenuis Sibth.. Evolution 28:101-118. Miles, C. D., J. R. Brandle, D. J. Daniel, O. Chu-Der, P. D. Schnore and D. J. Uhlik, 1972. Inhibition of photosystem II in isolated chloroplast by lead. Plant Physiol. 49:820-825. Paliouris, G. and T. S. Hutchinson. 1991. Arsenic, cobalt and nickel tolerances in two population of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytol. 117:449-459. Perkin-Elmer. 1982. Analytical methods for atomic absorption spectrophotometry. The Perkin-Elmer Coporation, Nowwalk, C. T. Sambrook, J., E. F. Fritsch and T. Maniatis. 1985. Analysis and cloning of eukaryotic genomic DNA. Chap. 9. pp.9-16 in Molecular Cloning - A laboratory Manual 2nd Edition, vol.2. Cold Spring Harbor Laboratory, Cold Spring Harbor. N. Y.. Shaw, A. J.. 1990. Metal tolerances and cotolerances in the moss Funaria hygrometrica. Can. J. Bot. 68:2275-2282. Sneath, P. H. and R. R. Sokal. 1973. Numerical Taxonomy. W. H. Ferman and Company. San Francisco. 573p. Sudkahar, C., L. Syamalabai and K. Veeranjaneyulu. 1992. Lead tolerance of certain legume species grown on lead ore tailings. Agricul., Ecosys. and Environ. 41:253-261. Sunderman, F. W. and E. T. Wacinski. 1974. Use of teflon digestion bombs for tissue analysis: measurement of the effect of estradrol-17B upon hepatic copper in rats. Ann. Clinical and Lab. Sci. 4:299-305. Symenonides, L. T., T. McNeilly and A. D. Brandshaw. 1985. A differential tolerance of three cultivars of Agrostis capillaria L. to cadmium, copper, lead, nickel and zinc. New Phytol. 101:309-315. Van Huesden, A. W. and K. Bachmann. 1992. Genotype relationships in Microseris elegans (Asteraceae, Lactuceae) revealed by DNA amplification from arbitrary primers (RAPDs). Pl. Syst. Evol. 179:221-233. Wainwright, S. J. and H. W. Woolhouse. 1977. Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth: cell elongation and membrane damage. J. of Experi. Bot. 28:1029-1036. Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nuc. Acid Res. 18:7213-7218. Welsh, J. and M. McClelland. 1991. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nuc. Acid Res. 19:5275-5279. Wilde, J., R. Waugh and W. Powell. 1992. Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic DNA markers. Theor. Appl. Genet. 83:871-877. Wilkins, D. A.. 1957. A technique for the measurement of lead tolerance in plants. Nature (London) 180:37-39. Wilkins, D. A.. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80:623-633. Williams, J. G. K., A. R. Kubelik, K. J. Lival, J. A. Rafalsji and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc. Acid Res. 18:6531-6535. Wu, L. and J. Antonovics. 1976. Experimental ecological genetics in Plantago II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from a roadside. Ecology 57:205-208. Wu, L. and S. L. Lin. 1990. Copper tolerance and copper uptake of Lotus purshianus (Benth.) Clem. & Clem. and its symbiotic Rhizobium loti derived from a copper mine waste population. New Phytol. 116:531-539. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76058 | - |
dc.description.abstract | 五節芒(Miscanthus floridulus)在臺灣為廣泛分佈種,其族群遍佈於臺灣各地,包含最惡劣的環境如裸地、火山口、重金屬污染和重金屬礦區等地,其適應性為本省草原植物之冠。本研究的主要目地係為瞭解鉛污染地區(高速公路42公里)與非鉛污染地區(南港中央研究院)五節芒植物族群在對於抗鉛的能力上,是否因為環境中鉛的含量不同,而產生不同的生態型(ecotype),此生態型,是否因環境篩選而產生遺傳性變異等問題加以探討。 在探討鉛污染與非鉛污染地區的五節芒植物族群的抗鉛性研究,以生物分析及水耕的方式,測定不同地區的五節芒族群對重金屬鉛的忍受能力,其結果顯示五節芒族群在鉛污染地區生長者有較高的抗鉛能力。 在不同鉛濃度溶液下,五節芒種子發芽及生長情形得知,在鉛污染與非鉛污染地區所採得的五節芒種子的發芽率不受鉛濃度的影響,但就初生根和初生莖而言,則鉛污染地區的幼苗生長較好,即鉛污染的地區五節芒族群比未受污染地區的族群具有較高的忍受能力。在幼苗體內的超氧岐化?活性的變化情形,結果顯示鉛污染地區五節芒族群比未受污染地區的族群幼苗體內超氧岐化?活性上升幅度大。由其生長情形與超氧岐化?活性變化情形而言,鉛污染地區的五節芒族群確有生理上的變化而能適應有鉛存在的環境,因而產生出具抗鉛性的族群。 以水耕法,將鉛污染地區與非鉛污染地區的五節芒種子在無鉛環境下發芽生長30天,再以不同濃度的鉛溶液處理20天和70天,比較二族群間植株的生長情形,結果顯示與上述五節芒鉛處理下發芽生長的幼苗頗相似,即在鉛污染地區的五節芒族群的生長情形較好。在鉛處理20天的五節芒植株葉片中,超氧岐化?活性變化不大。在鉛處理70天的植株根部,超氧岐化?活性皆下降,而在鉛污染地區五節芒族群比未受污染地區的族群內超氧岐化?下降幅度較小。在葉部的超氧岐化?活性皆上升,在鉛污染地區五節芒族群葉部超氧岐化?活性上有較大的上升幅度,即在鉛污染地區的五節芒族群確有特殊抗鉛性的出現。 為瞭解此抗鉛性的生態型在遺傳上是否因環境壓力產生變化,以聚丙烯醯胺膠體電泳法進行同功?分析,及和以隨機擴增多型DNA分析方法,計算出族群間的Eclidean離和平均距離,以此數據矩陣進行群叢分析(cluster analysis),結果顯示此具有抗鉛性的五節芒族群在同功?和隨機擴增多型性DNA所得的相似度上,無法將二個重金屬污染地區(高速公路42公里和金瓜石)和四個非重金屬污染地區(南港中研院、南投縣大坪頂、南投縣神木村和蘭嶼)的五節芒族群區分開來。若經長期鉛污染的誘導,或可產生出抗鉛性的生態型。 | zh_TW |
