Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author林綠瑩zh_TW
dc.date.accessioned2021-07-01T08:14:45Z-
dc.date.available2021-07-01T08:14:45Z-
dc.date.issued1989
dc.identifier.citation1. Chen YR, Chou M, Ren SS, Chen YM, Lin CY (1988) Observations of soybean root meristematic cells in response to heat shock. Protoplasma 144: 1-9.
2. Christiansen MN, Carns HR, Slyter DJ (1978) Stimulation of solute loss from radicles of Gossypium hirsutum L. by chilling, anaerobiosis, and low pH. Plant Physiol 46: 53-56.
3. Dubois M, Giles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.
4. Dupont FM, Mudd JB (1985) Acclimation to low temperature by microsomal membranes from tomato cell cultures. Plant Physiol 77: 74-78.
5. Dupont FM (1989) Effect of temperature on the plasma membrane and tonoplast ATPase of barley roots. Plant Physiol 89: 1401-1412.
6. Gallagher SR, Leonard RT (1982) Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol 70: 1335-1340.
7. Gallagher SR, Leonard RT (1987) Electrophoretic characterization of a detergent-treated plasma membrane fraction from corn roots. Plant Physiol 83: 265-271.
8. Graham H, Patterson BD (1982) Responses of plants to low, nonfreezing temperature: proteins, metabolism, and acclimation. Ann Rev Plant Physiol 33: 347-372.
9. Ilker R, Waring AJ, Lyons JM, Breidenbach RW (1976) The cytological responses of tomato-seedling cotyledons to chilling and the influence of membrane modifications upon these responses. Protoplasma 90: 229-252.
10. Ilker R, Breidenbach RW, Lyons JM (1979) Sequence of ultrastructural changes in tomato cotyledons during short periods of chilling. In JM Lyons, D Graham, JK Raison, eds, Low Temperature Stress in Crop Plants. Academic Press, New York, pp 97-113.
11. Ishikawa M, Yoshida S (1985) Seasonal changes in plasma membrane and mitochondria isolated from Jerusalem artichoke tubers. Possible relationship to cold hardiness. Plant Cell Physiol 26: 1331-1344.
12. Kasamo K (1986) Comparison of plasma membrane and tonoplast H+-translocating ATPases in Phaseolus mungo L. roots. Plant Cell Physiol 27 (1): 49-59.
13. Kasamo K, Nouchi I (1987) The role of phospholipids in plasma membrane ATPase activity in Vigna radiata L. (mung bean) roots and hypocotyls. Plant Physiol 83: 323-328.
14. Kasamo K (1988) Response of tonoplast and plasma membrane ATPases in chilling-sensitive and - insensitive rice (Oryza sativa L.) culture cells to low temperature. Plant Cell Physiol 29 (7): 1085-1094.
15. Kimball SL, Salisbury FB (1973) Ultrastructural changes of plants exposed to low temperatures. Amer J Bot 60 (10): 1028-1033.
16. Kislyuk IM (1963) Morphological and functional changes of chloroplasts after cooling of leaves of Cuminis sativus L.. In As Troshin, ed., The Cell and Environmental Temperature. Pergamon Press, London, pp 59-63.
17. Klein S (1960) The effect of low temperature on the development of the lamellar system in chloroplasts. J Biophys Biochem Cytol 8: 529-538.
18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
19. Leonard RT, Vanderwoude WJ (1976) Isolation of plasma membrane from corn roots by sucrose density gradient centrifugation. Plant Physiol 57: 105-114.
20. Levitt J (1980) Chilling injury and resistance. In Responses of Plants to Environmental Stresses. Vol 1. Chilling, Freezing, and High Temperature Stresses. Academic Press, New York, pp 23-64.
21. Li PH, Sakai A (1978) Plant Cold Hardiness and Freezing Stress in Crop Plants. Academic Press, New York.
22. Lyons JM, Graham D, Raison JK (1979) Low Temperature Stress in Crop Plants. Academic Press, New York.
23. Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24: 445-466.
24. Lyons JM, Raison JK, Steponkus PL (1979) The plant membrane in response to low temperature: an overview. In JM Lyons, D Graham, JK Raison, eds, Low Temperature Stress in Crop Plants. Academic Press, New York, pp. 1-24.
25. Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83: 761-767.
26. Mandala S, Taiz L (1985) Partial purification of a tonoplast ATPase from corn coleoptiles. Plant Phyiol 78: 327-333.
27. Mohapatra SS, Poole RJ, Dhindsa RS (1988) Detection of two membrane polypetides induced by abscisic acid and cold acclimation: possible role in freezing tolerance. Plant Cell Physiol 29 (4): 727-730.
