請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75813
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 古鎮鈞 | zh_TW |
dc.date.accessioned | 2021-07-01T08:15:35Z | - |
dc.date.available | 2021-07-01T08:15:35Z | - |
dc.date.issued | 1991 | |
dc.identifier.citation | Arrigo, A.P. and D. Pauli (1988) Characterization of hsp27 and three immunologically related polypeptides during Drosophila development. Exp. Cell Res. 175: 169-183. Arrigo, A.P., J.P. Suhan and W.J. Welch (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. M01. Cell. Biol. 8: 5059-5071. Barnes, C.A., R.A. Singer and G.C. Johnson (1987) Production of heat shock protein is independent of cell cycle blockage in the yeast Saccharomyces cerevisiae. J. Bacteriol. 169: 5622-5625. Bensaude, O., C. Babinet, M. Morange and F. Jacob (1983) Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature (London) 305: 331-333. Berbers, G.A.M., R. Kunnen and P.M.P.van Bergen (1988) Localization and quantitation of hsp84 in mammalian cells. Exp. Cell Res. 177: 267-271. Bond, U. and M.J. Schlesinger (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Moll. Cell. Biol. 5: 949-956. Caltabiano, M.M., G. Poste and R.G. Greig (1988) Isolation and immunological characterization of the mammalian 32-/34-KDa protein. Exp. Cell Res. 178: 31-40. Chappell, T.G., W.J. Welch, D.M. Schlossman, K.B. Palter, M.J. Schlesinger and J.E. Rothmann (1986) Uncoating ATPase is a member of the 70 kilodaltonn family of stress proteins. Cell 45: 3-13. Chen, J.D., G.C. Li and F.H. Yew (1988) Thermal adaptation and heat shock response of tilapia ovary cells. J. Cell. Physiol. 134: 189-199. Collier, N.C. and M.J. Schlesinger (1986) The dynamic state of heat shock proteins in chicken embryo fibroblasts. J. Cell Biol. 103: 1495-1507. Collier, N.C., J. Heuser, M.A. Levy and J. Schlesinger (1988) Ultrastructural and biochemical analysis of the stress granule in chicken embryo fibroblasts. J. Cell Biol. 106: 1131-1139. Craig, E.A. (1985) The heat shock response. Crit. Rev. Biochem. 18: 239-280. Didomenico, B.J., G.E. Bugaisky and S. Lindquist (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptionnal levels. Cell 31: 593-603. Drummond J.A.S., S.A. McClure, M. Poenie, R.Y. Tsien and R.A. Steinhardt (1986) Large changes in intracellular pH and calcium observed during heat shock are not responsible for the induction of heat shock proteins in Drosophila melanogaster Mol. Cell. Biol. 6: 1767-1775. Findly, R. C., R. J. Gillies and R. G. Shuiman (1983) In vivo phosphorous-31 nuclear magnetic resonance reveals lowered ATP during heat shock of tetrahymena. Science 219:1223-1225. Finlay, C.A., P.W. Hinds, T.-H. Tan, D. Eliyahu, M. Oren and A.J. Levine (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc-p53 complex with an altered half-life. Moll. Cell. Biol. 8:531-539. Lindquist, S. (1986) The heat-shock response. Ann. Rev. Biochem. 55: 1151-1191. Levine (1988) Activating Mutations for Transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Moll. Cell. Biol. 8: 531-539. Gedamu, L., B. Culham, J. J. Heikkila (1983) Analysis of the temperature-dependent temporal pattern of heat-shock-protein synthesis in fish cells. Biochem. Soc. 3: 647-658. Heikkila, J.J., G.A. Schultz, K. Iatrou and Gedamu, L (1982) Expression of a set of fish genes following heat or metal ion exposure. J. Biol. Chem. 257: 12000-12005. Hus, Y.H. and F.M. Liao (1987) Gel electrophoresis of protein: principle, techniques, and application. P. 1-11. In: Proceedings of electrophoretic analysis. (Tseng et al., ed.) ISSN 0252-8177 National Science Council.ROC. Johnson, D., H. Oppermann, J. Jackson and W. Levinson (1980) Induction of four proteins in chick embryo cells by sodium arsenite. J. Biol. Chem. 255: 6975-6980. Kao, H.T., O. Capasso, N. Heintz and J.R. Nevins (1985) Cell cycle control of the human hsp70 gene: implications for the role of a cellular E1A-like function. Moll. Cell. Biol. 5: 628-633. Kelley, P.M. and M.J. Schlesinger (1982) Antibodies to two major chicken heat shock proteins cross react with similar proteins in widely divergent species. Mole. Cell. Biol. 2: 267-274. Kothary. R.K. and E.P.M. Candido (1982) Induction of a novel set of polypeptides by heat shock or sodium arsenite in cultured cells of rainbow trout, Salmo gairdnerii. Can. J. Biochem. 60: 347-355. Kothary, R.K., D. Jones and E.P.M. Candido (1984) The heat shock phenomenon in cultured cells of rainbow trout. Mol.Cell.Biol. 783: 137-143. Kothary, R.K., D. Jones and E.P.M. Candido (1984) 70-kilodalton heat shock polypeptides from rainbow trout: characterization of cDNA sequences. Mol.Cell.Biol. 4: 1785-1791. Lacks, S.A. and S.S. Springhorn (1980) Renaturation of enzymes after polyacryamide gel electrophoresis in the presence of sodium dodecyl sulfate. J. Biol. Chem. 255: 7467-7473. Lathigra, R.B., Butcher, P.D., T.R. Garbe and D.B. Young (1991) Heat shock proteins as virulence factors of pathogens. In: Heat shock proteins and immune response. S.H.E. Kaufmann., eds. Vol: 167 Springer-Verlag Berlin, Heidelberg press. pp.161-190. Lee, K.J. and G.M. Hahn (1988) Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite. J. Cell. Physiol. 136: 411-420. Levinger, L. and A. Varahavsky (1981) Heat shock proteins of Drosophila are associated with nuclease-resistant, high salt-resistant nuclear structures. J. Cell Biol. 90: 793-796. Lewis, M.J. and H.R.B. Pelham (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70 Kd heat shock protein. EMBO J. 4: 3137-3143. Lai, B.T., N.W. Chin, A.E. Stanek, W. Keh and K.W. Lanks (1984) quantitation and intracellular localization of the 85 K heat shock protein by using monoclonal and polyclonal antibodies. Moll. Cell. Biol. 4: 2802-2810. Liao, T.H. (1975) Reversible inactivation of pancreatic deoxyribonuclease A by sodium dodecyl sulfate. J. Biol. Chem. 250: 3831-3836. Lindquist, S. (1986) The heat shock response (review). Ann. Rev. Biochem. 55: 1151-1191. Milarski, K.L. and R.I. Morimoto (1986) Expression of human hsp70 during the synthetic phase of the cell cycle. Proc. Natl. Acad. Sci. USA 83: 9517-9521. Milarski, K.L., W.J. Welch and R.I. Morimoto (1989) Cell cycle-dependent association of hsp70 with specific cellular proteins. J. Cell Biol. 108: 413-423. Milarski, K.L. and R.I. Morimoto (1989) Mutational analysis of the human HSP70 protein: distinct domains for nucleolar localization and adenosine triphosphate binding. J. Cell Biol. 109: 1947-1962. Misra, S., M. Zafarullah, J. Price-Haughey and L. Gedamu (1989) Analysis of stress-induced gene expression in fish cell lines exposed to heavy metals and heat shock. Biochim. Biophys. Acta. 1007: 325-333. Mizzen L.A. and W.J. Welch (1988) Characterization of the thermotolerant cell. I. effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J. Cell Biol. 106: 1105-1116. Mitchell, H.K., N.S. Petersen and C.H. Buzin (1985) Self-degradation of heat shock proteins. Proc.Natl.Acad.Sci., USA 82: 4969-4973. Mosser, D.D., J.J. Heikkila and N.C. Bols (1986) Temperature ranges over which rainbow trout fibroblasts survive and synthesize heat-shock proteins. J. Cell. Physiol. 128: 432-440. Nicholson, B.L. (1988) Fish cell cultures: an review. In: Invertebrate and fish tissue culture. P.191-194 (Kuroda et al., ed.) Springer Verlag, New York.ISBN 3-540-19208-5. Pelham, H.R.B. (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J. 3: 3095-3100. Pelham, H.R.B. (1986) Speculations on the functions of the major heat shock and glucose-regulated protein. Cell 46: 959-961. Pelham, H.R.B. (1990) Heat shock and the sorting of luminal ER proteins. EMBO J. 8: 3171-3176. Palter, K.B., M. Watanabe, L. Stinson, A.P. Mahowald and E.A. Craig (1986) Expression and localization of Drosophila melanogaster hsp70 cognate proteins. Moll. Cell. Biol. 6: 1187-1203. Petko, L. and S. Lindquist (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45: 885-894. Rossenthal, A.L. and S.A. Lacks (1977) Nuclease detection in SDS-polyacryamide gel electrophoresis. Anal. Biochem. 80: 76-90. Rossi, J.M. and S. Lindquist (1989) The intracellular localization of yeast heat-shock protein 26 varies with metabolism. J. Cell Biol. 108: 425-439. Schlesinger, M.J. (1990) Heat shock proteins. J. Biol. Chem. 265: 12111-12114. Schlesinger, M.J. (1990) The ubiquitin system and the heat shock response. In: Stress proteins. Schlesinger, M.J., M.G. Sanyoro, and E. Garaci eds. Springer-Verlag Berlin, Heidelberg press. pp.81-88. Shelton, K.R. J.M. Todd and P.M. Egle (1986) The induction of stress-related proteins by lead. J. Biol. Chem. 261: 1935-1940. Shinnick, T. M. (1991) Heat shock proteins as antigens of bacterial and parasitic pathogens. In: Heat shock proteins and immune response. S.H.E. Kaufmann., eds. Vol: 167 Springer-Verlag Berlin, Heidelberg press. pp.145-160. Sorger, P.G. (1991) Heat shock factor and the heat shock response Cell 65: 363-366. Stevenson, M.A., S.K. Calderwood and G.M. Hahn (1981) Rapid increases in inositol triphosphate and intracellular Ca++ after heat shock. Biochem. Biophys. Res. Comm. 137: 826-833. Stevenson, M.A. and S.K. Calderwood (1990) Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain. Moll. Cell. Biol. 10: 1234-1238. Stone, D.E. and E.A. Craig (1990) Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol.Cell.Biol. 10: 1622-1632. Tilly, K., N. Mckittrick, M. Zylicz and C. Georgopoulos (1983) The dnaK protein modulates the heat-shock response of escherichia coli. Cell 34: 641-646. Tuszynski, G.P. and L. Warren (1975) Removal of sodium dodecyl sulfate from proteins. Anal. Biochem. 67: 55-65. Vincent, M. and R.M. Tanguay (1982) Different intracellular distributions of heat-shock and arsenite-induced proteins in Drosophila Kc cells. J. Mol. Biol. 162: 365-378. Velazqzuez, J.M., B.J. DiDomenico and S. Lindquist (1980) Intracellular localization of heat shock proteins in Drosophila. Cell 20: 679-689. Velazqzuez, J.M. and S. Lindquist (1984) Hsp70: nuclear concentraction during enviromental stress: cytoplasmic storage during recovery. Cell 20: 655-662. Weber, K. and D.J. Kuter (1971) Reversible denaturation of enzymes by sodium dodecyl sulfate. J. Biol. Chem. 246: 4504-4509. Welch, W.J. and J.R. Feramisco (1982) Purification of the mammalian heat shock proteins. J. Biol. Chem. 257: 14949-14959. Welch, W. J. and J.R. Feramisco (1984) Nuclear and nucleolar localization of the 72-000 dalton heat shock protein in heat shocked mammalian cells. J. Biol. Chem. 259: 4501-4513. Welch, W. J. and J.R. Feramisco (1985) Rapid purification of mammalian 70, 000-dalton stress proteins: affinity of the proteins for nucleotides. Mol. Cell. Biol. 5: 1229-1237. Welch, W.J. and J.P. Suhan (1985) Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J. Cell Biol. 101: 1198-1211. Welch, W.J., H.S. Kang, R.P. Beckmann and L.A. Mizzen (1991) Response of mammalian cells to metablic stress; change in cell physiology and structure/function of stress proteins. In: Heat shock proteins and immune response. S.H.E. Kaufmann., eds. Vol: 167 Springer-Verlag Berlin, Heidelberg press. pp.31-55. Wu, J.B. and R.I. Morimoto (1985) Transcription of the human hsp70 gene is induced by serum stimulation. Proc. Natl. Acad. Sci. USA 82: 6070-6074. Yamazaki, F. (1983) Sex control and manipulation in fish. Aquaculture 33: 329-354. Yost, H.J. and S. Lindquist (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45: 1835-193. Zimarino, V., C. Tsai and C. Wu (1990) Complex modes of heat shock factor activation Moll. Cell Biol. 10: 752-759.III Zimmermann, J.L. and P.R. Cohill (1991) Heat shock and thermotolerance in plant and animal embryogenesis. The New Biologist 3: 641-650. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75813 | - |
dc.description.abstract | 本論文首先利用源自錦鯉精巢、鰓和鰭組織而來的細胞株為材料,配合SDS-PAGE膠體電泳,及自動放射顯影技術,瞭解熱休克蛋白質在CCT、CCG和CCF細胞株內的合成表現。實驗結果顯示,在37℃時,CCT細胞可合成全部的6種熱休克蛋白質(hsp97、87、72、68、30和27),而CCG和CCF細胞則只可合成hsp97、87和70等3種,其必須在40℃時方可合成出所有的5種熱休克蛋白質(hsp97、87、70、33和27)。其中以hsp70的合成速率最快也最明顯,hsp27則最慢亦不明顯。當在持續受熱環境下5-7小時後,hsp72或hsp70的合成速率明顯降低,hsp33或hsp30更停止生產,hsp87雖有下降但不明顯,而hsp27則繼續合成至更長的一段時間後方下降。
接著自SDS-PAGE中純化出熱休克蛋白質,並以之製備出兔抗熱休克蛋白質抗體,再以免疫轉印和螢光顯微技術觀察錦鯉3細胞株在被持續高溫(37°或40℃)緊迫時,其內熱休克蛋白質量及位置的動力改變。發現hsp87大量存在未受熱緊迫的細胞內,其在細胞內的總量必須在受熱12小時後才會明顯增加,然不論受熱前或受熱後其分佈位置均明顯的座落在細胞質上,然若改以免抗CCG hsp87抗體處理時,其抗hsp87螢光則又出現在整個細胞上但以細胞核為主。Hsp70則在細胞受熱後立即大量的生產且依序自細胞質進入核仁、細胞核並推積至細胞核四周的細胞質。Hsp33在細胞受熱後明顯大量的增加,其先大量出現在細胞核內,然後轉移至細胞質,但會在受熱12到24小時之間退化消失。Hsp27在常溫即存在著,細胞受熱6小時後到達最大量,並以此定量保持於細胞內。其在常溫時約有半數實驗細胞以明顯的抗hsp27螢光表現在細胞核內,細胞受熱後此位於細胞核的hsp27會逐漸消失,整個細胞也少有hsp27的存在。但隨著加熱時間的遞增,抗hsp27螢光會以絲狀出現在細胞核四周,最後表現在整個細胞質。 當以免疫轉印法探討各個熱休克蛋白質在18種魚類細胞株間的抗原性關係和保存性時,發現兔抗hsp87和hsp70抗體,不論抗原是來自CCT或CCG細胞,均對所有18種魚類細胞株有反應,而兔抗CCT hsp30抗體只和6種細胞株反應,兔抗CCG hsp33抗體更少,只和CCG和CCF細胞反應。兔抗CCT hsp27抗體也只和8種細胞反應。這些結果顯示熱休克蛋白質在18種魚類細胞株中,以hsp70的保存性最高,而hsp87次之,hsp27又次之,hsp33最差。 最後,以螢光抗體法探討熱休克蛋白質和細胞週期的關聯時,則發現未受緊迫的G1期CCT細胞,其抗hsp72螢光以成串小點狀顆粒表現在細胞質,抗hsp30螢光則很微弱。當以螢光顯微鏡觀察未受緊迫的同步化細胞,發現其抗hsp70和30的螢光並不會因細胞週期的運轉而不同。將各期細胞加熱則均會產生熱休克蛋白質,同時也和未同步化的細胞一樣,有很多的細胞在受熱緊迫後仍如對照組一般。這些結果證實,有些細胞在受緊迫後仍未出現抗hsp72的螢光,其原因應和細胞週期無關。 | zh_TW |
dc.description.abstract | The exposure of three color carp cell lines (CCT, CCG and CCF) to an elevated temperature resulted in the over-production of heat shock proteins. The kinetics of their syntheses at 37°, 40° or 43℃ were studied. With various heat shock treatments, the synthesis of hsp70 was the most rapid and prominent, and hsp27 was the slowest. Prolonged heat shock at 40℃ beyond 6 h resulted in decreased syntheses of hsp87 and 70, and a synthesis of hsp33 or hsp30 ceased, but a synthesis of hsp27 continued. Heat shock proteins in CCT and CCG were purified, and rabbit antibodies were raised against them. These antibodies were used in immunoblot and immunostain to detect the dynamic changes in the quantity and intracellular distribution of the three heat shock proteins in color carp cell lines stressed by heat shock at 37℃ or 40℃. In CCF and CCG cells, hsp87 was enhanced immediately after heat shock; however, the cellular hsp87 did not increase to a relatively elevated level which was detected evidently by western immunoblot until 6 h heat shock. Through immunofluorescence microscopy, it was observed to localize in the cytoplasm before and after heat shock. During heat shock, significant amounts of hsp70 were immediately synthesized and moved successively from the cytoplasm to the nucleolus and the nucleus and then overflowed into to the perinuclear region. In addition, the intracellular level of hsp33 increased significantly as quickly as hsp70 after heat shock but disappeared completely 6-12 h following heat shock. Furthermore, during heat shock, hsp33 mainly appeared first at the nucleus; then it was found exclusively in the cytoplasm and finally disappeared from the cytoplasm after 6-12 h. The level of hsp27 declined immediately after heat shock then began to synthesize progressively. After reaching its maximal level, a steady-state level was maintained for the remainder of the experimental period. Immunofluorescence microscopically, hsp27 could be detected in the nucleus of about half of the tested unstressed CCF cells. During heat shock, the cells with nuclear staining appeared diminished and little or no fluorescence was observed in the CCF cells. Subsequently, filament staining within the perinucleus region began to increase and then intense hsp27 cytoplasmic staining appeared. CCF cells were heated at 40℃ for 10 h then transferred to 31℃. Immunofluorescent stains show that the level of hsp87, hsp70, and hsp33 returned to the preheat-shock levels after 36 h of recovery. However, intense hsp27 cytoplasmic staining remained even after a 36-h recovery period. These results suggest hsps is degraded in the cytoplasm. Similar results were observed from CCT cells. After heat shock, hsp87 mainly appeared in the cytoplasm, hsp72 and 30 in the nucleus. However, when cells were restressed at 37℃ for 8 h after a recovery period, we found the intensity and localization of the three anti-CCT hsps staining changed from those following an initial stress for 8 h. These data suggested that the synthesis of the hsps was self-regulated. These antibodies were also used to detect antigenic material of 18 fish cell lines derived from widely different species. We found that anti-hsp87 and 70 but not 33, 30 or 27 antibodies cross-reacted with proteins of similar molecular weights in all tested cell lines. These data provided further evidence for the conservation of high molecular weight hsps. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:15:35Z (GMT). No. of bitstreams: 0 Previous issue date: 1991 | en |
dc.description.tableofcontents | 謝 誌……………………………………II 目 錄……………………………………III 中文摘要……………………………………V 第一章:緒論: 第一節 熱休克蛋白質的發現、種類與分佈……………………………………1 第二節 熱休克蛋白質的開?與控制……………………………………2 第三節 熱休克蛋白質的功能……………………………………3 第四節 熱休克蛋白質在魚類細胞上的研究……………………………………5 第五節 本論文的研究目的與範圍……………………………………6 第二章:實驗材料與方法: 第一節:細胞培養技術……………………………………9 第二節:蛋白質電泳分析……………………………………18 第三節:免疫學技術……………………………………25 第四節:單株抗體製備法……………………………………31 第三章:結果: 第一節:錦鯉精巢、鰓和鰭細胞株特性的鑑定: 1.細胞株的外型……………………………………40 2.血清及溫度對細胞生長的影響……………………………………41 3.細胞的染色體數目……………………………………41 4.細胞週期……………………………………42 5.細胞對魚類病毒的接受性……………………………………42 第二節:熱休克蛋白質在錦鯉細胞內的合成: 1.熱休克蛋白質在CCG細胞內的合成……………………………………55 2.熱休克蛋白質在CCF細胞內的合成……………………………………56 3.熱休克蛋白質在CCT細胞內的合成……………………………………57 4.熱休克蛋白質特性的鑑定……………………………………57 第三節:熱休克蛋白質抗體的製備……………………………………68 第四節:熱休克蛋白質在錦鯉細胞內的量和位置之研究: 1.細胞在熱緊迫環境下,其內熱休克蛋白質量的變化……………………………………71 2.熱休克蛋白質在細胞內的位置變換: A.CCF細胞在40℃熱緊迫環境下,熱休克蛋白質位置的轉變……………………………………72 B.回溫後CCF細胞內熱休克蛋白質位置的轉變……………………………………74 C.CCT細胞在37℃熱緊迫環境下,熱休克蛋白質位置的轉變……………………………………74 D.緊迫,及再緊迫後CCT細胞內熱休克蛋白質的位置轉換……………………………………76 3.亞砷酸鈉緊迫環境下,熱休克蛋白質量及位置的轉變……………………………………77 第五節:熱休克蛋白質在18種魚類細胞間的抗原關係……………………………………87 第六節:熱休克蛋白質與細胞週期的關係: 1.CCT細胞同步化的測定……………………………………91 2.以螢光抗體鏡法觀察hsp70或hsp30和細胞週期的關係……………………………………91 第四章:討論與展望……………………………………97 參考文獻……………………………………108 英文摘要……………………………………117 | |
dc.language.iso | zh-TW | |
dc.title | 錦鯉細胞株之熱休克蛋白質表現 | zh_TW |
dc.date.schoolyear | 79-2 | |
dc.description.degree | 博士 | |
dc.relation.page | 127 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。