dc.description.abstract | Miscanthus floridulus is the most dominant native grass in Taiwan. Its population is widely distributed from low to high elevations and can survive the most severe environments, including arid areas, volcanic craters, heavy metal-polluted areas, and heavy metal mines. This study was designed to determine the lead tolerance of M. floridulus populations in lead polluted and non-polluted areas, whether the difference in lead concentration leads to the formation of different ecotypes, and whether such selection pressure leads to genetic divergence. To determine the lead tolerance of M. floridulus in lead polluted and non-polluted areas, bioassay and water culture were used. The results showed that the populations in lead polluted area have higher lead tolerance. In the bioassay, the seeds of Miscanthus floridulus collected from lead polluted and non-polluted areas were moistened with a series of concentrations of lead aqueous solutions, 20, 40, 50, 60, 80, 100, 200, 300 and 500 ppm. Results showed that, seed germination rates of both populations were not affected by lead concentration. Inhibition of seedling growth increased with the rise in lead concentration. Such inhibition was less prominent in the population from lead polluted areas, suggesting that this population have higher lead tolerance than the one from non-lead-polluted areas. The results from seedling SOD activity suggested that the population from lead polluted areas showed higher increase in SOD activity. The results from the bioassay suggest that the population from lead polluted areas are physiologically adapted to lead stress, and have developed into a lead tolerant ecotype. In the water culture experiment, seeds were first put in lead-free Kimura solution to germinate and grow for 30 days, then treated with different lead concentrations (50, 100, 150, and 200 ppm) for 20 and 70 days. The results were similar to those of the bioassay tests, which indicate that the population from lead polluted areas are less inhibited by lead than those from non-lead-polluted areas. The leaf SOD activity tested after 20 days showed no significant change. The root SOD activity tested after 70 days decreased with-increased lead concentration, and such decrease was less prominent in the population from lead polluted areas. The leaf SOD activity tested after 70 days increased with increased lead concentration, and such increase was more significant in the population from lead polluted areas than from non-polluted areas, suggesting lead tolerance in lead polluted area population. To further understand if the lead tolerant ecotype had changed at the genetic level, the PAGE and RAPD methods were used to analyze the Euclidean distance and the average distance between the populations of M. floridulus. Cluster analysis was used to produce dendrograms of the populations. The results from population similarity could not distinguish the two populations at heavy-metal polluted areas from the four populations grown at non-heavy metal polluted areas. This result suggests that the lead tolerant ecotype of M. floridulus from lead polluted areas are not different genetically, but induced by lead pollution. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:17:39Z (GMT). No. of bitstreams: 0 Previous issue date: 1993 | en |
dc.description.tableofcontents | 誌謝……………………………………………………i 摘要……………………………………………………ii 英文摘要……………………………………………………iv 目錄……………………………………………………vi 表次……………………………………………………1 圖次……………………………………………………2 前言……………………………………………………5 前人研究……………………………………………………7 實驗流程……………………………………………………11 材料與方法……………………………………………………14 一.採樣區地點的設立及樣本的採集……………………………………………………14 二.土壤樣本分析……………………………………………………24 三.植物樣本重金屬分析……………………………………………………28 四.五節芒隨機擴增多型性DNA分析……………………………………………………29 五.五節芒酵素同功?分析……………………………………………………35 六.鉛污染與非鉛污染地區五節芒種子生物分析……………………………………………………39 七.鉛污染與非鉛污染地區五節芒種子水耕試驗……………………………………………………47 結果……………………………………………………56 一.土壤樣本分析結果……………………………………………………56 二.植物樣本重金屬含量……………………………………………………62 三.五節芒族群相似性分析……………………………………………………64 四.鉛污染地區和非鉛污染地區五節芒族群種子生物分析測試對鉛的忍受力……………………………………………………79 五.鉛污染地區與非鉛污染地區五節芒族群種子以水耕實驗測試植株對鉛的忍受力……………………………………………………91 討論……………………………………………………131 結論……………………………………………………142 引用文獻……………………………………………………143 | |
dc.language.iso | zh-TW | |
dc.title | 五節芒族群對鉛忍受力之生化學探討 | zh_TW |
dc.title | The Biochemical Tolerance of Miscanthus floridulus Populations to Lead. | en |
dc.date.schoolyear | 82-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 153 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。