28. Moore S, Stein WH (1954) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem 211: 907-913.
29. Murata N, DC Fork (1975) Temperature dependence of the light-induced spectral shift of carotenoids in Cynidium caldarum and higher plant levels. Biochim Biophys Acta 461: 365-378.
30. Niki T, Yoshida S, Sakai A (1978) Studies on chilling injury in plant cells. I. Ultrastructural changes associated with chilling injury in callus tissues of Cornus stonifera. Plant Cell Physiol 19 (1): 139-148.
31. Noble PS (1974) Temperature dependence of the permeability of chloroplast from chilling-sensitive and chilling-resistant plants. Planta 115: 369-372.
32. Oakley BR, Kirsch DR, Morris NR (1980) A simplified ultrasensitive silver stain for detecting protein in polyacrylamide gels. Anal Biochem 105: 361-363.
33. Palta JP, Li PH (1978) Cell membrane properties in relation to freezing injury. In PH Li, A Sakai, eds, Plant Cold Hardiness and Freezing Stress. Academic Press, New York, pp 93-115.
34. Shakhov AA, Golubkova BM (1961) An electron microscope study of chloroplasts of plant with root systems kept at low temperatures. Dok. Akad. Nauk. SSSR. Bot Sci Sect (Engl. Transl.) 135: 259-262.
35. Staal M, Hommels C, Kuiper D (1987) Characterization of the plasmalemma ATPase activity from roots of Plantago major ssp. pleiosperma, purified by the two-phase partitioning method. Physiol Plant 70: 461-466.
36. Steponkus PL, Wiest SC (1979) Freeze-thaw induced lesions in the plasma membrane. In LM Lyons, D Graham, JK Raison, eds, Low Temperature Stress in Crop Plants. Academic Press, New York, pp. 231-254.
37. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35: 543-548.
38. Sze H (1984) H+-translocating ATPases of the plasma membrane and tonoplast of plant cells. Physiol Plant 61: 683-691.
39. Sze H (1985) H+-transolocating ATPases: advances using membrane vesicles. Ann Rev Plant Physiol 36: 175-208.
40. Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202: 675-685.
41. Taylor AO, Craig AS (1971) Plants under climatic stress. II. Low temperatur, high light effects on chloroplast ultrastructure. Plant physiol 47: 719-725.
42. Uemura M, Yoshida S (1986) Studies on freezing injury in plant cells. II. Protein and lipid changes in the plasma membranes of Jerusalem artichoke tubers during a lethal freezing in vivo. Plant Physiol 80: 187-195.
43. Watada AE et al. (1982) Chilling injury of horticultural crops. Hort Science 17 (2): 160-186.
44. Widell S (1987) Purification of plasmalemma with aqueous polymer two-phase partition. Physiol Plant 69: 727-730.
45. Wright LC, McMurchie EJ, Pomeroy MK, Raison JK (1982) Thermal behavior and lipid composition of Cauliflower plasma membranes in relation to ATPase activity and chilling sensitivity. Plant Physiol 69: 1356-1360.
46. Yamaki S, Uritani I (1973) Morphological changes in chilling injured sweet potato root. Agr Biol Chem 37 (1): 183-186.
47. Yoshida S, Niki T, Sakai A (1979) Possible involvement of the tonoplast lesion in chilling injury of cultured plant cells. In JM Lyons, D Graham, JK Raison, eds, Low Temperature Stress in Crop Plants. Academic Press, New York, pp 275-290.
48. Yoshida S, Niki T (1979) Cell membrane permeability and respiratory activity in chilling stressed callus. Plant Cell Physiol 20 (7): 1237-1242.
49. Yoshida S, Niki T (1979) Alteration of the respiratory function in chill-sensitive callus due to low temperature stress. I. Involvement of the alternate pathway. Plant Cell Physiol 20 (7): 1243-1250.
50. Yoshida S, Uemura M (1984) Protein and lipid compositiions of isolated plasma membranes from Orchard Grass and changes during cold acclimation. Plant Physiol 75: 31-37.
51. Yoshida S, Kawata T, Uemura M, Niki T (1986) Properties of plasma membrane isolated from chilling-sensitive etiolated seedlings of Vigna radiata L. Plant Physiol 80: 152-160.
52. Yoshida S, Kawata T, Uemura M, Niki T (1986) Isolation and characterization oof tonoplast from chilling-sensitive etiolated seedlings of Vigna radiata L. Plant Physiol 80: 161-166.
53. Yoshida S, Matsuura C, Etani S (1989) Impairment of tonoplast H+-ATPase as an initial physiological response of cells to chilling in mung bean. Plant Physiol 89: 634-642.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75699-
dc.description.abstract本論文以兩天大的綠豆白化幼苗?實驗材料,探討經低溫(4.5±0.5℃)處理一天、三天、五天、七天後,一些生理反應的變化,包括:(一)幼苗生長的變化;(二)幼苗之氨基酸和醣類滲出量的變化;(三)幼苗根尖分生組織細胞顯微構造的變化;(四)細胞膜及液泡膜上ATPase活性的變化;(五)細胞膜及液泡膜蛋白質類型的變化。
綠豆白化幼苗在4.5℃的低溫下,生長會完全被抑制;低溫處理後再回到26℃下生長三天,則經低溫處理一天的幼苗,生長會受到延緩;而經低溫處理三天以上的幼苗,幼根已不會再生長,表示根尖生長點已受到破壞。而幼苗氨基酸和醣類的滲出量會隨低溫處理天數的增加而升高,此可以作?泠傷害量化的指標。
觀察根尖分生組織細胞的顯微構造,低溫處理三天的根尖細胞,液泡幾乎全部瓦解,其他胞器亦有明顯被破壞的現象,各種膜系都呈破裂而不連續,此可能由於液泡最先被瓦解後,釋放出內容物破壞了其他細胞構造。
利用二相分佈、蔗糖密度梯度、dextran密度梯度等方法來分離細胞膜和液泡膜,確立了至少有80% ATPase活性的測得是來自細胞膜或液泡膜上ATPase的反應系統後,比較兩種膜ATPase活性在低溫下的改變,得到兩種膜的ATPase皆會隨低溫處理天數的增加而活性減小,而且細胞膜ATPase活性較液泡膜ATPase活性受低溫影響改變大。而細胞膜和液泡膜蛋白質的電泳分析,都會隨低溫而發生改變,液泡膜蛋白質較細胞膜蛋白質變化多。
zh_TW
dc.description.abstractTwo-day-old etiolated mungbean seedlings (Vigna radiate L.) were used to study the effect of a series of chilling on growth, leakage of amino acids and sugar, ultrastructure of root tip, ATPase activity and proteins of plasma membrane and tonoplast.
The growth of seedlings was ihibitted at 4.5℃. When transfered to normal condition 26℃ after chilling treatments, the seedlings would grow more slowly than non-chilling-treated seedlings. The radicles of seedlings which had been treated at 4.5℃ for 3 days had no growth back to 26℃ for 3 days. It indicates that the apical meristem of the root tip was destroyed by chilling, and it was supported by observation with transfer electron microscope. The leakages of amino acids and sugar from mungbean seedlings were enhanced by chilling, indicating the seedlings to be injured by chilling.
The ultrastructure of meristem cells of root tips in mungbean seedlings was observed by transfer electron microscope. Remarkable ultrastructural changes were detected within 3 days of chilling treatment. All tonoplast was collapsed, and other organelles and structures were injured apparently. Especially all membranes became broken and discontinuous. Maybe it is because that the early disruption of tonoplast gives rise to the release of inclusion in tonoplast and an alteration of the cytoplasmic environment, consequently, results the degradation of the cells.
Plasma membrane and tonoplast vesicles were isolated by two-phase partition, discontinuous sucrose gradient and two-step dextran gradient. The inhibitions of vanadate, azide, nitrate and molybdate on ATP phosphohydrolase (ATPase) activities of plasma membrane, mitochondrion and tonoplast and acid phosphatase activity were used to estabolish the reaction mixture for plasma membrane or tonoplast ATPase assay. It can be obtained 80% activity from plasma membrane ATPase or tonoplast ATPase in estabolished reaction mixture. Plasma membrane and tonoplast ATPase activities were decreased by chilling treatments. And the plasma membrane ATPase was more sensitive to low temperature than the tonoplast ATPase. But the changes of the protein patterns of the plasma membrane caused by chilling treatments were less than those of the tonoplast proteins.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:14:45Z (GMT). No. of bitstreams: 0
Previous issue date: 1989
en
dc.description.tableofcontents中文摘要……………………………………………………1
英文摘要……………………………………………………3
前 言……………………………………………………5
實驗材料及方法……………………………………………………11
結 果……………………………………………………21
討 論……………………………………………………30
結果圖表……………………………………………………37
參考文獻……………………………………………………55
dc.language.isozh-TW
dc.title低溫逆境對綠豆白化幼苗生長、根尖顯微構造、及細胞膜、液泡膜的影響zh_TW
dc.titleEffect of a series of chilling on growth、ultrastructure of root tip、plasma membrane and tonoplast in mungbean seedlingsen
dc.date.schoolyear77-2
dc.description.degree碩士
dc.relation.page64
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved