Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75983
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author鄭瑞洲zh_TW
dc.date.accessioned2021-07-01T08:16:59Z-
dc.date.available2021-07-01T08:16:59Z-
dc.date.issued1993
dc.identifier.citation1. Merian E (1990) Metals and their compounds in the environments (Occurrence, Analysis and Biological Relevance) Part 11.3, 751-774.
2. Mayer DR, Kosmus W, Pogglitsch H, Mayer D, and Beyer W (1993) Essential trace elements in humans (Serum arsenic concentrations in hemodialysis patients in comparison to healthy controls), Biol. Trace Elements Res., 37, 27-38.
3. Tseng WP (1977) Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic, Environ. Health Perspect, 19, 109-119.
4. Leonard A, Lauwerys RR (1980) Carcinogenicity, teratogenicity and mutagenicity of arsenic, Mutat. Res., 75, 49-62.
5. Sanderman FW (1979) Mechanism of metal carcinogenesis, Biol. Trace Elements Res., 1, 63-86.
6. Bates MN, Smith AH, and Claudia HR (1992) Arsenic ingestion and internal cancers: A review, Am. J. Epidemiol., 135, 462-476.
7. Baroni C, van Esch GJ, and Saffiotti U (1963) Carcinogenesis tests of two inorganic arsenicals, Arch. Environ. Health, 7, 54-60.
8. IARC monographs on the evaluation of the carcinogenic risk of chemicals to human (1980) Arsenic and arsenic compounds, Vol. 23, Some metals and metallic compounds, Lyon, France: International agency for research on cancer, 39-141.
9. Tam GKH, Charbonnean SM, Bryce F, Pomroy C, and Sandi E (1979) Metabolism of inorganic arsenic (74As) in humans following oral ingestion, Toxicol. Appl. Pharmacol., 50, 319-322.
10. Vahter M. (1981) Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats, Environ. Res., 25, 286-293.
11. Abdrashitova SA, Mynbaeva BN, Aidarkhanov BB, and Ilyaletdinov AN (1990) Effect of arsenite on lipid peroxidation and on activity of antioxidant enzymes in arsenite-oxidizing microorganisms, 59, 148-152.
12. Nordenson I, Beckman L (1991) Is the genotoxic effect of arsenic mediated by oxygen free radicals Hum. Hered., 41, 71-73.
13. Lee TC, Wei WL, Chang WJ, Ho IC, Lo JF, Jan KY, and Huang H (1989) Elevation of glutathione levels and glutathione-S-transferase activity in arsenic-resistant Chinese hamster ovary cells, In vitro Cell Dev. Bio., 25, 442-448.
14. Maines MD (1988) Heme oxygenase; function, multiplicity, regulatory mechanisms, and clinical applications, FASEB J., 2, 2557-2568.
15. Applegate LA, Luscher P, and Tyrrell RM (1991) Induction of heme oxygenase: a general response to oxidative stress in cultured mammalian cells, Cancer Res., 51, 974-978.
16. Li GC (1983) Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol, J. Cell. Physiol., 115, 116-122.
17. Burden RH (1986) Heat shock and the heat shock protein, Biochem. J., 240, 313-324.
18. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals, and disease, Biochem. J., 219, 1-14.
19. Bittar EE (1992) Chemistry of the living cell, Vol 3B, Chap17, 529-538.
20. Kohen RK, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA, 85, 3175-3179.
21. Miquel J, Quintanilha AT, Weber H (1989) Handbook of free radicals and antioxidants in biomedicine, Vol II, 29-43.
22. Cheng KC, Cahill DS, Kasai H, Nishimura S, and Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage cause G->T and A->C substitutions, J. Bio. Chem., 267, 166-172.
23. Meneghini R. (1988) Genotoxicity of active oxygen species in mammalian cells, Mut. Res., 195, 215-230.
24. Richter C. and Frei B (1988) Ca2+ release from mitochondria induced by prooxidants, Free Radical Biol. Med., 4, 365-375.
25. Athar M, Hasan SK, and Srivastava RC (1983) Evidence for the involvement of hydroxyl radicals in nickel mediated enhancement of lipid peroxidation: implication for nickel carcinogenesis, Biochem. Biophys. Res. Commun., 147, 1276-1281.
26. Ferrer AS, Santema JS, Hilhorst R, and Visser AJWG (1990) Fluorescence detection of enzymatically formed hydrogen peroxide in aqueous solution and in reversed micelles, Analytical Biochemistry, 187, 129-132.
27. Robertson FM, Beavis AJ et al (1990) Production of hydrogen peroxide by murine epidermal keratinocytes following treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, 50, 6062-6067.
28. Meister A and Anderson ME (1983) Glutathione, Annu. Rev. Biochem., 52, 711
29. Meister A (1988) Glutathione metabolism and its selective modification, J. Biol. Chem., 263, 17205-17208.
30. Riegler DM (1985) Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation, Annu. Rev. Biochem., 144, 553.
31. Drthmers JK, and Meister A (1981) Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decrease export and increases sensitivity to irradiation, Proc. Natl. Acad. Sci. USA, 78, 7492-7496.
32. Russo A, Mitchell JB, Mc Pherson SJ, and Friedman N (1984) Alternation of bleomycin cytotoxicity by glutathione depletion or elevation, Int. J. Radiat. Oncol. Biol. Phys., 10, 1675-1679.
33. Lavelle F, Michelson AM, and Dimitrijevic L (1973) Biological protection by superoxide dismutase, Biochem. Biophys. Res. Commun., 55, 350-357.
34. Fridovich I (1978) The biology of oxygen radicals, Science, 201, 875-880.
35. Rister M, Bauermeister K, Gravert U, and Gladtke E (1978) Superoxide dismutase deficiency in rheumatoid arthritis, Lancet, I, 1094.
36. Chance B, Sies H, and Boveris A (1979) Hydroperoxide metabolism in mammalian organs, Physio. Rev., 59, 527-605.
37. Spitz DR, Adams DT, Sherman CM, and Roberts RJ (1992) Mechanisms of cellular resistance to hydrogen peroxide, hyperoxia, and 4-hydroxy-2-nonenal toxicity: The significance of increased catalase activity in H2O2-resistant fibroblasts, Biochem. Biophy. Acta, 292, 221-227.
38. Keyse SM, Tyrrell RM (1989) Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblast by UVA radiation, hydrogen peroxide, and sodium arsenite, Proc. Natl. Acad. Sci. USA, 86, 99-103.
39. Stocker R, Glazer AN, and Ames BN (1987) Antioxidant activity of albumin-bound bilirubin, Proc. Natl. Acad. Sci. USA, 84, 5918-5922.
40. Stocker R, Yamamoto Y, Mcdonagh AF, Glazer AN, and Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance, Science, 235, 1043-1046.
41. Maines MD, Kappas A (1975) Cobalt stimulation of heme degradation in the liver: dissociation of microsomal oxidation of heme from cytochrome P-450, J. Biol. Chem., 250, 4171.
42. Marafante E, Solangi K, Goodman AI, Levere RD, Chernick RJ and Abraham NG Properties of human kidney heme oxygenase: inhibition by synthetic heme analogues and metalloprophyrins. Biochem. Biophys. Res. Commun., 157, 480-487.
43. Mitrione SM, Villalon P, Lutton JD, Levere RD, Chernick RJ, and Abraham NG (1988) Inhibition of human adult and fetal heme oxygenase by ne synthetic heme analogues, Am. J. Med. Sci., 296, 180-186.
44. Lee TC, Ko JK, and Jan KY (1989) Differential cytotoxicity of sodium arsenite in human fibroblasts and Chinese hamster ovary cells, Toxicology, 56, 289-299.
45. Cohn VH and Lyle J (1966) A fluorometric assay for glutathione, Anal. Biochem., 14, 434-440.
46. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254.
47. Spitz DR and Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates, Anal. Biochem., 179, 8-18.
48. Aebi H (1984) Catalase in vitro, Methods Enzymol., 105, 121-126.
49. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685.
50. Ferrer AS, Santema JS, Hilhorst R, and Visser AJWG (1990) Fluorescence detection of enzymatically formed hydogen peroxide in aqueous solution and in reversed micelles, Analytical Bochem., 187, 129-132.
51. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals transition metals and disease, Biochem. J., 219, 1-14.
52. Tkeshelashvili LK, McBride TJ, Spence ZK, and Loeb LA (1991) Mutation spectrum of copper-induced DNA damage, J. Biol. Chem., 266, 6401-6406.
53. McBride TJ, Preston BD, and Loeb LA (1991) Mutation spectrum resulting from DNA damage by oxygen radicals. Biochemistry, 30, 207-213.
54. Hennins H, Shorres R, Wenk ML, Spangler EF, Tarvae R, and Yuspa SH (1983) Malignant conversion of mousse skin is increased by tumor initiators and unaffected by tumor promotor, Nature, 304, 67-69.
55. Cerutti PA (1985) Prooxidant states and tumor promotion, Science, 227, 375-381.
56. Marnett L (1987) Peroxyl free radicals: Potential mediators of tumor initiation and promotion. Carcinogenesis, 8, 1365-1373.
57. Slaga TJ, Klein-Szanto AJP, Triplett LL, Yolti LP, and Trosko JE (1981) Skin tumor promoting activity of benzoyl peroxide, a widely used free radical generating compound, Science, 213, 1023-1025.
58. O'Brien PJ (1988) Radical formation during the peroxidase catalyzed metabolism of carcinogens and xenobiotics: The reactivity of these radicals with GSH, DNA and unsaturated lipid, Free Rad. Biol. Med., 4, 169-183.
59. Bonita GT, Kensler TW (1989) Role of oxidative stress in tumor promotion, CRC Handbook of Free Radicals and Antioxidants in Biomedicine, 3, 35-49.
60. Kensler TW, and Trush MA (1984) Role of oxygen radicals in tumor promotion, Environ. Mutagenesis, 6, 593.
61. Kozumbo WJ, Trush MA, and Kensler TW (1985) Are free radicals involved in tumor promotion Chem. Biol. Interact., 54, 199.
62. Kensler TW, Bush DM, and Kozumbo WJ (1983) Inhibition of tumor promotion by a biomimetic superoxide dismutase, Science, 221, 75.
63. Egner PA and Kensler TW (1985) Effects of a biomimetic superoxide dismutase on complete and multistage carcinogenesis in mouse skin, Carcinogenesis, 6, 1167.
64. Rossman TG, Stone D, Molina M, and Troll W (1980) Absence of arsenite mutagenicity in E. coli and Chinese hamster cells, Environ. Mutag., 2, 371-379.
65. Lee TC, Tanaka N, Lamb PW, Gilmer TM, and Barrett JC (1988) Induction of gene amplification by arsenic, Science, 241, 79-81.
66. Deaven LL and Nock AE (1979) Induction of endoreduplication in mammalian cells by sodium arsenite, J. Cell Biol., 83, 159a.
67. Petres J, Baron D, and Hagedon M (1977) Effects of arsenic on cell metabolism and cell proliferation: cytogenetic and biochemical studies, Environ. Health Perspect., 19, 223.
68. Larramendy ML, Popescu NC, and DiPaolo JA, (1981) Induction by inorganic metal salts of sister chromatid exchanges and chromosome aberrations in human Syrian hamster cell strains, Environ. Mutag., 3, 597-606.
69. Nakamuro K and Sayato Y (1981) Comparative studies of chromosomal aberrations induced by trivalent and pentavalent arsenic, Mutat. Res., 88, 73-80.
70. Paton GR and Allison AC (1972) Chromosome damage in human cell cultures induced by metal salts, Mutat. Res., 16, 332-336.
71. Wan B, Christian RT, and Soukup SW (1982) Studies of cytogenetic effects of sodium arsenicals on mammalian cells in vitro, Environ. Mutag. 4, 493-498.
72. Guzman Barron ES (1954) The effect of X-rays on systems of biological importance, in Radiation Biology, Hollander, A., Ed., McGraw-Hill, New York, 283
73. Hutchinson F (1961) Sulfhydryl groups and the oxygen effect on irradiated dilute solutions of enzymes and nucleic acids, Radiat. Res., 14, 721
74. Deneke SM, and Fanburg BL (1989) Regulation of cellular glutathione. Invited review, Am. Physiol. Soc., L163-173.
75. Goyer RA (1986) Toxic effects of metals. In: Casarett and Doulls' Toxicology. (C.D. Klassen, M.O. Amdur and J. Doull. Eds.), 582-635. Macmillan Co., New York.
76. Monte DD, Ross D, Bellomo G, Eklow L, and Orrenius L (1984) Alterations in intracellular thiols homeostasis during the metabolism of menadione by isolated rat hepatocytes, Arch. Biochem. Biophys., 235, 334-342.
77. Liand W, and Chou IN (1992) Effects of sodium arsenite on cytoskeleton and cellular glutathione levels in cultured cells, Toxicol. Appl. Pharmacol., 114, 132-139.
78. Rodriguez RE, Misra M, and Kasprzak KS (1990) Effects of nickel on catalase activity in vitro and in vivo, Toxicology, 63, 45-52.
79. Denton MA, Bowman PD, Jones GP, and Powanda MC (1990) Stress protein synthesis in human keratinocytes treated with sodium arsenite, phenyldichloroarsine and nitrogen mustard, Fundam. Appl. Toxicol., 14, 471-476.
80. Gubits RM (1988) c-fos mRNA levels are increased by the cellular stressors, heats hock and sodium arsenite, Oncogene, 3, 163-168.
81. Chin KV, Tanaka S, Darlington G, Pastan I, and Gottesman MM (1990) Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells, J. Biol. Chem., 265, 221-226.
82. Lincoln BC, Aw TY, and Bonkovsky HL (1989) Heme catabolism in cultured hepatocytes: evidence that heme oxygenase is the predominant pathway and that a proportion of synthesized heme is converted rapidly to biliverdin, Biochem. Biophys. Acta, 992, 49-58.
83. Albores A, Cebrian ME, Bach PH et. al. (1989) Sodium arsenite induced alterations in bilirubin excretion and heme metabolism, J. Biochem. Toxicol., 4, 1-6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75983-
dc.description.abstract砷是廣泛的分佈於自然界中的一種重金屬元素,它也是生命體內微量的必需元素。流行病學的研究指出,慢性砷暴露能增加人類某些疾病及癌症的機率。關於砷的致毒性及致癌性也一直被深入的研究,但真正的作用機制尚不清楚。許多研究結果指出,遊離基的產生可能參與其間,例如:砷增加脂肪的過氧化;及在砷處理的細胞內,姊妹染色體互換頻率的增加能被抗氧化物catalase及SOD減少等。我們的結果發現,砷處理過的KB細胞內,砷能增加80% GSH的含量;且能隨砷處理劑量的增加,誘發heme oxygenase蛋白質的合成,然而heme oxygenase的抑制劑SnPP能增加砷處理細胞的毒性;且發現在砷處理的細胞內,誘發的heme oxygenase能在後處理SnPP的過程中,迅速的被破壞;另外,砷不會改變SOD的活性,但能減少40% catalase的活性。在不同時間的砷處理KB細胞內發現,砷處理能在前4小時迅速的增加GSH的含量;4到6小時有最大的增加Heme oxygenase合成;然而catalase的活性能隨處理時間的增加而減少。從這些結果顯示,砷能擾亂細胞內抗氧化物的表現;且誘發性的Heme oxygenase在砷處理的細胞內,可能扮演一種保護的角色。
進一步的利用DCF螢光分析儀測量細胞內過氧化氫的含量,結果顯示砷能增加過量的過氧化氫堆積於人類口腔表皮癌細胞(KB cell)及淋巴球癌細胞(HL60 cell)。此外catalase不能顯著提升砷處理細胞的存活率;從以上的結果顯示,砷可擾亂細胞內抗氧化物的表現;且能造成過氧化氫的堆積;而過氧化氫的堆積可能與砷的細胞毒性無關。
zh_TW
dc.description.abstractMany experimental evidences have supported that arsenite-induced toxicity is associated with the generation of free radicals, e.g. arsenic induces lipid peroxidation, sister chromatid exchanges, heme oxygenase (HO), glutathione S-transferase and glutathione (GSH). In our experiments, antioxidants were assessed in arsenite-treated KB cells. GSH contents was increased to 180% of the control and it was rapidly increased during early 4 h treatment. HO was induced in a dose-dependent way and the maximal induction of HO was observed during 4 to 6 h treatment. Moreover, tin-protoporphyrin (SnPP), an HO inhibitor, can enhanced the cytotoxicity of arsenite, indicating that HO may play an important role in reducing the cytotoxicity of arsenite. In arsenite-treated KB cells, induced HO can be degraded very rapidly by posttreatment of SnPP. Superoxide dismutase (SOD) activity was not changed. Catalase activity was decreased to 60% of the control and it was decreased by time-dependently. These results indicated that arsenite may result in the imbalance of free radicals in cells. In addition, our results have also shown that arsenite can induce the accumulation of H2O2 in human KB and HL60 cells by using dichlorofluorescein (DCF) fluorescence spectrophotometry. However, the survival of arsenite-treated cells can not be notablely raised by catalase. These results suggested that arsenite may caused disturbances of cellular antioxidants and result in the accumulation of H2O2 which may not involved in arsenite cytotoxicity.en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:16:59Z (GMT). No. of bitstreams: 0
Previous issue date: 1993
en
dc.description.tableofcontentsTABLE OF CONTENTS
TABLE OF CONTENTS……………………………………I
ABBREVIATIONS……………………………………II
ABSTRACT……………………………………1
INTRODUCTION……………………………………2
MATERIALS AND METHODS……………………………………6
RESULTS……………………………………11
DISCUSSION……………………………………14
FIGURES……………………………………18
REFERENCES……………………………………31
dc.language.isozh-TW
dc.title亞砷酸鈉增加人類細胞活性氧的壓迫zh_TW
dc.titleSODIUM ARSENITE INDUCES OXIDATIVE STRESS IN HUMAN CELLSen
dc.date.schoolyear81-2
dc.description.degree碩士
dc.relation.page48
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved